1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
import numpy as np
from scipy import linalg
from copy import deepcopy
from ..io.constants import FIFF
from ..io.pick import pick_types, pick_info
from ..surface import get_head_surf, get_meg_helmet_surf
from ..io.proj import _has_eeg_average_ref_proj, make_projector
from ..transforms import transform_surface_to, read_trans, _find_trans
from ._make_forward import _create_coils
from ._lead_dots import (_do_self_dots, _do_surface_dots, _get_legen_table,
_get_legen_lut_fast, _get_legen_lut_accurate)
from ..parallel import check_n_jobs
from ..utils import logger, verbose
from ..fixes import partial
def _is_axial_coil(coil):
is_ax = coil['coil_class'] in (FIFF.FWD_COILC_MAG,
FIFF.FWD_COILC_AXIAL_GRAD,
FIFF.FWD_COILC_AXIAL_GRAD2)
return is_ax
def _ad_hoc_noise(coils, ch_type='meg'):
v = np.empty(len(coils))
if ch_type == 'meg':
axs = np.array([_is_axial_coil(coil) for coil in coils], dtype=bool)
v[axs] = 4e-28 # 20e-15 ** 2
v[np.logical_not(axs)] = 2.5e-25 # 5e-13 ** 2
else:
v.fill(1e-12) # 1e-6 ** 2
cov = dict(diag=True, data=v, eig=None, eigvec=None)
return cov
def _compute_mapping_matrix(fmd, info):
"""Do the hairy computations"""
logger.info('preparing the mapping matrix...')
# assemble a projector and apply it to the data
ch_names = fmd['ch_names']
projs = info.get('projs', list())
proj_op = make_projector(projs, ch_names)[0]
proj_dots = np.dot(proj_op.T, np.dot(fmd['self_dots'], proj_op))
noise_cov = fmd['noise']
# Whiten
if not noise_cov['diag']:
raise NotImplementedError # this shouldn't happen
whitener = np.diag(1.0 / np.sqrt(noise_cov['data'].ravel()))
whitened_dots = np.dot(whitener.T, np.dot(proj_dots, whitener))
# SVD is numerically better than the eigenvalue composition even if
# mat is supposed to be symmetric and positive definite
uu, sing, vv = linalg.svd(whitened_dots, full_matrices=False,
overwrite_a=True)
# Eigenvalue truncation
sumk = np.cumsum(sing)
sumk /= sumk[-1]
fmd['nest'] = np.where(sumk > (1.0 - fmd['miss']))[0][0]
logger.info('Truncate at %d missing %g' % (fmd['nest'], fmd['miss']))
sing = 1.0 / sing[:fmd['nest']]
# Put the inverse together
logger.info('Put the inverse together...')
inv = np.dot(uu[:, :fmd['nest']] * sing, vv[:fmd['nest']]).T
# Sandwich with the whitener
inv_whitened = np.dot(whitener.T, np.dot(inv, whitener))
# Take into account that the lead fields used to compute
# d->surface_dots were unprojected
inv_whitened_proj = (np.dot(inv_whitened.T, proj_op)).T
# Finally sandwich in the selection matrix
# This one picks up the correct lead field projection
mapping_mat = np.dot(fmd['surface_dots'], inv_whitened_proj)
# Optionally apply the average electrode reference to the final field map
if fmd['kind'] == 'eeg':
if _has_eeg_average_ref_proj(projs):
logger.info('The map will have average electrode reference')
mapping_mat -= np.mean(mapping_mat, axis=0)[np.newaxis, :]
return mapping_mat
@verbose
def _make_surface_mapping(info, surf, ch_type='meg', trans=None, mode='fast',
n_jobs=1, verbose=None):
"""Re-map M/EEG data to a surface
Parameters
----------
info : instance of io.meas_info.Info
Measurement info.
surf : dict
The surface to map the data to. The required fields are `'rr'`,
`'nn'`, and `'coord_frame'`. Must be in head coordinates.
ch_type : str
Must be either `'meg'` or `'eeg'`, determines the type of field.
trans : None | dict
If None, no transformation applied. Should be a Head<->MRI
transformation.
mode : str
Either `'accurate'` or `'fast'`, determines the quality of the
Legendre polynomial expansion used. `'fast'` should be sufficient
for most applications.
n_jobs : int
Number of permutations to run in parallel (requires joblib package).
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
mapping : array
A n_vertices x n_sensors array that remaps the MEG or EEG data,
as `new_data = np.dot(mapping, data)`.
"""
if not all([key in surf for key in ['rr', 'nn']]):
raise KeyError('surf must have both "rr" and "nn"')
if 'coord_frame' not in surf:
raise KeyError('The surface coordinate frame must be specified '
'in surf["coord_frame"]')
if mode not in ['accurate', 'fast']:
raise ValueError('mode must be "accurate" or "fast", not "%s"' % mode)
# deal with coordinate frames here -- always go to "head" (easiest)
if surf['coord_frame'] == FIFF.FIFFV_COORD_MRI:
if trans is None or FIFF.FIFFV_COORD_MRI not in [trans['to'],
trans['from']]:
raise ValueError('trans must be a Head<->MRI transform if the '
'surface is not in head coordinates.')
surf = transform_surface_to(deepcopy(surf), 'head', trans)
n_jobs = check_n_jobs(n_jobs)
#
# Step 1. Prepare the coil definitions
# Do the dot products, assume surf in head coords
#
if ch_type not in ('meg', 'eeg'):
raise ValueError('unknown coil type "%s"' % ch_type)
if ch_type == 'meg':
picks = pick_types(info, meg=True, eeg=False, ref_meg=False)
logger.info('Prepare MEG mapping...')
else:
picks = pick_types(info, meg=False, eeg=True, ref_meg=False)
logger.info('Prepare EEG mapping...')
if len(picks) == 0:
raise RuntimeError('cannot map, no channels found')
chs = pick_info(info, picks)['chs']
# create coil defs in head coordinates
if ch_type == 'meg':
# Put them in head coordinates
coils = _create_coils(chs, FIFF.FWD_COIL_ACCURACY_NORMAL,
info['dev_head_t'], coil_type='meg')[0]
type_str = 'coils'
miss = 1e-4 # Smoothing criterion for MEG
else: # EEG
coils = _create_coils(chs, coil_type='eeg')[0]
type_str = 'electrodes'
miss = 1e-3 # Smoothing criterion for EEG
#
# Step 2. Calculate the dot products
#
my_origin = np.array([0.0, 0.0, 0.04])
int_rad = 0.06
noise = _ad_hoc_noise(coils, ch_type)
if mode == 'fast':
# Use 50 coefficients with nearest-neighbor interpolation
lut, n_fact = _get_legen_table(ch_type, False, 50)
lut_fun = partial(_get_legen_lut_fast, lut=lut)
else: # 'accurate'
# Use 100 coefficients with linear interpolation
lut, n_fact = _get_legen_table(ch_type, False, 100)
lut_fun = partial(_get_legen_lut_accurate, lut=lut)
logger.info('Computing dot products for %i %s...' % (len(coils), type_str))
self_dots = _do_self_dots(int_rad, False, coils, my_origin, ch_type,
lut_fun, n_fact, n_jobs)
sel = np.arange(len(surf['rr'])) # eventually we should do sub-selection
logger.info('Computing dot products for %i surface locations...'
% len(sel))
surface_dots = _do_surface_dots(int_rad, False, coils, surf, sel,
my_origin, ch_type, lut_fun, n_fact,
n_jobs)
#
# Step 4. Return the result
#
ch_names = [c['ch_name'] for c in chs]
fmd = dict(kind=ch_type, surf=surf, ch_names=ch_names, coils=coils,
origin=my_origin, noise=noise, self_dots=self_dots,
surface_dots=surface_dots, int_rad=int_rad, miss=miss)
logger.info('Field mapping data ready')
fmd['data'] = _compute_mapping_matrix(fmd, info)
# Remove some unecessary fields
del fmd['self_dots']
del fmd['surface_dots']
del fmd['int_rad']
del fmd['miss']
return fmd
def make_field_map(evoked, trans_fname='auto', subject=None, subjects_dir=None,
ch_type=None, mode='fast', n_jobs=1):
"""Compute surface maps used for field display in 3D
Parameters
----------
evoked : Evoked | Epochs | Raw
The measurement file. Need to have info attribute.
trans_fname : str | 'auto' | None
The full path to the `*-trans.fif` file produced during
coregistration. If present or found using 'auto'
the maps will be in MRI coordinates.
If None, map for EEG data will not be available.
subject : str | None
The subject name corresponding to FreeSurfer environment
variable SUBJECT. If None, map for EEG data will not be available.
subjects_dir : str
The path to the freesurfer subjects reconstructions.
It corresponds to Freesurfer environment variable SUBJECTS_DIR.
ch_type : None | 'eeg' | 'meg'
If None, a map for each available channel type will be returned.
Else only the specified type will be used.
mode : str
Either `'accurate'` or `'fast'`, determines the quality of the
Legendre polynomial expansion used. `'fast'` should be sufficient
for most applications.
n_jobs : int
The number of jobs to run in parallel.
Returns
-------
surf_maps : list
The surface maps to be used for field plots. The list contains
separate ones for MEG and EEG (if both MEG and EEG are present).
"""
info = evoked.info
if ch_type is None:
types = [t for t in ['eeg', 'meg'] if t in evoked]
else:
if ch_type not in ['eeg', 'meg']:
raise ValueError("ch_type should be 'eeg' or 'meg' (got %s)"
% ch_type)
types = [ch_type]
if trans_fname == 'auto':
# let's try to do this in MRI coordinates so they're easy to plot
trans_fname = _find_trans(subject, subjects_dir)
if 'eeg' in types and trans_fname is None:
logger.info('No trans file available. EEG data ignored.')
types.remove('eeg')
if len(types) == 0:
raise RuntimeError('No data available for mapping.')
trans = None
if trans_fname is not None:
trans = read_trans(trans_fname)
surfs = []
for this_type in types:
if this_type == 'meg':
surf = get_meg_helmet_surf(info, trans)
else:
surf = get_head_surf(subject, subjects_dir=subjects_dir)
surfs.append(surf)
surf_maps = list()
for this_type, this_surf in zip(types, surfs):
this_map = _make_surface_mapping(evoked.info, this_surf, this_type,
trans, n_jobs=n_jobs)
this_map['surf'] = this_surf # XXX : a bit weird...
surf_maps.append(this_map)
return surf_maps
|