1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Eric Larson <larsoner@uw.edu>
#
# License: BSD (3-clause)
from ..externals.six import string_types
import os
from os import path as op
import numpy as np
from .. import pick_types, pick_info
from ..io.pick import _has_kit_refs
from ..io import read_info
from ..io.constants import FIFF
from .forward import Forward, write_forward_solution, _merge_meg_eeg_fwds
from ._compute_forward import _compute_forwards
from ..transforms import (invert_transform, transform_surface_to,
read_trans, _get_mri_head_t_from_trans_file,
apply_trans, _print_coord_trans, _coord_frame_name)
from ..utils import logger, verbose
from ..source_space import (read_source_spaces, _filter_source_spaces,
SourceSpaces)
from ..surface import read_bem_solution, _normalize_vectors
def _read_coil_defs(fname=None):
"""Read a coil definition file"""
if fname is None:
fname = op.join(op.split(__file__)[0], '..', 'data', 'coil_def.dat')
big_val = 0.5
with open(fname, 'r') as fid:
lines = fid.readlines()
res = dict(coils=list())
lines = lines[::-1]
while len(lines) > 0:
line = lines.pop()
if line[0] != '#':
vals = np.fromstring(line, sep=' ')
assert len(vals) == 7
start = line.find('"')
end = len(line.strip()) - 1
assert line.strip()[end] == '"'
desc = line[start:end]
npts = int(vals[3])
coil = dict(coil_type=vals[1], coil_class=vals[0], desc=desc,
accuracy=vals[2], size=vals[4], base=vals[5])
# get parameters of each component
rmag = list()
cosmag = list()
w = list()
for p in range(npts):
# get next non-comment line
line = lines.pop()
while(line[0] == '#'):
line = lines.pop()
vals = np.fromstring(line, sep=' ')
assert len(vals) == 7
# Read and verify data for each integration point
w.append(vals[0])
rmag.append(vals[[1, 2, 3]])
cosmag.append(vals[[4, 5, 6]])
w = np.array(w)
rmag = np.array(rmag)
cosmag = np.array(cosmag)
size = np.sqrt(np.sum(cosmag ** 2, axis=1))
if np.any(np.sqrt(np.sum(rmag ** 2, axis=1)) > big_val):
raise RuntimeError('Unreasonable integration point')
if np.any(size <= 0):
raise RuntimeError('Unreasonable normal')
cosmag /= size[:, np.newaxis]
coil.update(dict(w=w, cosmag=cosmag, rmag=rmag))
res['coils'].append(coil)
logger.info('%d coil definitions read', len(res['coils']))
return res
def _create_meg_coil(coilset, ch, acc, t):
"""Create a coil definition using templates, transform if necessary"""
# Also change the coordinate frame if so desired
if ch['kind'] not in [FIFF.FIFFV_MEG_CH, FIFF.FIFFV_REF_MEG_CH]:
raise RuntimeError('%s is not a MEG channel' % ch['ch_name'])
# Simple linear search from the coil definitions
d = None
for coil in coilset['coils']:
if coil['coil_type'] == (ch['coil_type'] & 0xFFFF) and \
coil['accuracy'] == acc:
d = coil
if d is None:
raise RuntimeError('Desired coil definition not found '
'(type = %d acc = %d)' % (ch['coil_type'], acc))
# Create the result
res = dict(chname=ch['ch_name'], desc=None, coil_class=d['coil_class'],
accuracy=d['accuracy'], base=d['base'], size=d['size'],
type=ch['coil_type'], w=d['w'])
if d['desc']:
res['desc'] = d['desc']
# Apply a coordinate transformation if so desired
coil_trans = ch['coil_trans'].copy() # make sure we don't botch it
if t is not None:
coil_trans = np.dot(t['trans'], coil_trans)
res['coord_frame'] = t['to']
else:
res['coord_frame'] = FIFF.FIFFV_COORD_DEVICE
res['rmag'] = apply_trans(coil_trans, d['rmag'])
res['cosmag'] = apply_trans(coil_trans, d['cosmag'], False)
res.update(ex=coil_trans[:3, 0], ey=coil_trans[:3, 1],
ez=coil_trans[:3, 2], r0=coil_trans[:3, 3])
return res
def _create_eeg_el(ch, t):
"""Create an electrode definition, transform coords if necessary"""
if ch['kind'] != FIFF.FIFFV_EEG_CH:
raise RuntimeError('%s is not an EEG channel. Cannot create an '
'electrode definition.' % ch['ch_name'])
if t is not None and t['from'] != FIFF.FIFFV_COORD_HEAD:
raise RuntimeError('Inappropriate coordinate transformation')
r0ex = ch['eeg_loc'][:, :2]
if r0ex.shape[1] == 1: # no reference
w = np.array([1.])
else: # has reference
w = np.array([1., -1.])
# Optional coordinate transformation
r0ex = r0ex.T.copy()
if t is not None:
r0ex = apply_trans(t['trans'], r0ex)
coord_frame = t['to']
else:
coord_frame = FIFF.FIFFV_COORD_HEAD
# The electrode location
cosmag = r0ex.copy()
_normalize_vectors(cosmag)
res = dict(chname=ch['ch_name'], coil_class=FIFF.FWD_COILC_EEG, w=w,
accuracy=FIFF.FWD_COIL_ACCURACY_NORMAL, type=ch['coil_type'],
coord_frame=coord_frame, rmag=r0ex, cosmag=cosmag)
return res
def _create_coils(chs, acc=None, t=None, coil_type='meg', coilset=None):
"""Create a set of MEG or EEG coils"""
if coilset is None: # auto-read defs if not supplied
coilset = _read_coil_defs()
coils = list()
if coil_type == 'meg':
for ch in chs:
coils.append(_create_meg_coil(coilset, ch, acc, t))
elif coil_type == 'eeg':
for ch in chs:
coils.append(_create_eeg_el(ch, t))
else:
raise RuntimeError('unknown coil type')
return coils, coils[0]['coord_frame'] # all get the same coord_frame
@verbose
def make_forward_solution(info, mri, src, bem, fname=None, meg=True, eeg=True,
mindist=0.0, ignore_ref=False, overwrite=False,
n_jobs=1, verbose=None):
"""Calculate a forward solution for a subject
Parameters
----------
info : instance of mne.io.meas_info.Info | str
If str, then it should be a filename to a Raw, Epochs, or Evoked
file with measurement information. If dict, should be an info
dict (such as one from Raw, Epochs, or Evoked).
mri : dict | str
Either a transformation filename (usually made using mne_analyze)
or an info dict (usually opened using read_trans()).
If string, an ending of `.fif` or `.fif.gz` will be assumed to
be in FIF format, any other ending will be assumed to be a text
file with a 4x4 transformation matrix (like the `--trans` MNE-C
option).
src : str | instance of SourceSpaces
If string, should be a source space filename. Can also be an
instance of loaded or generated SourceSpaces.
bem : str
Filename of the BEM (e.g., "sample-5120-5120-5120-bem-sol.fif") to
use.
fname : str | None
Destination forward solution filename. If None, the solution
will not be saved.
meg : bool
If True (Default), include MEG computations.
eeg : bool
If True (Default), include EEG computations.
mindist : float
Minimum distance of sources from inner skull surface (in mm).
ignore_ref : bool
If True, do not include reference channels in compensation. This
option should be True for KIT files, since forward computation
with reference channels is not currently supported.
overwrite : bool
If True, the destination file (if it exists) will be overwritten.
If False (default), an error will be raised if the file exists.
n_jobs : int
Number of jobs to run in parallel.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
fwd : instance of Forward
The forward solution.
Notes
-----
Some of the forward solution calculation options from the C code
(e.g., `--grad`, `--fixed`) are not implemented here. For those,
consider using the C command line tools or the Python wrapper
`do_forward_solution`.
"""
# Currently not (sup)ported:
# 1. EEG Sphere model (not used much)
# 2. --grad option (gradients of the field, not used much)
# 3. --fixed option (can be computed post-hoc)
# 4. --mricoord option (probably not necessary)
if isinstance(mri, string_types):
if not op.isfile(mri):
raise IOError('mri file "%s" not found' % mri)
if op.splitext(mri)[1] in ['.fif', '.gz']:
mri_head_t = read_trans(mri)
else:
mri_head_t = _get_mri_head_t_from_trans_file(mri)
else: # dict
mri_head_t = mri
mri = 'dict'
if not isinstance(src, string_types):
if not isinstance(src, SourceSpaces):
raise TypeError('src must be a string or SourceSpaces')
src_extra = 'list'
else:
src_extra = src
if not op.isfile(src):
raise IOError('Source space file "%s" not found' % src)
if not op.isfile(bem):
raise IOError('BEM file "%s" not found' % bem)
if fname is not None and op.isfile(fname) and not overwrite:
raise IOError('file "%s" exists, consider using overwrite=True'
% fname)
if not isinstance(info, (dict, string_types)):
raise TypeError('info should be a dict or string')
if isinstance(info, string_types):
info_extra = op.split(info)[1]
info_extra_long = info
info = read_info(info, verbose=False)
else:
info_extra = 'info dict'
info_extra_long = info_extra
arg_list = [info_extra, mri, src_extra, bem, fname, meg, eeg,
mindist, overwrite, n_jobs, verbose]
cmd = 'make_forward_solution(%s)' % (', '.join([str(a) for a in arg_list]))
# this could, in principle, be an option
coord_frame = FIFF.FIFFV_COORD_HEAD
# Report the setup
mri_extra = mri if isinstance(mri, string_types) else 'dict'
logger.info('Source space : %s' % src)
logger.info('MRI -> head transform source : %s' % mri_extra)
logger.info('Measurement data : %s' % info_extra_long)
logger.info('BEM model : %s' % bem)
logger.info('Accurate field computations')
logger.info('Do computations in %s coordinates',
_coord_frame_name(coord_frame))
logger.info('Free source orientations')
logger.info('Destination for the solution : %s' % fname)
# Read the source locations
logger.info('')
if isinstance(src, string_types):
logger.info('Reading %s...' % src)
src = read_source_spaces(src, verbose=False)
else:
# let's make a copy in case we modify something
src = src.copy()
nsource = sum(s['nuse'] for s in src)
if nsource == 0:
raise RuntimeError('No sources are active in these source spaces. '
'"do_all" option should be used.')
logger.info('Read %d source spaces a total of %d active source locations'
% (len(src), nsource))
# Read the MRI -> head coordinate transformation
logger.info('')
# it's actually usually a head->MRI transform, so we probably need to
# invert it
if mri_head_t['from'] == FIFF.FIFFV_COORD_HEAD:
mri_head_t = invert_transform(mri_head_t)
if not (mri_head_t['from'] == FIFF.FIFFV_COORD_MRI and
mri_head_t['to'] == FIFF.FIFFV_COORD_HEAD):
raise RuntimeError('Incorrect MRI transform provided')
_print_coord_trans(mri_head_t)
# make a new dict with the relevant information
mri_id = dict(machid=np.zeros(2, np.int32), version=0, secs=0, usecs=0)
info = dict(nchan=info['nchan'], chs=info['chs'], comps=info['comps'],
ch_names=info['ch_names'], dev_head_t=info['dev_head_t'],
mri_file=mri_extra, mri_id=mri_id, meas_file=info_extra_long,
meas_id=None, working_dir=os.getcwd(),
command_line=cmd, bads=info['bads'])
meg_head_t = info['dev_head_t']
logger.info('')
# MEG channels
megnames = None
if meg:
picks = pick_types(info, meg=True, eeg=False, ref_meg=False,
exclude=[])
nmeg = len(picks)
if nmeg > 0:
megchs = pick_info(info, picks)['chs']
megnames = [info['ch_names'][p] for p in picks]
logger.info('Read %3d MEG channels from %s'
% (len(picks), info_extra))
# comp channels
if not ignore_ref:
picks = pick_types(info, meg=False, ref_meg=True, exclude=[])
ncomp = len(picks)
if (ncomp > 0):
compchs = pick_info(info, picks)['chs']
logger.info('Read %3d MEG compensation channels from %s'
% (ncomp, info_extra))
# We need to check to make sure these are NOT KIT refs
if _has_kit_refs(info, picks):
err = ('Cannot create forward solution with KIT '
'reference channels. Consider using '
'"ignore_ref=True" in calculation')
raise NotImplementedError(err)
_print_coord_trans(meg_head_t)
# make info structure to allow making compensator later
else:
ncomp = 0
ncomp_data = len(info['comps'])
ref_meg = True if not ignore_ref else False
picks = pick_types(info, meg=True, ref_meg=ref_meg, exclude=[])
meg_info = pick_info(info, picks)
else:
logger.info('MEG not requested. MEG channels omitted.')
nmeg = 0
meg_info = None
# EEG channels
eegnames = None
if eeg:
picks = pick_types(info, meg=False, eeg=True, ref_meg=False,
exclude=[])
neeg = len(picks)
if neeg > 0:
eegchs = pick_info(info, picks)['chs']
eegnames = [info['ch_names'][p] for p in picks]
logger.info('Read %3d EEG channels from %s'
% (len(picks), info_extra))
else:
neeg = 0
logger.info('EEG not requested. EEG channels omitted.')
if neeg <= 0 and nmeg <= 0:
raise RuntimeError('Could not find any MEG or EEG channels')
# Create coil descriptions with transformation to head or MRI frame
templates = _read_coil_defs()
if nmeg > 0 and ncomp > 0: # Compensation channel information
logger.info('%d compensation data sets in %s'
% (ncomp_data, info_extra))
meg_xform = meg_head_t
extra_str = 'Head'
megcoils, megcf, compcoils, compcf = None, None, None, None
if nmeg > 0:
megcoils, megcf = _create_coils(megchs,
FIFF.FWD_COIL_ACCURACY_ACCURATE,
meg_xform, coil_type='meg',
coilset=templates)
if ncomp > 0:
compcoils, compcf = _create_coils(compchs,
FIFF.FWD_COIL_ACCURACY_NORMAL,
meg_xform, coil_type='meg',
coilset=templates)
eegels = None
if neeg > 0:
eegels, _ = _create_coils(eegchs, coil_type='eeg')
logger.info('%s coordinate coil definitions created.' % extra_str)
# Transform the source spaces into the appropriate coordinates
for s in src:
transform_surface_to(s, coord_frame, mri_head_t)
logger.info('Source spaces are now in %s coordinates.'
% _coord_frame_name(coord_frame))
# Prepare the BEM model
logger.info('')
logger.info('Setting up the BEM model using %s...\n' % bem)
bem_name = bem
bem = read_bem_solution(bem)
if neeg > 0 and len(bem['surfs']) == 1:
raise RuntimeError('Cannot use a homogeneous model in EEG '
'calculations')
logger.info('Employing the head->MRI coordinate transform with the '
'BEM model.')
# fwd_bem_set_head_mri_t: Set the coordinate transformation
to, fro = mri_head_t['to'], mri_head_t['from']
if fro == FIFF.FIFFV_COORD_HEAD and to == FIFF.FIFFV_COORD_MRI:
bem['head_mri_t'] = mri_head_t
elif fro == FIFF.FIFFV_COORD_MRI and to == FIFF.FIFFV_COORD_HEAD:
bem['head_mri_t'] = invert_transform(mri_head_t)
else:
raise RuntimeError('Improper coordinate transform')
logger.info('BEM model %s is now set up' % op.split(bem_name)[1])
logger.info('')
# Circumvent numerical problems by excluding points too close to the skull
idx = np.where(np.array([s['id'] for s in bem['surfs']])
== FIFF.FIFFV_BEM_SURF_ID_BRAIN)[0]
if len(idx) != 1:
raise RuntimeError('BEM model does not have the inner skull '
'triangulation')
_filter_source_spaces(bem['surfs'][idx[0]], mindist, mri_head_t, src,
n_jobs)
logger.info('')
# Time to do the heavy lifting: MEG first, then EEG
coil_types = ['meg', 'eeg']
coils = [megcoils, eegels]
cfs = [megcf, None]
ccoils = [compcoils, None]
ccfs = [compcf, None]
infos = [meg_info, None]
megfwd, eegfwd = _compute_forwards(src, bem, coils, cfs, ccoils, ccfs,
infos, coil_types, n_jobs)
# merge forwards into one (creates two Forward objects)
megfwd = _to_forward_dict(megfwd, None, megnames, coord_frame,
FIFF.FIFFV_MNE_FREE_ORI)
eegfwd = _to_forward_dict(eegfwd, None, eegnames, coord_frame,
FIFF.FIFFV_MNE_FREE_ORI)
fwd = _merge_meg_eeg_fwds(megfwd, eegfwd, verbose=False)
logger.info('')
# pick out final dict info
picks = pick_types(info, meg=meg, eeg=eeg, ref_meg=False, exclude=[])
info = pick_info(info, picks)
source_rr = np.concatenate([s['rr'][s['vertno']] for s in src])
# deal with free orientations:
nsource = fwd['sol']['data'].shape[1] // 3
source_nn = np.tile(np.eye(3), (nsource, 1))
# Don't transform the source spaces back into MRI coordinates (which is
# done in the C code) because mne-python assumes forward solution source
# spaces are in head coords. We will delete some keys to clean up the
# source space, though:
for key in ['working_dir', 'command_line']:
if key in src.info:
del src.info[key]
fwd.update(dict(nchan=fwd['sol']['data'].shape[0], nsource=nsource,
info=info, src=src, source_nn=source_nn,
source_rr=source_rr, surf_ori=False,
mri_head_t=mri_head_t))
fwd['info']['mri_head_t'] = mri_head_t
if fname is not None:
logger.info('writing %s...', fname)
write_forward_solution(fname, fwd, overwrite, verbose=False)
logger.info('Finished.')
return fwd
def _to_forward_dict(fwd, fwd_grad, names, coord_frame, source_ori):
"""Convert forward solution matrices to dicts"""
if fwd is not None:
sol = dict(data=fwd.T, nrow=fwd.shape[1], ncol=fwd.shape[0],
row_names=names, col_names=[])
fwd = Forward(sol=sol, source_ori=source_ori, nsource=sol['ncol'],
coord_frame=coord_frame, sol_grad=None,
nchan=sol['nrow'], _orig_source_ori=source_ori,
_orig_sol=sol['data'].copy(), _orig_sol_grad=None)
if fwd_grad is not None:
sol_grad = dict(data=fwd_grad.T, nrow=fwd_grad.shape[1],
ncol=fwd_grad.shape[0], row_names=names,
col_names=[])
fwd.update(dict(sol_grad=sol_grad),
_orig_sol_grad=sol_grad['data'].copy())
return fwd
|