File: _field_interpolation.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (286 lines) | stat: -rw-r--r-- 10,977 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import numpy as np
from scipy import linalg
from copy import deepcopy

from ..io.constants import FIFF
from ..io.pick import pick_types, pick_info
from ..surface import get_head_surf, get_meg_helmet_surf

from ..io.proj import _has_eeg_average_ref_proj, make_projector
from ..transforms import transform_surface_to, read_trans, _find_trans
from ._make_forward import _create_coils
from ._lead_dots import (_do_self_dots, _do_surface_dots, _get_legen_table,
                         _get_legen_lut_fast, _get_legen_lut_accurate)
from ..parallel import check_n_jobs
from ..utils import logger, verbose
from ..fixes import partial


def _is_axial_coil(coil):
    is_ax = coil['coil_class'] in (FIFF.FWD_COILC_MAG,
                                   FIFF.FWD_COILC_AXIAL_GRAD,
                                   FIFF.FWD_COILC_AXIAL_GRAD2)
    return is_ax


def _ad_hoc_noise(coils, ch_type='meg'):
    v = np.empty(len(coils))
    if ch_type == 'meg':
        axs = np.array([_is_axial_coil(coil) for coil in coils], dtype=bool)
        v[axs] = 4e-28  # 20e-15 ** 2
        v[np.logical_not(axs)] = 2.5e-25  # 5e-13 ** 2
    else:
        v.fill(1e-12)  # 1e-6 ** 2
    cov = dict(diag=True, data=v, eig=None, eigvec=None)
    return cov


def _compute_mapping_matrix(fmd, info):
    """Do the hairy computations"""
    logger.info('preparing the mapping matrix...')
    # assemble a projector and apply it to the data
    ch_names = fmd['ch_names']
    projs = info.get('projs', list())
    proj_op = make_projector(projs, ch_names)[0]
    proj_dots = np.dot(proj_op.T, np.dot(fmd['self_dots'], proj_op))

    noise_cov = fmd['noise']
    # Whiten
    if not noise_cov['diag']:
        raise NotImplementedError  # this shouldn't happen
    whitener = np.diag(1.0 / np.sqrt(noise_cov['data'].ravel()))
    whitened_dots = np.dot(whitener.T, np.dot(proj_dots, whitener))

    # SVD is numerically better than the eigenvalue composition even if
    # mat is supposed to be symmetric and positive definite
    uu, sing, vv = linalg.svd(whitened_dots, full_matrices=False,
                              overwrite_a=True)

    # Eigenvalue truncation
    sumk = np.cumsum(sing)
    sumk /= sumk[-1]
    fmd['nest'] = np.where(sumk > (1.0 - fmd['miss']))[0][0]
    logger.info('Truncate at %d missing %g' % (fmd['nest'], fmd['miss']))
    sing = 1.0 / sing[:fmd['nest']]

    # Put the inverse together
    logger.info('Put the inverse together...')
    inv = np.dot(uu[:, :fmd['nest']] * sing, vv[:fmd['nest']]).T

    # Sandwich with the whitener
    inv_whitened = np.dot(whitener.T, np.dot(inv, whitener))

    # Take into account that the lead fields used to compute
    # d->surface_dots were unprojected
    inv_whitened_proj = (np.dot(inv_whitened.T, proj_op)).T

    # Finally sandwich in the selection matrix
    # This one picks up the correct lead field projection
    mapping_mat = np.dot(fmd['surface_dots'], inv_whitened_proj)

    # Optionally apply the average electrode reference to the final field map
    if fmd['kind'] == 'eeg':
        if _has_eeg_average_ref_proj(projs):
            logger.info('The map will have average electrode reference')
            mapping_mat -= np.mean(mapping_mat, axis=0)[np.newaxis, :]
    return mapping_mat


@verbose
def _make_surface_mapping(info, surf, ch_type='meg', trans=None, mode='fast',
                          n_jobs=1, verbose=None):
    """Re-map M/EEG data to a surface

    Parameters
    ----------
    info : instance of io.meas_info.Info
        Measurement info.
    surf : dict
        The surface to map the data to. The required fields are `'rr'`,
        `'nn'`, and `'coord_frame'`. Must be in head coordinates.
    ch_type : str
        Must be either `'meg'` or `'eeg'`, determines the type of field.
    trans : None | dict
        If None, no transformation applied. Should be a Head<->MRI
        transformation.
    mode : str
        Either `'accurate'` or `'fast'`, determines the quality of the
        Legendre polynomial expansion used. `'fast'` should be sufficient
        for most applications.
    n_jobs : int
        Number of permutations to run in parallel (requires joblib package).
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    mapping : array
        A n_vertices x n_sensors array that remaps the MEG or EEG data,
        as `new_data = np.dot(mapping, data)`.
    """
    if not all([key in surf for key in ['rr', 'nn']]):
        raise KeyError('surf must have both "rr" and "nn"')
    if 'coord_frame' not in surf:
        raise KeyError('The surface coordinate frame must be specified '
                       'in surf["coord_frame"]')
    if mode not in ['accurate', 'fast']:
        raise ValueError('mode must be "accurate" or "fast", not "%s"' % mode)

    # deal with coordinate frames here -- always go to "head" (easiest)
    if surf['coord_frame'] == FIFF.FIFFV_COORD_MRI:
        if trans is None or FIFF.FIFFV_COORD_MRI not in [trans['to'],
                                                         trans['from']]:
            raise ValueError('trans must be a Head<->MRI transform if the '
                             'surface is not in head coordinates.')
        surf = transform_surface_to(deepcopy(surf), 'head', trans)

    n_jobs = check_n_jobs(n_jobs)

    #
    # Step 1. Prepare the coil definitions
    # Do the dot products, assume surf in head coords
    #
    if ch_type not in ('meg', 'eeg'):
        raise ValueError('unknown coil type "%s"' % ch_type)
    if ch_type == 'meg':
        picks = pick_types(info, meg=True, eeg=False, ref_meg=False)
        logger.info('Prepare MEG mapping...')
    else:
        picks = pick_types(info, meg=False, eeg=True, ref_meg=False)
        logger.info('Prepare EEG mapping...')
    if len(picks) == 0:
        raise RuntimeError('cannot map, no channels found')
    chs = pick_info(info, picks)['chs']

    # create coil defs in head coordinates
    if ch_type == 'meg':
        # Put them in head coordinates
        coils = _create_coils(chs, FIFF.FWD_COIL_ACCURACY_NORMAL,
                              info['dev_head_t'], coil_type='meg')[0]
        type_str = 'coils'
        miss = 1e-4  # Smoothing criterion for MEG
    else:  # EEG
        coils = _create_coils(chs, coil_type='eeg')[0]
        type_str = 'electrodes'
        miss = 1e-3  # Smoothing criterion for EEG

    #
    # Step 2. Calculate the dot products
    #
    my_origin = np.array([0.0, 0.0, 0.04])
    int_rad = 0.06
    noise = _ad_hoc_noise(coils, ch_type)
    if mode == 'fast':
        # Use 50 coefficients with nearest-neighbor interpolation
        lut, n_fact = _get_legen_table(ch_type, False, 50)
        lut_fun = partial(_get_legen_lut_fast, lut=lut)
    else:  # 'accurate'
        # Use 100 coefficients with linear interpolation
        lut, n_fact = _get_legen_table(ch_type, False, 100)
        lut_fun = partial(_get_legen_lut_accurate, lut=lut)
    logger.info('Computing dot products for %i %s...' % (len(coils), type_str))
    self_dots = _do_self_dots(int_rad, False, coils, my_origin, ch_type,
                              lut_fun, n_fact, n_jobs)
    sel = np.arange(len(surf['rr']))  # eventually we should do sub-selection
    logger.info('Computing dot products for %i surface locations...'
                % len(sel))
    surface_dots = _do_surface_dots(int_rad, False, coils, surf, sel,
                                    my_origin, ch_type, lut_fun, n_fact,
                                    n_jobs)

    #
    # Step 4. Return the result
    #
    ch_names = [c['ch_name'] for c in chs]
    fmd = dict(kind=ch_type, surf=surf, ch_names=ch_names, coils=coils,
               origin=my_origin, noise=noise, self_dots=self_dots,
               surface_dots=surface_dots, int_rad=int_rad, miss=miss)
    logger.info('Field mapping data ready')

    fmd['data'] = _compute_mapping_matrix(fmd, info)

    # Remove some unecessary fields
    del fmd['self_dots']
    del fmd['surface_dots']
    del fmd['int_rad']
    del fmd['miss']
    return fmd


def make_field_map(evoked, trans_fname='auto', subject=None, subjects_dir=None,
                   ch_type=None, mode='fast', n_jobs=1):
    """Compute surface maps used for field display in 3D

    Parameters
    ----------
    evoked : Evoked | Epochs | Raw
        The measurement file. Need to have info attribute.
    trans_fname : str | 'auto' | None
        The full path to the `*-trans.fif` file produced during
        coregistration. If present or found using 'auto'
        the maps will be in MRI coordinates.
        If None, map for EEG data will not be available.
    subject : str | None
        The subject name corresponding to FreeSurfer environment
        variable SUBJECT. If None, map for EEG data will not be available.
    subjects_dir : str
        The path to the freesurfer subjects reconstructions.
        It corresponds to Freesurfer environment variable SUBJECTS_DIR.
    ch_type : None | 'eeg' | 'meg'
        If None, a map for each available channel type will be returned.
        Else only the specified type will be used.
    mode : str
        Either `'accurate'` or `'fast'`, determines the quality of the
        Legendre polynomial expansion used. `'fast'` should be sufficient
        for most applications.
    n_jobs : int
        The number of jobs to run in parallel.

    Returns
    -------
    surf_maps : list
        The surface maps to be used for field plots. The list contains
        separate ones for MEG and EEG (if both MEG and EEG are present).
    """
    info = evoked.info

    if ch_type is None:
        types = [t for t in ['eeg', 'meg'] if t in evoked]
    else:
        if ch_type not in ['eeg', 'meg']:
            raise ValueError("ch_type should be 'eeg' or 'meg' (got %s)"
                             % ch_type)
        types = [ch_type]

    if trans_fname == 'auto':
        # let's try to do this in MRI coordinates so they're easy to plot
        trans_fname = _find_trans(subject, subjects_dir)

    if 'eeg' in types and trans_fname is None:
        logger.info('No trans file available. EEG data ignored.')
        types.remove('eeg')

    if len(types) == 0:
        raise RuntimeError('No data available for mapping.')

    trans = None
    if trans_fname is not None:
        trans = read_trans(trans_fname)

    surfs = []
    for this_type in types:
        if this_type == 'meg':
            surf = get_meg_helmet_surf(info, trans)
        else:
            surf = get_head_surf(subject, subjects_dir=subjects_dir)
        surfs.append(surf)

    surf_maps = list()

    for this_type, this_surf in zip(types, surfs):
        this_map = _make_surface_mapping(evoked.info, this_surf, this_type,
                                         trans, n_jobs=n_jobs)
        this_map['surf'] = this_surf  # XXX : a bit weird...
        surf_maps.append(this_map)

    return surf_maps