File: filter.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (1379 lines) | stat: -rw-r--r-- 51,336 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
"""IIR and FIR filtering functions"""

from .externals.six import string_types, integer_types
import warnings
import numpy as np
from scipy.fftpack import fft, ifftshift, fftfreq
from scipy.signal import freqz, iirdesign, iirfilter, filter_dict, get_window
from scipy import signal, stats
from copy import deepcopy

from .fixes import firwin2, filtfilt  # back port for old scipy
from .time_frequency.multitaper import dpss_windows, _mt_spectra
from .parallel import parallel_func
from .cuda import (setup_cuda_fft_multiply_repeated, fft_multiply_repeated,
                   setup_cuda_fft_resample, fft_resample, _smart_pad)
from .utils import logger, verbose, sum_squared


def is_power2(num):
    """Test if number is a power of 2

    Parameters
    ----------
    num : int
        Number.

    Returns
    -------
    b : bool
        True if is power of 2.

    Example
    -------
    >>> is_power2(2 ** 3)
    True
    >>> is_power2(5)
    False
    """
    num = int(num)
    return num != 0 and ((num & (num - 1)) == 0)


def _overlap_add_filter(x, h, n_fft=None, zero_phase=True, picks=None,
                        n_jobs=1):
    """ Filter using overlap-add FFTs.

    Filters the signal x using a filter with the impulse response h.
    If zero_phase==True, the amplitude response is scaled and the filter is
    applied in forward and backward direction, resulting in a zero-phase
    filter.

    WARNING: This operates on the data in-place.

    Parameters
    ----------
    x : 2d array
        Signal to filter.
    h : 1d array
        Filter impulse response (FIR filter coefficients).
    n_fft : int
        Length of the FFT. If None, the best size is determined automatically.
    zero_phase : bool
        If True: the filter is applied in forward and backward direction,
        resulting in a zero-phase filter.
    picks : array-like of int | None
        Indices to filter. If None all indices will be filtered.
    n_jobs : int | str
        Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda
        is installed properly and CUDA is initialized.

    Returns
    -------
    xf : 2d array
        x filtered.
    """
    if picks is None:
        picks = np.arange(x.shape[0])

    # Extend the signal by mirroring the edges to reduce transient filter
    # response
    n_h = len(h)
    n_edge = min(n_h, x.shape[1])

    n_x = x.shape[1] + 2 * n_edge - 2

    # Determine FFT length to use
    if n_fft is None:
        if n_x > n_h:
            n_tot = 2 * n_x if zero_phase else n_x

            min_fft = 2 * n_h - 1
            max_fft = n_x

            # cost function based on number of multiplications
            N = 2 ** np.arange(np.ceil(np.log2(min_fft)),
                               np.ceil(np.log2(max_fft)) + 1, dtype=int)
            cost = (np.ceil(n_tot / (N - n_h + 1).astype(np.float))
                    * N * (np.log2(N) + 1))

            # add a heuristic term to prevent too-long FFT's which are slow
            # (not predicted by mult. cost alone, 4e-5 exp. determined)
            cost += 4e-5 * N * n_tot

            n_fft = N[np.argmin(cost)]
        else:
            # Use only a single block
            n_fft = 2 ** int(np.ceil(np.log2(n_x + n_h - 1)))

    if n_fft < 2 * n_h - 1:
        raise ValueError('n_fft is too short, has to be at least '
                         '"2 * len(h) - 1"')

    if not is_power2(n_fft):
        warnings.warn("FFT length is not a power of 2. Can be slower.")

    # Filter in frequency domain
    h_fft = fft(np.r_[h, np.zeros(n_fft - n_h, dtype=h.dtype)])

    if zero_phase:
        # We will apply the filter in forward and backward direction: Scale
        # frequency response of the filter so that the shape of the amplitude
        # response stays the same when it is applied twice

        # be careful not to divide by too small numbers
        idx = np.where(np.abs(h_fft) > 1e-6)
        h_fft[idx] = h_fft[idx] / np.sqrt(np.abs(h_fft[idx]))

    # Segment length for signal x
    n_seg = n_fft - n_h + 1

    # Number of segments (including fractional segments)
    n_segments = int(np.ceil(n_x / float(n_seg)))

    # Figure out if we should use CUDA
    n_jobs, cuda_dict, h_fft = setup_cuda_fft_multiply_repeated(n_jobs, h_fft)

    # Process each row separately
    if n_jobs == 1:
        for p in picks:
            x[p] = _1d_overlap_filter(x[p], h_fft, n_edge, n_fft, zero_phase,
                                      n_segments, n_seg, cuda_dict)
    else:
        _check_njobs(n_jobs, can_be_cuda=True)
        parallel, p_fun, _ = parallel_func(_1d_overlap_filter, n_jobs)
        data_new = parallel(p_fun(x[p], h_fft, n_edge, n_fft, zero_phase,
                                  n_segments, n_seg, cuda_dict)
                            for p in picks)
        for pp, p in enumerate(picks):
            x[p] = data_new[pp]

    return x


def _1d_overlap_filter(x, h_fft, n_edge, n_fft, zero_phase, n_segments, n_seg,
                       cuda_dict):
    """Do one-dimensional overlap-add FFT FIR filtering"""
    # pad to reduce ringing
    x_ext = _smart_pad(x, n_edge - 1)
    n_x = len(x_ext)
    filter_input = x_ext
    x_filtered = np.zeros_like(filter_input)

    for pass_no in list(range(2)) if zero_phase else list(range(1)):

        if pass_no == 1:
            # second pass: flip signal
            filter_input = np.flipud(x_filtered)
            x_filtered = np.zeros_like(x_ext)

        for seg_idx in range(n_segments):
            seg = filter_input[seg_idx * n_seg:(seg_idx + 1) * n_seg]
            seg = np.r_[seg, np.zeros(n_fft - len(seg))]
            prod = fft_multiply_repeated(h_fft, seg, cuda_dict)
            if seg_idx * n_seg + n_fft < n_x:
                x_filtered[seg_idx * n_seg:seg_idx * n_seg + n_fft] += prod
            else:
                # Last segment
                x_filtered[seg_idx * n_seg:] += prod[:n_x - seg_idx * n_seg]

    # Remove mirrored edges that we added
    x_filtered = x_filtered[n_edge - 1:-n_edge + 1]

    if zero_phase:
        # flip signal back
        x_filtered = np.flipud(x_filtered)

    x_filtered = x_filtered.astype(x.dtype)
    return x_filtered


def _filter_attenuation(h, freq, gain):
    """Compute minimum attenuation at stop frequency"""

    _, filt_resp = freqz(h.ravel(), worN=np.pi * freq)
    filt_resp = np.abs(filt_resp)  # use amplitude response
    filt_resp /= np.max(filt_resp)
    filt_resp[np.where(gain == 1)] = 0
    idx = np.argmax(filt_resp)
    att_db = -20 * np.log10(filt_resp[idx])
    att_freq = freq[idx]

    return att_db, att_freq


def _1d_fftmult_ext(x, B, extend_x, cuda_dict):
    """Helper to parallelize FFT FIR, with extension if necessary"""
    # extend, if necessary
    if extend_x is True:
        x = np.r_[x, x[-1]]

    # do Fourier transforms
    xf = fft_multiply_repeated(B, x, cuda_dict)

    # put back to original size and type
    if extend_x is True:
        xf = xf[:-1]

    xf = xf.astype(x.dtype)
    return xf


def _prep_for_filtering(x, copy, picks=None):
    """Set up array as 2D for filtering ease"""
    if copy is True:
        x = x.copy()
    orig_shape = x.shape
    x = np.atleast_2d(x)
    x.shape = (np.prod(x.shape[:-1]), x.shape[-1])
    if picks is None:
        picks = np.arange(x.shape[0])
    return x, orig_shape, picks


def _filter(x, Fs, freq, gain, filter_length='10s', picks=None, n_jobs=1,
            copy=True):
    """Filter signal using gain control points in the frequency domain.

    The filter impulse response is constructed from a Hamming window (window
    used in "firwin2" function) to avoid ripples in the frequency response
    (windowing is a smoothing in frequency domain). The filter is zero-phase.

    If x is multi-dimensional, this operates along the last dimension.

    Parameters
    ----------
    x : array
        Signal to filter.
    Fs : float
        Sampling rate in Hz.
    freq : 1d array
        Frequency sampling points in Hz.
    gain : 1d array
        Filter gain at frequency sampling points.
    filter_length : str (Default: '10s') | int | None
        Length of the filter to use. If None or "len(x) < filter_length",
        the filter length used is len(x). Otherwise, if int, overlap-add
        filtering with a filter of the specified length in samples) is
        used (faster for long signals). If str, a human-readable time in
        units of "s" or "ms" (e.g., "10s" or "5500ms") will be converted
        to the shortest power-of-two length at least that duration.
    picks : array-like of int | None
        Indices to filter. If None all indices will be filtered.
    n_jobs : int | str
        Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda
        is installed properly and CUDA is initialized.
    copy : bool
        If True, a copy of x, filtered, is returned. Otherwise, it operates
        on x in place.

    Returns
    -------
    xf : array
        x filtered.
    """
    # set up array for filtering, reshape to 2D, operate on last axis
    x, orig_shape, picks = _prep_for_filtering(x, copy, picks)

    # issue a warning if attenuation is less than this
    min_att_db = 20

    # normalize frequencies
    freq = np.array(freq) / (Fs / 2.)
    gain = np.array(gain)
    filter_length = _get_filter_length(filter_length, Fs, len_x=x.shape[1])

    if filter_length is None or x.shape[1] <= filter_length:
        # Use direct FFT filtering for short signals

        Norig = x.shape[1]

        extend_x = False
        if (gain[-1] == 0.0 and Norig % 2 == 1) \
                or (gain[-1] == 1.0 and Norig % 2 != 1):
            # Gain at Nyquist freq: 1: make x EVEN, 0: make x ODD
            extend_x = True

        N = x.shape[1] + (extend_x is True)

        H = firwin2(N, freq, gain)[np.newaxis, :]

        att_db, att_freq = _filter_attenuation(H, freq, gain)
        if att_db < min_att_db:
            att_freq *= Fs / 2
            warnings.warn('Attenuation at stop frequency %0.1fHz is only '
                          '%0.1fdB.' % (att_freq, att_db))

        # Make zero-phase filter function
        B = np.abs(fft(H)).ravel()

        # Figure out if we should use CUDA
        n_jobs, cuda_dict, B = setup_cuda_fft_multiply_repeated(n_jobs, B)

        if n_jobs == 1:
            for p in picks:
                x[p] = _1d_fftmult_ext(x[p], B, extend_x, cuda_dict)
        else:
            _check_njobs(n_jobs, can_be_cuda=True)
            parallel, p_fun, _ = parallel_func(_1d_fftmult_ext, n_jobs)
            data_new = parallel(p_fun(x[p], B, extend_x, cuda_dict)
                                for p in picks)
            for pp, p in enumerate(picks):
                x[p] = data_new[pp]
    else:
        # Use overlap-add filter with a fixed length
        N = filter_length

        if (gain[-1] == 0.0 and N % 2 == 1) \
                or (gain[-1] == 1.0 and N % 2 != 1):
            # Gain at Nyquist freq: 1: make N EVEN, 0: make N ODD
            N += 1

        H = firwin2(N, freq, gain)

        att_db, att_freq = _filter_attenuation(H, freq, gain)
        att_db += 6  # the filter is applied twice (zero phase)
        if att_db < min_att_db:
            att_freq *= Fs / 2
            warnings.warn('Attenuation at stop frequency %0.1fHz is only '
                          '%0.1fdB. Increase filter_length for higher '
                          'attenuation.' % (att_freq, att_db))

        x = _overlap_add_filter(x, H, zero_phase=True, picks=picks,
                                n_jobs=n_jobs)

    x.shape = orig_shape
    return x


def _check_coefficients(b, a):
    """Check for filter stability"""
    z, p, k = signal.tf2zpk(b, a)
    if np.any(np.abs(p) > 1.0):
        raise RuntimeError('Filter poles outside unit circle, filter will be '
                           'unstable. Consider using different filter '
                           'coefficients.')


def _filtfilt(x, b, a, padlen, picks, n_jobs, copy):
    """Helper to more easily call filtfilt"""
    # set up array for filtering, reshape to 2D, operate on last axis
    x, orig_shape, picks = _prep_for_filtering(x, copy, picks)
    _check_coefficients(b, a)
    if n_jobs == 1:
        for p in picks:
            x[p] = filtfilt(b, a, x[p], padlen=padlen)
    else:
        _check_njobs(n_jobs)
        parallel, p_fun, _ = parallel_func(filtfilt, n_jobs)
        data_new = parallel(p_fun(b, a, x[p], padlen=padlen)
                            for p in picks)
        for pp, p in enumerate(picks):
            x[p] = data_new[pp]
    x.shape = orig_shape
    return x


def _estimate_ringing_samples(b, a):
    """Helper function for determining IIR padding"""
    x = np.zeros(1000)
    x[0] = 1
    h = signal.lfilter(b, a, x)
    return np.where(np.abs(h) > 0.001 * np.max(np.abs(h)))[0][-1]


def construct_iir_filter(iir_params=dict(b=[1, 0], a=[1, 0], padlen=0),
                         f_pass=None, f_stop=None, sfreq=None, btype=None,
                         return_copy=True):
    """Use IIR parameters to get filtering coefficients

    This function works like a wrapper for iirdesign and iirfilter in
    scipy.signal to make filter coefficients for IIR filtering. It also
    estimates the number of padding samples based on the filter ringing.
    It creates a new iir_params dict (or updates the one passed to the
    function) with the filter coefficients ('b' and 'a') and an estimate
    of the padding necessary ('padlen') so IIR filtering can be performed.

    Parameters
    ----------
    iir_params : dict
        Dictionary of parameters to use for IIR filtering.
        If iir_params['b'] and iir_params['a'] exist, these will be used
        as coefficients to perform IIR filtering. Otherwise, if
        iir_params['order'] and iir_params['ftype'] exist, these will be
        used with scipy.signal.iirfilter to make a filter. Otherwise, if
        iir_params['gpass'] and iir_params['gstop'] exist, these will be
        used with scipy.signal.iirdesign to design a filter.
        iir_params['padlen'] defines the number of samples to pad (and
        an estimate will be calculated if it is not given). See Notes for
        more details.
    f_pass : float or list of float
        Frequency for the pass-band. Low-pass and high-pass filters should
        be a float, band-pass should be a 2-element list of float.
    f_stop : float or list of float
        Stop-band frequency (same size as f_pass). Not used if 'order' is
        specified in iir_params.
    btype : str
        Type of filter. Should be 'lowpass', 'highpass', or 'bandpass'
        (or analogous string representations known to scipy.signal).
    return_copy : bool
        If False, the 'b', 'a', and 'padlen' entries in iir_params will be
        set inplace (if they weren't already). Otherwise, a new iir_params
        instance will be created and returned with these entries.

    Returns
    -------
    iir_params : dict
        Updated iir_params dict, with the entries (set only if they didn't
        exist before) for 'b', 'a', and 'padlen' for IIR filtering.

    Notes
    -----
    This function triages calls to scipy.signal.iirfilter and iirdesign
    based on the input arguments (see descriptions of these functions
    and scipy's scipy.signal.filter_design documentation for details).

    Examples
    --------
    iir_params can have several forms. Consider constructing a low-pass
    filter at 40 Hz with 1000 Hz sampling rate.

    In the most basic (2-parameter) form of iir_params, the order of the
    filter 'N' and the type of filtering 'ftype' are specified. To get
    coefficients for a 4th-order Butterworth filter, this would be:

    >>> iir_params = dict(order=4, ftype='butter')
    >>> iir_params = construct_iir_filter(iir_params, 40, None, 1000, 'low', return_copy=False)
    >>> print((len(iir_params['b']), len(iir_params['a']), iir_params['padlen']))
    (5, 5, 82)

    Filters can also be constructed using filter design methods. To get a
    40 Hz Chebyshev type 1 lowpass with specific gain characteristics in the
    pass and stop bands (assuming the desired stop band is at 45 Hz), this
    would be a filter with much longer ringing:

    >>> iir_params = dict(ftype='cheby1', gpass=3, gstop=20)
    >>> iir_params = construct_iir_filter(iir_params, 40, 50, 1000, 'low')
    >>> print((len(iir_params['b']), len(iir_params['a']), iir_params['padlen']))
    (6, 6, 439)

    Padding and/or filter coefficients can also be manually specified. For
    a 10-sample moving window with no padding during filtering, for example,
    one can just do:

    >>> iir_params = dict(b=np.ones((10)), a=[1, 0], padlen=0)
    >>> iir_params = construct_iir_filter(iir_params, return_copy=False)
    >>> print((iir_params['b'], iir_params['a'], iir_params['padlen']))
    (array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.]), [1, 0], 0)

    """
    a = None
    b = None
    # if the filter has been designed, we're good to go
    if 'a' in iir_params and 'b' in iir_params:
        [b, a] = [iir_params['b'], iir_params['a']]
    else:
        # ensure we have a valid ftype
        if not 'ftype' in iir_params:
            raise RuntimeError('ftype must be an entry in iir_params if ''b'' '
                               'and ''a'' are not specified')
        ftype = iir_params['ftype']
        if not ftype in filter_dict:
            raise RuntimeError('ftype must be in filter_dict from '
                               'scipy.signal (e.g., butter, cheby1, etc.) not '
                               '%s' % ftype)

        # use order-based design
        Wp = np.asanyarray(f_pass) / (float(sfreq) / 2)
        if 'order' in iir_params:
            [b, a] = iirfilter(iir_params['order'], Wp, btype=btype,
                               ftype=ftype)
        else:
            # use gpass / gstop design
            Ws = np.asanyarray(f_stop) / (float(sfreq) / 2)
            if not 'gpass' in iir_params or not 'gstop' in iir_params:
                raise ValueError('iir_params must have at least ''gstop'' and'
                                 ' ''gpass'' (or ''N'') entries')
            [b, a] = iirdesign(Wp, Ws, iir_params['gpass'],
                               iir_params['gstop'], ftype=ftype)

    if a is None or b is None:
        raise RuntimeError('coefficients could not be created from iir_params')

    # now deal with padding
    if not 'padlen' in iir_params:
        padlen = _estimate_ringing_samples(b, a)
    else:
        padlen = iir_params['padlen']

    if return_copy:
        iir_params = deepcopy(iir_params)

    iir_params.update(dict(b=b, a=a, padlen=padlen))
    return iir_params


def _check_method(method, iir_params, extra_types):
    """Helper to parse method arguments"""
    allowed_types = ['iir', 'fft'] + extra_types
    if not isinstance(method, string_types):
        raise TypeError('method must be a string')
    if method not in allowed_types:
        raise ValueError('method must be one of %s, not "%s"'
                         % (allowed_types, method))
    if method == 'iir':
        if iir_params is None:
            iir_params = dict(order=4, ftype='butter')
        if not isinstance(iir_params, dict) or 'ftype' not in iir_params:
            raise ValueError('iir_params must be a dict with entry "ftype"')
    elif iir_params is not None:
        raise ValueError('iir_params must be None if method != "iir"')
    method = method.lower()
    return iir_params


@verbose
def band_pass_filter(x, Fs, Fp1, Fp2, filter_length='10s',
                     l_trans_bandwidth=0.5, h_trans_bandwidth=0.5,
                     method='fft', iir_params=None,
                     picks=None, n_jobs=1, copy=True, verbose=None):
    """Bandpass filter for the signal x.

    Applies a zero-phase bandpass filter to the signal x, operating on the
    last dimension.

    Parameters
    ----------
    x : array
        Signal to filter.
    Fs : float
        Sampling rate in Hz.
    Fp1 : float
        Low cut-off frequency in Hz.
    Fp2 : float
        High cut-off frequency in Hz.
    filter_length : str (Default: '10s') | int | None
        Length of the filter to use. If None or "len(x) < filter_length",
        the filter length used is len(x). Otherwise, if int, overlap-add
        filtering with a filter of the specified length in samples) is
        used (faster for long signals). If str, a human-readable time in
        units of "s" or "ms" (e.g., "10s" or "5500ms") will be converted
        to the shortest power-of-two length at least that duration.
    l_trans_bandwidth : float
        Width of the transition band at the low cut-off frequency in Hz.
    h_trans_bandwidth : float
        Width of the transition band at the high cut-off frequency in Hz.
    method : str
        'fft' will use overlap-add FIR filtering, 'iir' will use IIR
        forward-backward filtering (via filtfilt).
    iir_params : dict | None
        Dictionary of parameters to use for IIR filtering.
        See mne.filter.construct_iir_filter for details. If iir_params
        is None and method="iir", 4th order Butterworth will be used.
    picks : array-like of int | None
        Indices to filter. If None all indices will be filtered.
    n_jobs : int | str
        Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda
        is installed properly, CUDA is initialized, and method='fft'.
    copy : bool
        If True, a copy of x, filtered, is returned. Otherwise, it operates
        on x in place.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    xf : array
        x filtered.

    Notes
    -----
    The frequency response is (approximately) given by
                     ----------
                   /|         | \
                  / |         |  \
                 /  |         |   \
                /   |         |    \
      ----------    |         |     -----------------
                    |         |
              Fs1  Fp1       Fp2   Fs2

    Where
    Fs1 = Fp1 - l_trans_bandwidth in Hz
    Fs2 = Fp2 + h_trans_bandwidth in Hz
    """
    iir_params = _check_method(method, iir_params, [])

    Fs = float(Fs)
    Fp1 = float(Fp1)
    Fp2 = float(Fp2)
    Fs1 = Fp1 - l_trans_bandwidth
    Fs2 = Fp2 + h_trans_bandwidth
    if Fs2 > Fs / 2:
        raise ValueError('Effective band-stop frequency (%s) is too high '
                         '(maximum based on Nyquist is %s)' % (Fs2, Fs / 2.))

    if Fs1 <= 0:
        raise ValueError('Filter specification invalid: Lower stop frequency '
                         'too low (%0.1fHz). Increase Fp1 or reduce '
                         'transition bandwidth (l_trans_bandwidth)' % Fs1)

    if method == 'fft':
        freq = [0, Fs1, Fp1, Fp2, Fs2, Fs / 2]
        gain = [0, 0, 1, 1, 0, 0]
        xf = _filter(x, Fs, freq, gain, filter_length, picks, n_jobs, copy)
    else:
        iir_params = construct_iir_filter(iir_params, [Fp1, Fp2],
                                          [Fs1, Fs2], Fs, 'bandpass')
        padlen = min(iir_params['padlen'], len(x))
        xf = _filtfilt(x, iir_params['b'], iir_params['a'], padlen,
                       picks, n_jobs, copy)

    return xf


@verbose
def band_stop_filter(x, Fs, Fp1, Fp2, filter_length='10s',
                     l_trans_bandwidth=0.5, h_trans_bandwidth=0.5,
                     method='fft', iir_params=None,
                     picks=None, n_jobs=1, copy=True, verbose=None):
    """Bandstop filter for the signal x.

    Applies a zero-phase bandstop filter to the signal x, operating on the
    last dimension.

    Parameters
    ----------
    x : array
        Signal to filter.
    Fs : float
        Sampling rate in Hz.
    Fp1 : float | array of float
        Low cut-off frequency in Hz.
    Fp2 : float | array of float
        High cut-off frequency in Hz.
    filter_length : str (Default: '10s') | int | None
        Length of the filter to use. If None or "len(x) < filter_length",
        the filter length used is len(x). Otherwise, if int, overlap-add
        filtering with a filter of the specified length in samples) is
        used (faster for long signals). If str, a human-readable time in
        units of "s" or "ms" (e.g., "10s" or "5500ms") will be converted
        to the shortest power-of-two length at least that duration.
    l_trans_bandwidth : float
        Width of the transition band at the low cut-off frequency in Hz.
    h_trans_bandwidth : float
        Width of the transition band at the high cut-off frequency in Hz.
    method : str
        'fft' will use overlap-add FIR filtering, 'iir' will use IIR
        forward-backward filtering (via filtfilt).
    iir_params : dict | None
        Dictionary of parameters to use for IIR filtering.
        See mne.filter.construct_iir_filter for details. If iir_params
        is None and method="iir", 4th order Butterworth will be used.
    picks : array-like of int | None
        Indices to filter. If None all indices will be filtered.
    n_jobs : int | str
        Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda
        is installed properly, CUDA is initialized, and method='fft'.
    copy : bool
        If True, a copy of x, filtered, is returned. Otherwise, it operates
        on x in place.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    xf : array
        x filtered.

    Notes
    -----
    The frequency response is (approximately) given by
      ----------                   ----------
               |\                 /|
               | \               / |
               |  \             /  |
               |   \           /   |
               |    -----------    |
               |    |         |    |
              Fp1  Fs1       Fs2  Fp2

    Where
    Fs1 = Fp1 - l_trans_bandwidth in Hz
    Fs2 = Fp2 + h_trans_bandwidth in Hz

    Note that multiple stop bands can be specified using arrays.
    """
    iir_params = _check_method(method, iir_params, [])

    Fp1 = np.atleast_1d(Fp1)
    Fp2 = np.atleast_1d(Fp2)
    if not len(Fp1) == len(Fp2):
        raise ValueError('Fp1 and Fp2 must be the same length')

    Fs = float(Fs)
    Fp1 = Fp1.astype(float)
    Fp2 = Fp2.astype(float)
    Fs1 = Fp1 + l_trans_bandwidth
    Fs2 = Fp2 - h_trans_bandwidth

    if np.any(Fs1 <= 0):
        raise ValueError('Filter specification invalid: Lower stop frequency '
                         'too low (%0.1fHz). Increase Fp1 or reduce '
                         'transition bandwidth (l_trans_bandwidth)' % Fs1)

    if method == 'fft':
        freq = np.r_[0, Fp1, Fs1, Fs2, Fp2, Fs / 2]
        gain = np.r_[1, np.ones_like(Fp1), np.zeros_like(Fs1),
                     np.zeros_like(Fs2), np.ones_like(Fp2), 1]
        order = np.argsort(freq)
        freq = freq[order]
        gain = gain[order]
        if np.any(np.abs(np.diff(gain, 2)) > 1):
            raise ValueError('Stop bands are not sufficiently separated.')
        xf = _filter(x, Fs, freq, gain, filter_length, picks, n_jobs, copy)
    else:
        for fp_1, fp_2, fs_1, fs_2 in zip(Fp1, Fp2, Fs1, Fs2):
            iir_params_new = construct_iir_filter(iir_params, [fp_1, fp_2],
                                                  [fs_1, fs_2], Fs, 'bandstop')
            padlen = min(iir_params_new['padlen'], len(x))
            xf = _filtfilt(x, iir_params_new['b'], iir_params_new['a'], padlen,
                           picks, n_jobs, copy)

    return xf


@verbose
def low_pass_filter(x, Fs, Fp, filter_length='10s', trans_bandwidth=0.5,
                    method='fft', iir_params=None,
                    picks=None, n_jobs=1, copy=True, verbose=None):
    """Lowpass filter for the signal x.

    Applies a zero-phase lowpass filter to the signal x, operating on the
    last dimension.

    Parameters
    ----------
    x : array
        Signal to filter.
    Fs : float
        Sampling rate in Hz.
    Fp : float
        Cut-off frequency in Hz.
    filter_length : str (Default: '10s') | int | None
        Length of the filter to use. If None or "len(x) < filter_length",
        the filter length used is len(x). Otherwise, if int, overlap-add
        filtering with a filter of the specified length in samples) is
        used (faster for long signals). If str, a human-readable time in
        units of "s" or "ms" (e.g., "10s" or "5500ms") will be converted
        to the shortest power-of-two length at least that duration.
    trans_bandwidth : float
        Width of the transition band in Hz.
    method : str
        'fft' will use overlap-add FIR filtering, 'iir' will use IIR
        forward-backward filtering (via filtfilt).
    iir_params : dict | None
        Dictionary of parameters to use for IIR filtering.
        See mne.filter.construct_iir_filter for details. If iir_params
        is None and method="iir", 4th order Butterworth will be used.
    picks : array-like of int | None
        Indices to filter. If None all indices will be filtered.
    n_jobs : int | str
        Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda
        is installed properly, CUDA is initialized, and method='fft'.
    copy : bool
        If True, a copy of x, filtered, is returned. Otherwise, it operates
        on x in place.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    xf : array
        x filtered.

    Notes
    -----
    The frequency response is (approximately) given by
      -------------------------
                              | \
                              |  \
                              |   \
                              |    \
                              |     -----------------
                              |
                              Fp  Fp+trans_bandwidth

    """
    iir_params = _check_method(method, iir_params, [])
    Fs = float(Fs)
    Fp = float(Fp)
    Fstop = Fp + trans_bandwidth
    if Fstop > Fs / 2.:
        raise ValueError('Effective stop frequency (%s) is too high '
                         '(maximum based on Nyquist is %s)' % (Fstop, Fs / 2.))

    if method == 'fft':
        freq = [0, Fp, Fstop, Fs / 2]
        gain = [1, 1, 0, 0]
        xf = _filter(x, Fs, freq, gain, filter_length, picks, n_jobs, copy)
    else:
        iir_params = construct_iir_filter(iir_params, Fp, Fstop, Fs, 'low')
        padlen = min(iir_params['padlen'], len(x))
        xf = _filtfilt(x, iir_params['b'], iir_params['a'], padlen,
                       picks, n_jobs, copy)

    return xf


@verbose
def high_pass_filter(x, Fs, Fp, filter_length='10s', trans_bandwidth=0.5,
                     method='fft', iir_params=None,
                     picks=None, n_jobs=1, copy=True, verbose=None):
    """Highpass filter for the signal x.

    Applies a zero-phase highpass filter to the signal x, operating on the
    last dimension.

    Parameters
    ----------
    x : array
        Signal to filter.
    Fs : float
        Sampling rate in Hz.
    Fp : float
        Cut-off frequency in Hz.
    filter_length : str (Default: '10s') | int | None
        Length of the filter to use. If None or "len(x) < filter_length",
        the filter length used is len(x). Otherwise, if int, overlap-add
        filtering with a filter of the specified length in samples) is
        used (faster for long signals). If str, a human-readable time in
        units of "s" or "ms" (e.g., "10s" or "5500ms") will be converted
        to the shortest power-of-two length at least that duration.
    trans_bandwidth : float
        Width of the transition band in Hz.
    method : str
        'fft' will use overlap-add FIR filtering, 'iir' will use IIR
        forward-backward filtering (via filtfilt).
    iir_params : dict | None
        Dictionary of parameters to use for IIR filtering.
        See mne.filter.construct_iir_filter for details. If iir_params
        is None and method="iir", 4th order Butterworth will be used.
    picks : array-like of int | None
        Indices to filter. If None all indices will be filtered.
    n_jobs : int | str
        Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda
        is installed properly, CUDA is initialized, and method='fft'.
    copy : bool
        If True, a copy of x, filtered, is returned. Otherwise, it operates
        on x in place.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    xf : array
        x filtered.

    Notes
    -----
    The frequency response is (approximately) given by
                   -----------------------
                 /|
                / |
               /  |
              /   |
    ----------    |
                  |
           Fstop  Fp

    where Fstop = Fp - trans_bandwidth
    """
    iir_params = _check_method(method, iir_params, [])
    Fs = float(Fs)
    Fp = float(Fp)

    Fstop = Fp - trans_bandwidth
    if Fstop <= 0:
        raise ValueError('Filter specification invalid: Stop frequency too low'
                         '(%0.1fHz). Increase Fp or reduce transition '
                         'bandwidth (trans_bandwidth)' % Fstop)

    if method == 'fft':
        freq = [0, Fstop, Fp, Fs / 2]
        gain = [0, 0, 1, 1]
        xf = _filter(x, Fs, freq, gain, filter_length, picks, n_jobs, copy)
    else:
        iir_params = construct_iir_filter(iir_params, Fp, Fstop, Fs, 'high')
        padlen = min(iir_params['padlen'], len(x))
        xf = _filtfilt(x, iir_params['b'], iir_params['a'], padlen,
                       picks, n_jobs, copy)

    return xf


@verbose
def notch_filter(x, Fs, freqs, filter_length='10s', notch_widths=None,
                 trans_bandwidth=1, method='fft',
                 iir_params=None, mt_bandwidth=None,
                 p_value=0.05, picks=None, n_jobs=1, copy=True, verbose=None):
    """Notch filter for the signal x.

    Applies a zero-phase notch filter to the signal x, operating on the last
    dimension.

    Parameters
    ----------
    x : array
        Signal to filter.
    Fs : float
        Sampling rate in Hz.
    freqs : float | array of float | None
        Frequencies to notch filter in Hz, e.g. np.arange(60, 241, 60).
        None can only be used with the mode 'spectrum_fit', where an F
        test is used to find sinusoidal components.
    filter_length : str (Default: '10s') | int | None
        Length of the filter to use. If None or "len(x) < filter_length",
        the filter length used is len(x). Otherwise, if int, overlap-add
        filtering with a filter of the specified length in samples) is
        used (faster for long signals). If str, a human-readable time in
        units of "s" or "ms" (e.g., "10s" or "5500ms") will be converted
        to the shortest power-of-two length at least that duration.
    notch_widths : float | array of float | None
        Width of the stop band (centred at each freq in freqs) in Hz.
        If None, freqs / 200 is used.
    trans_bandwidth : float
        Width of the transition band in Hz.
    method : str
        'fft' will use overlap-add FIR filtering, 'iir' will use IIR
        forward-backward filtering (via filtfilt). 'spectrum_fit' will
        use multi-taper estimation of sinusoidal components. If freqs=None
        and method='spectrum_fit', significant sinusoidal components
        are detected using an F test, and noted by logging.
    iir_params : dict | None
        Dictionary of parameters to use for IIR filtering.
        See mne.filter.construct_iir_filter for details. If iir_params
        is None and method="iir", 4th order Butterworth will be used.
    mt_bandwidth : float | None
        The bandwidth of the multitaper windowing function in Hz.
        Only used in 'spectrum_fit' mode.
    p_value : float
        p-value to use in F-test thresholding to determine significant
        sinusoidal components to remove when method='spectrum_fit' and
        freqs=None. Note that this will be Bonferroni corrected for the
        number of frequencies, so large p-values may be justified.
    picks : array-like of int | None
        Indices to filter. If None all indices will be filtered.
    n_jobs : int | str
        Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda
        is installed properly, CUDA is initialized, and method='fft'.
    copy : bool
        If True, a copy of x, filtered, is returned. Otherwise, it operates
        on x in place.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    xf : array
        x filtered.

    Notes
    -----
    The frequency response is (approximately) given by
      ----------         -----------
               |\       /|
               | \     / |
               |  \   /  |
               |   \ /   |
               |    -    |
               |    |    |
              Fp1 freq  Fp2

    For each freq in freqs, where:
    Fp1 = freq - trans_bandwidth / 2 in Hz
    Fs2 = freq + trans_bandwidth / 2 in Hz

    References
    ----------
    Multi-taper removal is inspired by code from the Chronux toolbox, see
    www.chronux.org and the book "Observed Brain Dynamics" by Partha Mitra
    & Hemant Bokil, Oxford University Press, New York, 2008. Please
    cite this in publications if method 'spectrum_fit' is used.
    """
    iir_params = _check_method(method, iir_params, ['spectrum_fit'])

    if freqs is not None:
        freqs = np.atleast_1d(freqs)
    elif method != 'spectrum_fit':
        raise ValueError('freqs=None can only be used with method '
                         'spectrum_fit')

    # Only have to deal with notch_widths for non-autodetect
    if freqs is not None:
        if notch_widths is None:
            notch_widths = freqs / 200.0
        elif np.any(notch_widths < 0):
            raise ValueError('notch_widths must be >= 0')
        else:
            notch_widths = np.atleast_1d(notch_widths)
            if len(notch_widths) == 1:
                notch_widths = notch_widths[0] * np.ones_like(freqs)
            elif len(notch_widths) != len(freqs):
                raise ValueError('notch_widths must be None, scalar, or the '
                                 'same length as freqs')

    if method in ['fft', 'iir']:
        # Speed this up by computing the fourier coefficients once
        tb_2 = trans_bandwidth / 2.0
        lows = [freq - nw / 2.0 - tb_2
                for freq, nw in zip(freqs, notch_widths)]
        highs = [freq + nw / 2.0 + tb_2
                 for freq, nw in zip(freqs, notch_widths)]
        xf = band_stop_filter(x, Fs, lows, highs, filter_length, tb_2, tb_2,
                              method, iir_params, picks, n_jobs, copy)
    elif method == 'spectrum_fit':
        xf = _mt_spectrum_proc(x, Fs, freqs, notch_widths, mt_bandwidth,
                               p_value, picks, n_jobs, copy)

    return xf


def _mt_spectrum_proc(x, sfreq, line_freqs, notch_widths, mt_bandwidth,
                      p_value, picks, n_jobs, copy):
    """Helper to more easily call _mt_spectrum_remove"""
    # set up array for filtering, reshape to 2D, operate on last axis
    x, orig_shape, picks = _prep_for_filtering(x, copy, picks)
    if n_jobs == 1:
        freq_list = list()
        for ii, x_ in enumerate(x):
            if ii in picks:
                x[ii], f = _mt_spectrum_remove(x_, sfreq, line_freqs,
                                               notch_widths, mt_bandwidth,
                                               p_value)
                freq_list.append(f)
    else:
        _check_njobs(n_jobs)
        parallel, p_fun, _ = parallel_func(_mt_spectrum_remove, n_jobs)
        data_new = parallel(p_fun(x_, sfreq, line_freqs, notch_widths,
                                  mt_bandwidth, p_value)
                            for xi, x_ in enumerate(x)
                            if xi in picks)
        freq_list = [d[1] for d in data_new]
        data_new = np.array([d[0] for d in data_new])
        x[picks, :] = data_new

    # report found frequencies
    for rm_freqs in freq_list:
        if line_freqs is None:
            if len(rm_freqs) > 0:
                logger.info('Detected notch frequencies:\n%s'
                            % ', '.join([str(f) for f in rm_freqs]))
            else:
                logger.info('Detected notch frequecies:\nNone')

    x.shape = orig_shape
    return x


def _mt_spectrum_remove(x, sfreq, line_freqs, notch_widths,
                        mt_bandwidth, p_value):
    """Use MT-spectrum to remove line frequencies

    Based on Chronux. If line_freqs is specified, all freqs within notch_width
    of each line_freq is set to zero.
    """
    # XXX need to implement the moving window version for raw files
    n_times = x.size

    # max taper size chosen because it has an max error < 1e-3:
    # >>> np.max(np.diff(dpss_windows(953, 4, 100)[0]))
    # 0.00099972447657578449
    # so we use 1000 because it's the first "nice" number bigger than 953:
    dpss_n_times_max = 1000

    # figure out what tapers to use
    if mt_bandwidth is not None:
        half_nbw = float(mt_bandwidth) * n_times / (2 * sfreq)
    else:
        half_nbw = 4

    # compute dpss windows
    n_tapers_max = int(2 * half_nbw)
    window_fun, eigvals = dpss_windows(n_times, half_nbw, n_tapers_max,
                                       low_bias=False,
                                       interp_from=min(n_times,
                                                       dpss_n_times_max))

    # drop the even tapers
    n_tapers = len(window_fun)
    tapers_odd = np.arange(0, n_tapers, 2)
    tapers_even = np.arange(1, n_tapers, 2)
    tapers_use = window_fun[tapers_odd]

    # sum tapers for (used) odd prolates across time (n_tapers, 1)
    H0 = np.sum(tapers_use, axis=1)

    # sum of squares across tapers (1, )
    H0_sq = sum_squared(H0)

    # make "time" vector
    rads = 2 * np.pi * (np.arange(n_times) / float(sfreq))

    # compute mt_spectrum (returning n_ch, n_tapers, n_freq)
    x_p, freqs = _mt_spectra(x[np.newaxis, :], window_fun, sfreq)

    # sum of the product of x_p and H0 across tapers (1, n_freqs)
    x_p_H0 = np.sum(x_p[:, tapers_odd, :] *
                    H0[np.newaxis, :, np.newaxis], axis=1)

    # resulting calculated amplitudes for all freqs
    A = x_p_H0 / H0_sq

    if line_freqs is None:
        # figure out which freqs to remove using F stat

        # estimated coefficient
        x_hat = A * H0[:, np.newaxis]

        # numerator for F-statistic
        num = (n_tapers - 1) * (np.abs(A) ** 2) * H0_sq
        # denominator for F-statistic
        den = (np.sum(np.abs(x_p[:, tapers_odd, :] - x_hat) ** 2, 1) +
               np.sum(np.abs(x_p[:, tapers_even, :]) ** 2, 1))
        den[den == 0] = np.inf
        f_stat = num / den
        # F-stat of 1-p point
        threshold = stats.f.ppf(1 - p_value / n_times, 2, 2 * n_tapers - 2)

        # find frequencies to remove
        indices = np.where(f_stat > threshold)[1]
        rm_freqs = freqs[indices]
    else:
        # specify frequencies
        indices_1 = np.unique([np.argmin(np.abs(freqs - lf))
                               for lf in line_freqs])
        notch_widths /= 2.0
        indices_2 = [np.logical_and(freqs > lf - nw, freqs < lf + nw)
                     for lf, nw in zip(line_freqs, notch_widths)]
        indices_2 = np.where(np.any(np.array(indices_2), axis=0))[0]
        indices = np.unique(np.r_[indices_1, indices_2])
        rm_freqs = freqs[indices]

    fits = list()
    for ind in indices:
        c = 2 * A[0, ind]
        fit = np.abs(c) * np.cos(freqs[ind] * rads + np.angle(c))
        fits.append(fit)

    if len(fits) == 0:
        datafit = 0.0
    else:
        # fitted sinusoids are summed, and subtracted from data
        datafit = np.sum(np.atleast_2d(fits), axis=0)

    return x - datafit, rm_freqs


@verbose
def resample(x, up, down, npad=100, axis=-1, window='boxcar', n_jobs=1,
             verbose=None):
    """Resample the array x

    Operates along the last dimension of the array.

    Parameters
    ----------
    x : n-d array
        Signal to resample.
    up : float
        Factor to upsample by.
    down : float
        Factor to downsample by.
    npad : integer
        Number of samples to use at the beginning and end for padding.
    axis : int
        Axis along which to resample (default is the last axis).
    window : string or tuple
        See scipy.signal.resample for description.
    n_jobs : int | str
        Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda
        is installed properly and CUDA is initialized.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    xf : array
        x resampled.

    Notes
    -----
    This uses (hopefully) intelligent edge padding and frequency-domain
    windowing improve scipy.signal.resample's resampling method, which
    we have adapted for our use here. Choices of npad and window have
    important consequences, and the default choices should work well
    for most natural signals.

    Resampling arguments are broken into "up" and "down" components for future
    compatibility in case we decide to use an upfirdn implementation. The
    current implementation is functionally equivalent to passing
    up=up/down and down=1.
    """
    # check explicitly for backwards compatibility
    if not isinstance(axis, int):
        err = ("The axis parameter needs to be an integer (got %s). "
               "The axis parameter was missing from this function for a "
               "period of time, you might be intending to specify the "
               "subsequent window parameter." % repr(axis))
        raise TypeError(err)

    # make sure our arithmetic will work
    ratio = float(up) / down
    if axis < 0:
        axis = x.ndim + axis
    orig_last_axis = x.ndim - 1
    if axis != orig_last_axis:
        x = x.swapaxes(axis, orig_last_axis)
    orig_shape = x.shape
    x_len = orig_shape[-1]
    if x_len == 0:
        warnings.warn('x has zero length along last axis, returning a copy of '
                      'x')
        return x.copy()

    # prep for resampling now
    x_flat = x.reshape((-1, x_len))
    orig_len = x_len + 2 * npad  # length after padding
    new_len = int(round(ratio * orig_len))  # length after resampling
    to_remove = np.round(ratio * npad).astype(int)

    # figure out windowing function
    if window is not None:
        if callable(window):
            W = window(fftfreq(orig_len))
        elif isinstance(window, np.ndarray) and \
                window.shape == (orig_len,):
            W = window
        else:
            W = ifftshift(get_window(window, orig_len))
    else:
        W = np.ones(orig_len)
    W *= (float(new_len) / float(orig_len))
    W = W.astype(np.complex128)

    # figure out if we should use CUDA
    n_jobs, cuda_dict, W = setup_cuda_fft_resample(n_jobs, W, new_len)

    # do the resampling using an adaptation of scipy's FFT-based resample()
    # use of the 'flat' window is recommended for minimal ringing
    if n_jobs == 1:
        y = np.zeros((len(x_flat), new_len - 2 * to_remove), dtype=x.dtype)
        for xi, x_ in enumerate(x_flat):
            y[xi] = fft_resample(x_, W, new_len, npad, to_remove,
                                 cuda_dict)
    else:
        _check_njobs(n_jobs, can_be_cuda=True)
        parallel, p_fun, _ = parallel_func(fft_resample, n_jobs)
        y = parallel(p_fun(x_, W, new_len, npad, to_remove, cuda_dict)
                     for x_ in x_flat)
        y = np.array(y)

    # Restore the original array shape (modified for resampling)
    y.shape = orig_shape[:-1] + (y.shape[1],)
    if axis != orig_last_axis:
        y = y.swapaxes(axis, orig_last_axis)

    return y


def detrend(x, order=1, axis=-1):
    """Detrend the array x.

    Parameters
    ----------
    x : n-d array
        Signal to detrend.
    order : int
        Fit order. Currently must be '0' or '1'.
    axis : integer
        Axis of the array to operate on.

    Returns
    -------
    xf : array
        x detrended.

    Examples
    --------
    As in scipy.signal.detrend:
        >>> randgen = np.random.RandomState(9)
        >>> npoints = int(1e3)
        >>> noise = randgen.randn(npoints)
        >>> x = 3 + 2*np.linspace(0, 1, npoints) + noise
        >>> (detrend(x) - noise).max() < 0.01
        True
    """
    if axis > len(x.shape):
        raise ValueError('x does not have %d axes' % axis)
    if order == 0:
        fit = 'constant'
    elif order == 1:
        fit = 'linear'
    else:
        raise ValueError('order must be 0 or 1')

    y = signal.detrend(x, axis=axis, type=fit)

    return y


def _get_filter_length(filter_length, sfreq, min_length=128, len_x=np.inf):
    """Helper to determine a reasonable filter length"""
    if not isinstance(min_length, int):
        raise ValueError('min_length must be an int')
    if isinstance(filter_length, string_types):
        # parse time values
        if filter_length[-2:].lower() == 'ms':
            mult_fact = 1e-3
            filter_length = filter_length[:-2]
        elif filter_length[-1].lower() == 's':
            mult_fact = 1
            filter_length = filter_length[:-1]
        else:
            raise ValueError('filter_length, if a string, must be a '
                             'human-readable time (e.g., "10s"), not '
                             '"%s"' % filter_length)
        # now get the number
        try:
            filter_length = float(filter_length)
        except ValueError:
            raise ValueError('filter_length, if a string, must be a '
                             'human-readable time (e.g., "10s"), not '
                             '"%s"' % filter_length)
        filter_length = 2 ** int(np.ceil(np.log2(filter_length
                                                 * mult_fact * sfreq)))
        # shouldn't make filter longer than length of x
        if filter_length >= len_x:
            filter_length = len_x
        # only need to check min_length if the filter is shorter than len_x
        elif filter_length < min_length:
            filter_length = min_length
            warnings.warn('filter_length was too short, using filter of '
                          'length %d samples ("%0.1fs")'
                          % (filter_length, filter_length / float(sfreq)))

    if filter_length is not None:
        if not isinstance(filter_length, integer_types):
            raise ValueError('filter_length must be str, int, or None')
    return filter_length


def _check_njobs(n_jobs, can_be_cuda=False):
    if not isinstance(n_jobs, int):
        if can_be_cuda is True:
            raise ValueError('n_jobs must be an integer, or "cuda"')
        else:
            raise ValueError('n_jobs must be an integer')
    if n_jobs < 1:
        raise ValueError('n_jobs must be >= 1')