1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)
from ..externals.six import string_types
from time import time
import warnings
from copy import deepcopy
import re
import numpy as np
from scipy import linalg, sparse
import shutil
import os
from os import path as op
import tempfile
from ..io.constants import FIFF
from ..io.open import fiff_open
from ..io.tree import dir_tree_find
from ..io.tag import find_tag, read_tag
from ..io.matrix import (_read_named_matrix, _transpose_named_matrix,
write_named_matrix)
from ..io.meas_info import read_bad_channels, Info
from ..io.pick import (pick_channels_forward, pick_info, pick_channels,
pick_types)
from ..io.write import (write_int, start_block, end_block,
write_coord_trans, write_ch_info, write_name_list,
write_string, start_file, end_file, write_id)
from ..io.base import _BaseRaw
from ..evoked import Evoked, write_evokeds
from ..epochs import Epochs
from ..source_space import (read_source_spaces_from_tree,
find_source_space_hemi,
_write_source_spaces_to_fid)
from ..transforms import (transform_surface_to, invert_transform,
write_trans)
from ..utils import (_check_fname, get_subjects_dir, has_command_line_tools,
run_subprocess, check_fname, logger, verbose)
class Forward(dict):
"""Forward class to represent info from forward solution
"""
def __repr__(self):
"""Summarize forward info instead of printing all"""
entr = '<Forward'
nchan = len(pick_types(self['info'], meg=True, eeg=False))
entr += ' | ' + 'MEG channels: %d' % nchan
nchan = len(pick_types(self['info'], meg=False, eeg=True))
entr += ' | ' + 'EEG channels: %d' % nchan
if self['src'][0]['type'] == 'surf':
entr += (' | Source space: Surface with %d vertices'
% self['nsource'])
elif self['src'][0]['type'] == 'vol':
entr += (' | Source space: Volume with %d grid points'
% self['nsource'])
elif self['src'][0]['type'] == 'discrete':
entr += (' | Source space: Discrete with %d dipoles'
% self['nsource'])
if self['source_ori'] == FIFF.FIFFV_MNE_UNKNOWN_ORI:
entr += (' | Source orientation: Unknown')
elif self['source_ori'] == FIFF.FIFFV_MNE_FIXED_ORI:
entr += (' | Source orientation: Fixed')
elif self['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI:
entr += (' | Source orientation: Free')
entr += '>'
return entr
def prepare_bem_model(bem, sol_fname=None, method='linear'):
"""Wrapper for the mne_prepare_bem_model command line utility
Parameters
----------
bem : str
The name of the file containing the triangulations of the BEM surfaces
and the conductivities of the compartments. The standard ending for
this file is -bem.fif and it is produced either with the utility
mne_surf2bem or the convenience script mne_setup_forward_model.
sol_fname : None | str
The output file. None (the default) will employ the standard naming
scheme. To conform with the standard naming conventions the filename
should start with the subject name and end in "-bem-sol.fif".
method : 'linear' | 'constant'
The BEM approach.
"""
cmd = ['mne_prepare_bem_model', '--bem', bem, '--method', method]
if sol_fname is not None:
cmd.extend(('--sol', sol_fname))
run_subprocess(cmd)
def _block_diag(A, n):
"""Constructs a block diagonal from a packed structure
You have to try it on a matrix to see what it's doing.
If A is not sparse, then returns a sparse block diagonal "bd",
diagonalized from the
elements in "A".
"A" is ma x na, comprising bdn=(na/"n") blocks of submatrices.
Each submatrix is ma x "n", and these submatrices are
placed down the diagonal of the matrix.
If A is already sparse, then the operation is reversed, yielding
a block
row matrix, where each set of n columns corresponds to a block element
from the block diagonal.
Parameters
----------
A : array
The matrix
n : int
The block size
Returns
-------
bd : sparse matrix
The block diagonal matrix
"""
if sparse.issparse(A): # then make block sparse
raise NotImplemented('sparse reversal not implemented yet')
ma, na = A.shape
bdn = na // int(n) # number of submatrices
if na % n > 0:
raise ValueError('Width of matrix must be a multiple of n')
tmp = np.arange(ma * bdn, dtype=np.int).reshape(bdn, ma)
tmp = np.tile(tmp, (1, n))
ii = tmp.ravel()
jj = np.arange(na, dtype=np.int)[None, :]
jj = jj * np.ones(ma, dtype=np.int)[:, None]
jj = jj.T.ravel() # column indices foreach sparse bd
bd = sparse.coo_matrix((A.T.ravel(), np.c_[ii, jj].T)).tocsc()
return bd
def _inv_block_diag(A, n):
"""Constructs an inverse block diagonal from a packed structure
You have to try it on a matrix to see what it's doing.
"A" is ma x na, comprising bdn=(na/"n") blocks of submatrices.
Each submatrix is ma x "n", and the inverses of these submatrices
are placed down the diagonal of the matrix.
Parameters
----------
A : array
The matrix.
n : int
The block size.
Returns
-------
bd : sparse matrix
The block diagonal matrix.
"""
ma, na = A.shape
bdn = na // int(n) # number of submatrices
if na % n > 0:
raise ValueError('Width of matrix must be a multiple of n')
# modify A in-place to invert each sub-block
A = A.copy()
for start in range(0, na, 3):
# this is a view
A[:, start:start + 3] = linalg.inv(A[:, start:start + 3])
tmp = np.arange(ma * bdn, dtype=np.int).reshape(bdn, ma)
tmp = np.tile(tmp, (1, n))
ii = tmp.ravel()
jj = np.arange(na, dtype=np.int)[None, :]
jj = jj * np.ones(ma, dtype=np.int)[:, None]
jj = jj.T.ravel() # column indices foreach sparse bd
bd = sparse.coo_matrix((A.T.ravel(), np.c_[ii, jj].T)).tocsc()
return bd
def _read_one(fid, node):
"""Read all interesting stuff for one forward solution
"""
if node is None:
return None
one = Forward()
tag = find_tag(fid, node, FIFF.FIFF_MNE_SOURCE_ORIENTATION)
if tag is None:
fid.close()
raise ValueError('Source orientation tag not found')
one['source_ori'] = int(tag.data)
tag = find_tag(fid, node, FIFF.FIFF_MNE_COORD_FRAME)
if tag is None:
fid.close()
raise ValueError('Coordinate frame tag not found')
one['coord_frame'] = int(tag.data)
tag = find_tag(fid, node, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS)
if tag is None:
fid.close()
raise ValueError('Number of sources not found')
one['nsource'] = int(tag.data)
tag = find_tag(fid, node, FIFF.FIFF_NCHAN)
if tag is None:
fid.close()
raise ValueError('Number of channels not found')
one['nchan'] = int(tag.data)
try:
one['sol'] = _read_named_matrix(fid, node,
FIFF.FIFF_MNE_FORWARD_SOLUTION)
one['sol'] = _transpose_named_matrix(one['sol'], copy=False)
one['_orig_sol'] = one['sol']['data'].copy()
except:
fid.close()
logger.error('Forward solution data not found')
raise
try:
fwd_type = FIFF.FIFF_MNE_FORWARD_SOLUTION_GRAD
one['sol_grad'] = _read_named_matrix(fid, node, fwd_type)
one['sol_grad'] = _transpose_named_matrix(one['sol_grad'], copy=False)
one['_orig_sol_grad'] = one['sol_grad']['data'].copy()
except:
one['sol_grad'] = None
if one['sol']['data'].shape[0] != one['nchan'] or \
(one['sol']['data'].shape[1] != one['nsource'] and
one['sol']['data'].shape[1] != 3 * one['nsource']):
fid.close()
raise ValueError('Forward solution matrix has wrong dimensions')
if one['sol_grad'] is not None:
if one['sol_grad']['data'].shape[0] != one['nchan'] or \
(one['sol_grad']['data'].shape[1] != 3 * one['nsource'] and
one['sol_grad']['data'].shape[1] != 3 * 3 * one['nsource']):
fid.close()
raise ValueError('Forward solution gradient matrix has '
'wrong dimensions')
return one
def read_forward_meas_info(tree, fid):
"""Read light measurement info from forward operator
Parameters
----------
tree : tree
FIF tree structure.
fid : file id
The file id.
Returns
-------
info : instance of mne.io.meas_info.Info
The measurement info.
"""
info = Info()
# Information from the MRI file
parent_mri = dir_tree_find(tree, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
if len(parent_mri) == 0:
fid.close()
raise ValueError('No parent MEG information found in operator')
parent_mri = parent_mri[0]
tag = find_tag(fid, parent_mri, FIFF.FIFF_MNE_FILE_NAME)
info['mri_file'] = tag.data if tag is not None else None
tag = find_tag(fid, parent_mri, FIFF.FIFF_PARENT_FILE_ID)
info['mri_id'] = tag.data if tag is not None else None
# Information from the MEG file
parent_meg = dir_tree_find(tree, FIFF.FIFFB_MNE_PARENT_MEAS_FILE)
if len(parent_meg) == 0:
fid.close()
raise ValueError('No parent MEG information found in operator')
parent_meg = parent_meg[0]
tag = find_tag(fid, parent_meg, FIFF.FIFF_MNE_FILE_NAME)
info['meas_file'] = tag.data if tag is not None else None
tag = find_tag(fid, parent_meg, FIFF.FIFF_PARENT_FILE_ID)
info['meas_id'] = tag.data if tag is not None else None
# Add channel information
chs = list()
for k in range(parent_meg['nent']):
kind = parent_meg['directory'][k].kind
pos = parent_meg['directory'][k].pos
if kind == FIFF.FIFF_CH_INFO:
tag = read_tag(fid, pos)
chs.append(tag.data)
info['chs'] = chs
info['ch_names'] = [c['ch_name'] for c in chs]
info['nchan'] = len(chs)
# Get the MRI <-> head coordinate transformation
tag = find_tag(fid, parent_mri, FIFF.FIFF_COORD_TRANS)
coord_head = FIFF.FIFFV_COORD_HEAD
coord_mri = FIFF.FIFFV_COORD_MRI
coord_device = FIFF.FIFFV_COORD_DEVICE
coord_ctf_head = FIFF.FIFFV_MNE_COORD_CTF_HEAD
if tag is None:
fid.close()
raise ValueError('MRI/head coordinate transformation not found')
else:
cand = tag.data
if cand['from'] == coord_mri and cand['to'] == coord_head:
info['mri_head_t'] = cand
else:
raise ValueError('MRI/head coordinate transformation not found')
# Get the MEG device <-> head coordinate transformation
tag = find_tag(fid, parent_meg, FIFF.FIFF_COORD_TRANS)
if tag is None:
fid.close()
raise ValueError('MEG/head coordinate transformation not found')
else:
cand = tag.data
if cand['from'] == coord_device and cand['to'] == coord_head:
info['dev_head_t'] = cand
elif cand['from'] == coord_ctf_head and cand['to'] == coord_head:
info['ctf_head_t'] = cand
else:
raise ValueError('MEG/head coordinate transformation not found')
info['bads'] = read_bad_channels(fid, parent_meg)
return info
def _subject_from_forward(forward):
"""Get subject id from inverse operator"""
return forward['src'][0].get('subject_his_id', None)
@verbose
def _merge_meg_eeg_fwds(megfwd, eegfwd, verbose=None):
"""Merge loaded MEG and EEG forward dicts into one dict"""
if megfwd is not None and eegfwd is not None:
if (megfwd['sol']['data'].shape[1] != eegfwd['sol']['data'].shape[1] or
megfwd['source_ori'] != eegfwd['source_ori'] or
megfwd['nsource'] != eegfwd['nsource'] or
megfwd['coord_frame'] != eegfwd['coord_frame']):
raise ValueError('The MEG and EEG forward solutions do not match')
fwd = megfwd
fwd['sol']['data'] = np.r_[fwd['sol']['data'], eegfwd['sol']['data']]
fwd['_orig_sol'] = np.r_[fwd['_orig_sol'], eegfwd['_orig_sol']]
fwd['sol']['nrow'] = fwd['sol']['nrow'] + eegfwd['sol']['nrow']
fwd['sol']['row_names'] = (fwd['sol']['row_names'] +
eegfwd['sol']['row_names'])
if fwd['sol_grad'] is not None:
fwd['sol_grad']['data'] = np.r_[fwd['sol_grad']['data'],
eegfwd['sol_grad']['data']]
fwd['_orig_sol_grad'] = np.r_[fwd['_orig_sol_grad'],
eegfwd['_orig_sol_grad']]
fwd['sol_grad']['nrow'] = (fwd['sol_grad']['nrow'] +
eegfwd['sol_grad']['nrow'])
fwd['sol_grad']['row_names'] = (fwd['sol_grad']['row_names'] +
eegfwd['sol_grad']['row_names'])
fwd['nchan'] = fwd['nchan'] + eegfwd['nchan']
logger.info(' MEG and EEG forward solutions combined')
elif megfwd is not None:
fwd = megfwd
else:
fwd = eegfwd
return fwd
@verbose
def read_forward_solution(fname, force_fixed=False, surf_ori=False,
include=[], exclude=[], verbose=None):
"""Read a forward solution a.k.a. lead field
Parameters
----------
fname : string
The file name, which should end with -fwd.fif or -fwd.fif.gz.
force_fixed : bool, optional (default False)
Force fixed source orientation mode?
surf_ori : bool, optional (default False)
Use surface-based source coordinate system? Note that force_fixed=True
implies surf_ori=True.
include : list, optional
List of names of channels to include. If empty all channels
are included.
exclude : list, optional
List of names of channels to exclude. If empty include all
channels.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
fwd : instance of Forward
The forward solution.
"""
check_fname(fname, 'forward', ('-fwd.fif', '-fwd.fif.gz'))
# Open the file, create directory
logger.info('Reading forward solution from %s...' % fname)
fid, tree, _ = fiff_open(fname)
# Find all forward solutions
fwds = dir_tree_find(tree, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
if len(fwds) == 0:
fid.close()
raise ValueError('No forward solutions in %s' % fname)
# Parent MRI data
parent_mri = dir_tree_find(tree, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
if len(parent_mri) == 0:
fid.close()
raise ValueError('No parent MRI information in %s' % fname)
parent_mri = parent_mri[0]
try:
src = read_source_spaces_from_tree(fid, tree, add_geom=False)
except Exception as inst:
fid.close()
raise ValueError('Could not read the source spaces (%s)' % inst)
for s in src:
s['id'] = find_source_space_hemi(s)
fwd = None
# Locate and read the forward solutions
megnode = None
eegnode = None
for k in range(len(fwds)):
tag = find_tag(fid, fwds[k], FIFF.FIFF_MNE_INCLUDED_METHODS)
if tag is None:
fid.close()
raise ValueError('Methods not listed for one of the forward '
'solutions')
if tag.data == FIFF.FIFFV_MNE_MEG:
megnode = fwds[k]
elif tag.data == FIFF.FIFFV_MNE_EEG:
eegnode = fwds[k]
megfwd = _read_one(fid, megnode)
if megfwd is not None:
if is_fixed_orient(megfwd):
ori = 'fixed'
else:
ori = 'free'
logger.info(' Read MEG forward solution (%d sources, %d channels, '
'%s orientations)' % (megfwd['nsource'], megfwd['nchan'],
ori))
eegfwd = _read_one(fid, eegnode)
if eegfwd is not None:
if is_fixed_orient(eegfwd):
ori = 'fixed'
else:
ori = 'free'
logger.info(' Read EEG forward solution (%d sources, %d channels, '
'%s orientations)' % (eegfwd['nsource'], eegfwd['nchan'],
ori))
# Merge the MEG and EEG solutions together
try:
fwd = _merge_meg_eeg_fwds(megfwd, eegfwd)
except:
fid.close()
raise
# Get the MRI <-> head coordinate transformation
tag = find_tag(fid, parent_mri, FIFF.FIFF_COORD_TRANS)
if tag is None:
fid.close()
raise ValueError('MRI/head coordinate transformation not found')
else:
mri_head_t = tag.data
if (mri_head_t['from'] != FIFF.FIFFV_COORD_MRI or
mri_head_t['to'] != FIFF.FIFFV_COORD_HEAD):
mri_head_t = invert_transform(mri_head_t)
if (mri_head_t['from'] != FIFF.FIFFV_COORD_MRI
or mri_head_t['to'] != FIFF.FIFFV_COORD_HEAD):
fid.close()
raise ValueError('MRI/head coordinate transformation not '
'found')
fwd['mri_head_t'] = mri_head_t
#
# get parent MEG info
#
fwd['info'] = read_forward_meas_info(tree, fid)
# MNE environment
parent_env = dir_tree_find(tree, FIFF.FIFFB_MNE_ENV)
if len(parent_env) > 0:
parent_env = parent_env[0]
tag = find_tag(fid, parent_env, FIFF.FIFF_MNE_ENV_WORKING_DIR)
if tag is not None:
fwd['info']['working_dir'] = tag.data
tag = find_tag(fid, parent_env, FIFF.FIFF_MNE_ENV_COMMAND_LINE)
if tag is not None:
fwd['info']['command_line'] = tag.data
fid.close()
# Transform the source spaces to the correct coordinate frame
# if necessary
if (fwd['coord_frame'] != FIFF.FIFFV_COORD_MRI and
fwd['coord_frame'] != FIFF.FIFFV_COORD_HEAD):
raise ValueError('Only forward solutions computed in MRI or head '
'coordinates are acceptable')
nuse = 0
for s in src:
try:
s = transform_surface_to(s, fwd['coord_frame'], mri_head_t)
except Exception as inst:
raise ValueError('Could not transform source space (%s)' % inst)
nuse += s['nuse']
if nuse != fwd['nsource']:
raise ValueError('Source spaces do not match the forward solution.')
logger.info(' Source spaces transformed to the forward solution '
'coordinate frame')
fwd['src'] = src
# Handle the source locations and orientations
fwd['source_rr'] = np.concatenate([ss['rr'][ss['vertno'], :]
for ss in src], axis=0)
# deal with transformations, storing orig copies so transforms can be done
# as necessary later
fwd['_orig_source_ori'] = fwd['source_ori']
convert_forward_solution(fwd, surf_ori, force_fixed, copy=False)
fwd = pick_channels_forward(fwd, include=include, exclude=exclude)
return Forward(fwd)
@verbose
def convert_forward_solution(fwd, surf_ori=False, force_fixed=False,
copy=True, verbose=None):
"""Convert forward solution between different source orientations
Parameters
----------
fwd : dict
The forward solution to modify.
surf_ori : bool, optional (default False)
Use surface-based source coordinate system? Note that force_fixed=True
implies surf_ori=True.
force_fixed : bool, optional (default False)
Force fixed source orientation mode?
copy : bool, optional (default True)
If False, operation will be done in-place (modifying the input).
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
fwd : dict
The modified forward solution.
"""
if copy is True:
fwd = deepcopy(fwd)
# We need to change these entries (only):
# 1. source_nn
# 2. sol['data']
# 3. sol['ncol']
# 4. sol_grad['data']
# 5. sol_grad['ncol']
# 6. source_ori
if is_fixed_orient(fwd, orig=True) or force_fixed: # Fixed
nuse = 0
fwd['source_nn'] = np.concatenate([s['nn'][s['vertno'], :]
for s in fwd['src']], axis=0)
# Modify the forward solution for fixed source orientations
if not is_fixed_orient(fwd, orig=True):
logger.info(' Changing to fixed-orientation forward '
'solution with surface-based source orientations...')
fix_rot = _block_diag(fwd['source_nn'].T, 1)
# newer versions of numpy require explicit casting here, so *= no
# longer works
fwd['sol']['data'] = (fwd['_orig_sol']
* fix_rot).astype('float32')
fwd['sol']['ncol'] = fwd['nsource']
fwd['source_ori'] = FIFF.FIFFV_MNE_FIXED_ORI
if fwd['sol_grad'] is not None:
fwd['sol_grad']['data'] = np.dot(fwd['_orig_sol_grad'],
np.kron(fix_rot, np.eye(3)))
fwd['sol_grad']['ncol'] = 3 * fwd['nsource']
logger.info(' [done]')
fwd['source_ori'] = FIFF.FIFFV_MNE_FIXED_ORI
fwd['surf_ori'] = True
elif surf_ori: # Free, surf-oriented
# Rotate the local source coordinate systems
nuse_total = sum([s['nuse'] for s in fwd['src']])
fwd['source_nn'] = np.empty((3 * nuse_total, 3), dtype=np.float)
logger.info(' Converting to surface-based source orientations...')
if fwd['src'][0]['patch_inds'] is not None:
use_ave_nn = True
logger.info(' Average patch normals will be employed in the '
'rotation to the local surface coordinates....')
else:
use_ave_nn = False
# Actually determine the source orientations
nuse = 0
pp = 0
for s in fwd['src']:
for p in range(s['nuse']):
# Project out the surface normal and compute SVD
if use_ave_nn is True:
nn = s['nn'][s['pinfo'][s['patch_inds'][p]], :]
nn = np.sum(nn, axis=0)[:, np.newaxis]
nn /= linalg.norm(nn)
else:
nn = s['nn'][s['vertno'][p], :][:, np.newaxis]
U, S, _ = linalg.svd(np.eye(3, 3) - nn * nn.T)
# Make sure that ez is in the direction of nn
if np.sum(nn.ravel() * U[:, 2].ravel()) < 0:
U *= -1.0
fwd['source_nn'][pp:pp + 3, :] = U.T
pp += 3
nuse += s['nuse']
# Rotate the solution components as well
surf_rot = _block_diag(fwd['source_nn'].T, 3)
fwd['sol']['data'] = fwd['_orig_sol'] * surf_rot
fwd['sol']['ncol'] = 3 * fwd['nsource']
if fwd['sol_grad'] is not None:
fwd['sol_grad'] = np.dot(fwd['_orig_sol_grad'] *
np.kron(surf_rot, np.eye(3)))
fwd['sol_grad']['ncol'] = 3 * fwd['nsource']
logger.info('[done]')
fwd['source_ori'] = FIFF.FIFFV_MNE_FREE_ORI
fwd['surf_ori'] = True
else: # Free, cartesian
logger.info(' Cartesian source orientations...')
fwd['source_nn'] = np.kron(np.ones((fwd['nsource'], 1)), np.eye(3))
fwd['sol']['data'] = fwd['_orig_sol'].copy()
fwd['sol']['ncol'] = 3 * fwd['nsource']
if fwd['sol_grad'] is not None:
fwd['sol_grad']['data'] = fwd['_orig_sol_grad'].copy()
fwd['sol_grad']['ncol'] = 3 * fwd['nsource']
fwd['source_ori'] = FIFF.FIFFV_MNE_FREE_ORI
fwd['surf_ori'] = False
logger.info('[done]')
return fwd
@verbose
def write_forward_solution(fname, fwd, overwrite=False, verbose=None):
"""Write forward solution to a file
Parameters
----------
fname : str
File name to save the forward solution to. It should end with -fwd.fif
or -fwd.fif.gz.
fwd : dict
Forward solution.
overwrite : bool
If True, overwrite destination file (if it exists).
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
"""
check_fname(fname, 'forward', ('-fwd.fif', '-fwd.fif.gz'))
# check for file existence
_check_fname(fname, overwrite)
fid = start_file(fname)
start_block(fid, FIFF.FIFFB_MNE)
#
# MNE env
#
start_block(fid, FIFF.FIFFB_MNE_ENV)
write_id(fid, FIFF.FIFF_BLOCK_ID)
data = fwd['info'].get('working_dir', None)
if data is not None:
write_string(fid, FIFF.FIFF_MNE_ENV_WORKING_DIR, data)
data = fwd['info'].get('command_line', None)
if data is not None:
write_string(fid, FIFF.FIFF_MNE_ENV_COMMAND_LINE, data)
end_block(fid, FIFF.FIFFB_MNE_ENV)
#
# Information from the MRI file
#
start_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
write_string(fid, FIFF.FIFF_MNE_FILE_NAME, fwd['info']['mri_file'])
if fwd['info']['mri_id'] is not None:
write_id(fid, FIFF.FIFF_PARENT_FILE_ID, fwd['info']['mri_id'])
write_coord_trans(fid, fwd['info']['mri_head_t'])
end_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
# write measurement info
write_forward_meas_info(fid, fwd['info'])
# invert our original source space transform
src = list()
for s in fwd['src']:
s = deepcopy(s)
try:
s = transform_surface_to(s, fwd['mri_head_t']['from'],
fwd['mri_head_t'])
except Exception as inst:
raise ValueError('Could not transform source space (%s)' % inst)
src.append(s)
#
# Write the source spaces (again)
#
_write_source_spaces_to_fid(fid, src)
n_vert = sum([ss['nuse'] for ss in src])
n_col = fwd['sol']['data'].shape[1]
if fwd['source_ori'] == FIFF.FIFFV_MNE_FIXED_ORI:
assert n_col == n_vert
else:
assert n_col == 3 * n_vert
# Undo surf_ori rotation
sol = fwd['sol']['data']
if fwd['sol_grad'] is not None:
sol_grad = fwd['sol_grad']['data']
else:
sol_grad = None
if fwd['surf_ori'] is True:
inv_rot = _inv_block_diag(fwd['source_nn'].T, 3)
sol = sol * inv_rot
if sol_grad is not None:
sol_grad = np.dot(sol_grad * np.kron(inv_rot, np.eye(3)))
#
# MEG forward solution
#
picks_meg = pick_types(fwd['info'], meg=True, eeg=False, ref_meg=False,
exclude=[])
picks_eeg = pick_types(fwd['info'], meg=False, eeg=True, ref_meg=False,
exclude=[])
n_meg = len(picks_meg)
n_eeg = len(picks_eeg)
row_names_meg = [fwd['sol']['row_names'][p] for p in picks_meg]
row_names_eeg = [fwd['sol']['row_names'][p] for p in picks_eeg]
if n_meg > 0:
meg_solution = dict(data=sol[picks_meg], nrow=n_meg, ncol=n_col,
row_names=row_names_meg, col_names=[])
meg_solution = _transpose_named_matrix(meg_solution, copy=False)
start_block(fid, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
write_int(fid, FIFF.FIFF_MNE_INCLUDED_METHODS, FIFF.FIFFV_MNE_MEG)
write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, fwd['coord_frame'])
write_int(fid, FIFF.FIFF_MNE_SOURCE_ORIENTATION, fwd['source_ori'])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS, n_vert)
write_int(fid, FIFF.FIFF_NCHAN, n_meg)
write_named_matrix(fid, FIFF.FIFF_MNE_FORWARD_SOLUTION, meg_solution)
if sol_grad is not None:
meg_solution_grad = dict(data=sol_grad[picks_meg],
nrow=n_meg, ncol=n_col,
row_names=row_names_meg, col_names=[])
meg_solution_grad = _transpose_named_matrix(meg_solution_grad,
copy=False)
write_named_matrix(fid, FIFF.FIFF_MNE_FORWARD_SOLUTION_GRAD,
meg_solution_grad)
end_block(fid, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
#
# EEG forward solution
#
if n_eeg > 0:
eeg_solution = dict(data=sol[picks_eeg], nrow=n_eeg, ncol=n_col,
row_names=row_names_eeg, col_names=[])
eeg_solution = _transpose_named_matrix(eeg_solution, copy=False)
start_block(fid, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
write_int(fid, FIFF.FIFF_MNE_INCLUDED_METHODS, FIFF.FIFFV_MNE_EEG)
write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, fwd['coord_frame'])
write_int(fid, FIFF.FIFF_MNE_SOURCE_ORIENTATION, fwd['source_ori'])
write_int(fid, FIFF.FIFF_NCHAN, n_eeg)
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS, n_vert)
write_named_matrix(fid, FIFF.FIFF_MNE_FORWARD_SOLUTION, eeg_solution)
if sol_grad is not None:
eeg_solution_grad = dict(data=sol_grad[picks_eeg],
nrow=n_eeg, ncol=n_col,
row_names=row_names_eeg, col_names=[])
meg_solution_grad = _transpose_named_matrix(eeg_solution_grad,
copy=False)
write_named_matrix(fid, FIFF.FIFF_MNE_FORWARD_SOLUTION_GRAD,
eeg_solution_grad)
end_block(fid, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
end_block(fid, FIFF.FIFFB_MNE)
end_file(fid)
def _to_fixed_ori(forward):
"""Helper to convert the forward solution to fixed ori from free"""
if not forward['surf_ori'] or is_fixed_orient(forward):
raise ValueError('Only surface-oriented, free-orientation forward '
'solutions can be converted to fixed orientaton')
forward['sol']['data'] = forward['sol']['data'][:, 2::3]
forward['sol']['ncol'] = forward['sol']['ncol'] / 3
forward['source_ori'] = FIFF.FIFFV_MNE_FIXED_ORI
logger.info(' Converted the forward solution into the '
'fixed-orientation mode.')
return forward
def is_fixed_orient(forward, orig=False):
"""Has forward operator fixed orientation?
"""
if orig: # if we want to know about the original version
fixed_ori = (forward['_orig_source_ori'] == FIFF.FIFFV_MNE_FIXED_ORI)
else: # most of the time we want to know about the current version
fixed_ori = (forward['source_ori'] == FIFF.FIFFV_MNE_FIXED_ORI)
return fixed_ori
def write_forward_meas_info(fid, info):
"""Write measurement info stored in forward solution
Parameters
----------
fid : file id
The file id
info : instance of mne.io.meas_info.Info
The measurement info.
"""
#
# Information from the MEG file
#
start_block(fid, FIFF.FIFFB_MNE_PARENT_MEAS_FILE)
write_string(fid, FIFF.FIFF_MNE_FILE_NAME, info['meas_file'])
if info['meas_id'] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info['meas_id'])
meg_head_t = info.get('dev_head_t', info.get('ctf_head_t'))
if meg_head_t is None:
fid.close()
raise ValueError('Head<-->sensor transform not found')
write_coord_trans(fid, meg_head_t)
if 'chs' in info:
# Channel information
write_int(fid, FIFF.FIFF_NCHAN, len(info['chs']))
for k, c in enumerate(info['chs']):
# Scan numbers may have been messed up
c = deepcopy(c)
c['scanno'] = k + 1
write_ch_info(fid, c)
if 'bads' in info and len(info['bads']) > 0:
# Bad channels
start_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS)
write_name_list(fid, FIFF.FIFF_MNE_CH_NAME_LIST, info['bads'])
end_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS)
end_block(fid, FIFF.FIFFB_MNE_PARENT_MEAS_FILE)
@verbose
def compute_orient_prior(forward, loose=0.2, verbose=None):
"""Compute orientation prior
Parameters
----------
forward : dict
Forward operator.
loose : float in [0, 1] or None
The loose orientation parameter.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
orient_prior : array
Orientation priors.
"""
is_fixed_ori = is_fixed_orient(forward)
n_sources = forward['sol']['data'].shape[1]
if loose is not None:
if not (0 <= loose <= 1):
raise ValueError('loose value should be smaller than 1 and bigger '
'than 0, or None for not loose orientations.')
if loose < 1 and not forward['surf_ori']:
raise ValueError('Forward operator is not oriented in surface '
'coordinates. loose parameter should be None '
'not %s.' % loose)
if is_fixed_ori:
warnings.warn('Ignoring loose parameter with forward operator '
'with fixed orientation.')
orient_prior = np.ones(n_sources, dtype=np.float)
if (not is_fixed_ori) and (loose is not None) and (loose < 1):
logger.info('Applying loose dipole orientations. Loose value '
'of %s.' % loose)
orient_prior[np.mod(np.arange(n_sources), 3) != 2] *= loose
return orient_prior
def _restrict_gain_matrix(G, info):
"""Restrict gain matrix entries for optimal depth weighting"""
# Figure out which ones have been used
if not (len(info['chs']) == G.shape[0]):
raise ValueError("G.shape[0] and length of info['chs'] do not match: "
"%d != %d" % (G.shape[0], len(info['chs'])))
sel = pick_types(info, meg='grad', ref_meg=False, exclude=[])
if len(sel) > 0:
G = G[sel]
logger.info(' %d planar channels' % len(sel))
else:
sel = pick_types(info, meg='mag', ref_meg=False, exclude=[])
if len(sel) > 0:
G = G[sel]
logger.info(' %d magnetometer or axial gradiometer '
'channels' % len(sel))
else:
sel = pick_types(info, meg=False, eeg=True, exclude=[])
if len(sel) > 0:
G = G[sel]
logger.info(' %d EEG channels' % len(sel))
else:
logger.warning('Could not find MEG or EEG channels')
return G
def compute_depth_prior(G, gain_info, is_fixed_ori, exp=0.8, limit=10.0,
patch_areas=None, limit_depth_chs=False):
"""Compute weighting for depth prior
"""
logger.info('Creating the depth weighting matrix...')
# If possible, pick best depth-weighting channels
if limit_depth_chs is True:
G = _restrict_gain_matrix(G, gain_info)
# Compute the gain matrix
if is_fixed_ori:
d = np.sum(G ** 2, axis=0)
else:
n_pos = G.shape[1] // 3
d = np.zeros(n_pos)
for k in range(n_pos):
Gk = G[:, 3 * k:3 * (k + 1)]
d[k] = linalg.svdvals(np.dot(Gk.T, Gk))[0]
# XXX Currently the fwd solns never have "patch_areas" defined
if patch_areas is not None:
d /= patch_areas ** 2
logger.info(' Patch areas taken into account in the depth '
'weighting')
w = 1.0 / d
ws = np.sort(w)
weight_limit = limit ** 2
if limit_depth_chs is False:
# match old mne-python behavor
ind = np.argmin(ws)
n_limit = ind
limit = ws[ind] * weight_limit
wpp = (np.minimum(w / limit, 1)) ** exp
else:
# match C code behavior
limit = ws[-1]
n_limit = len(d)
if ws[-1] > weight_limit * ws[0]:
ind = np.where(ws > weight_limit * ws[0])[0][0]
limit = ws[ind]
n_limit = ind
logger.info(' limit = %d/%d = %f'
% (n_limit + 1, len(d),
np.sqrt(limit / ws[0])))
scale = 1.0 / limit
logger.info(' scale = %g exp = %g' % (scale, exp))
wpp = np.minimum(w / limit, 1) ** exp
depth_prior = wpp if is_fixed_ori else np.repeat(wpp, 3)
return depth_prior
def _stc_src_sel(src, stc):
""" Select the vertex indices of a source space using a source estimate
"""
src_sel_lh = np.intersect1d(src[0]['vertno'], stc.vertno[0])
src_sel_lh = np.searchsorted(src[0]['vertno'], src_sel_lh)
src_sel_rh = np.intersect1d(src[1]['vertno'], stc.vertno[1])
src_sel_rh = (np.searchsorted(src[1]['vertno'], src_sel_rh)
+ len(src[0]['vertno']))
src_sel = np.r_[src_sel_lh, src_sel_rh]
return src_sel
def _fill_measurement_info(info, fwd, sfreq):
""" Fill the measurement info of a Raw or Evoked object
"""
sel = pick_channels(info['ch_names'], fwd['sol']['row_names'])
info = pick_info(info, sel)
info['bads'] = []
info['filename'] = None
# this is probably correct based on what's done in meas_info.py...
info['meas_id'] = fwd['info']['meas_id']
info['file_id'] = info['meas_id']
now = time()
sec = np.floor(now)
usec = 1e6 * (now - sec)
info['meas_date'] = np.array([sec, usec], dtype=np.int32)
info['highpass'] = 0.0
info['lowpass'] = sfreq / 2.0
info['sfreq'] = sfreq
info['projs'] = []
return info
@verbose
def _apply_forward(fwd, stc, start=None, stop=None, verbose=None):
""" Apply forward model and return data, times, ch_names
"""
if not is_fixed_orient(fwd):
raise ValueError('Only fixed-orientation forward operators are '
'supported.')
if np.all(stc.data > 0):
warnings.warn('Source estimate only contains currents with positive '
'values. Use pick_ori="normal" when computing the '
'inverse to compute currents not current magnitudes.')
max_cur = np.max(np.abs(stc.data))
if max_cur > 1e-7: # 100 nAm threshold for warning
warnings.warn('The maximum current magnitude is %0.1f nAm, which is '
'very large. Are you trying to apply the forward model '
'to dSPM values? The result will only be correct if '
'currents are used.' % (1e9 * max_cur))
src_sel = _stc_src_sel(fwd['src'], stc)
n_src = sum([len(v) for v in stc.vertno])
if len(src_sel) != n_src:
raise RuntimeError('Only %i of %i SourceEstimate vertices found in '
'fwd' % (len(src_sel), n_src))
gain = fwd['sol']['data'][:, src_sel]
logger.info('Projecting source estimate to sensor space...')
data = np.dot(gain, stc.data[:, start:stop])
logger.info('[done]')
times = deepcopy(stc.times[start:stop])
return data, times
@verbose
def apply_forward(fwd, stc, evoked_template, start=None, stop=None,
verbose=None):
"""
Project source space currents to sensor space using a forward operator.
The sensor space data is computed for all channels present in fwd. Use
pick_channels_forward or pick_types_forward to restrict the solution to a
subset of channels.
The function returns an Evoked object, which is constructed from
evoked_template. The evoked_template should be from the same MEG system on
which the original data was acquired. An exception will be raised if the
forward operator contains channels that are not present in the template.
Parameters
----------
forward : dict
Forward operator to use. Has to be fixed-orientation.
stc : SourceEstimate
The source estimate from which the sensor space data is computed.
evoked_template : Evoked object
Evoked object used as template to generate the output argument.
start : int, optional
Index of first time sample (index not time is seconds).
stop : int, optional
Index of first time sample not to include (index not time is seconds).
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
evoked : Evoked
Evoked object with computed sensor space data.
See Also
--------
apply_forward_raw: Compute sensor space data and return a Raw object.
"""
# make sure evoked_template contains all channels in fwd
for ch_name in fwd['sol']['row_names']:
if ch_name not in evoked_template.ch_names:
raise ValueError('Channel %s of forward operator not present in '
'evoked_template.' % ch_name)
# project the source estimate to the sensor space
data, times = _apply_forward(fwd, stc, start, stop)
# store sensor data in an Evoked object using the template
evoked = deepcopy(evoked_template)
evoked.nave = 1
evoked.data = data
evoked.times = times
sfreq = float(1.0 / stc.tstep)
evoked.first = int(np.round(evoked.times[0] * sfreq))
evoked.last = evoked.first + evoked.data.shape[1] - 1
# fill the measurement info
evoked.info = _fill_measurement_info(evoked.info, fwd, sfreq)
return evoked
@verbose
def apply_forward_raw(fwd, stc, raw_template, start=None, stop=None,
verbose=None):
"""Project source space currents to sensor space using a forward operator
The sensor space data is computed for all channels present in fwd. Use
pick_channels_forward or pick_types_forward to restrict the solution to a
subset of channels.
The function returns a Raw object, which is constructed from raw_template.
The raw_template should be from the same MEG system on which the original
data was acquired. An exception will be raised if the forward operator
contains channels that are not present in the template.
Parameters
----------
forward : dict
Forward operator to use. Has to be fixed-orientation.
stc : SourceEstimate
The source estimate from which the sensor space data is computed.
raw_template : Raw object
Raw object used as template to generate the output argument.
start : int, optional
Index of first time sample (index not time is seconds).
stop : int, optional
Index of first time sample not to include (index not time is seconds).
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
raw : Raw object
Raw object with computed sensor space data.
See Also
--------
apply_forward: Compute sensor space data and return an Evoked object.
"""
# make sure raw_template contains all channels in fwd
for ch_name in fwd['sol']['row_names']:
if ch_name not in raw_template.ch_names:
raise ValueError('Channel %s of forward operator not present in '
'raw_template.' % ch_name)
# project the source estimate to the sensor space
data, times = _apply_forward(fwd, stc, start, stop)
# store sensor data in Raw object using the template
raw = raw_template.copy()
raw.preload = True
raw._data = data
raw._times = times
sfreq = float(1.0 / stc.tstep)
raw.first_samp = int(np.round(raw._times[0] * sfreq))
raw.last_samp = raw.first_samp + raw._data.shape[1] - 1
# fill the measurement info
raw.info = _fill_measurement_info(raw.info, fwd, sfreq)
raw.info['projs'] = []
raw._projector = None
return raw
def restrict_forward_to_stc(fwd, stc):
"""Restricts forward operator to active sources in a source estimate
Parameters
----------
fwd : dict
Forward operator.
stc : SourceEstimate
Source estimate.
Returns
-------
fwd_out : dict
Restricted forward operator.
"""
fwd_out = deepcopy(fwd)
src_sel = _stc_src_sel(fwd['src'], stc)
fwd_out['source_rr'] = fwd['source_rr'][src_sel]
fwd_out['nsource'] = len(src_sel)
if is_fixed_orient(fwd):
idx = src_sel
else:
idx = (3 * src_sel[:, None] + np.arange(3)).ravel()
fwd_out['source_nn'] = fwd['source_nn'][idx]
fwd_out['sol']['data'] = fwd['sol']['data'][:, idx]
fwd_out['sol']['ncol'] = len(idx)
for i in range(2):
fwd_out['src'][i]['vertno'] = stc.vertno[i]
fwd_out['src'][i]['nuse'] = len(stc.vertno[i])
fwd_out['src'][i]['inuse'] = fwd['src'][i]['inuse'].copy()
fwd_out['src'][i]['inuse'].fill(0)
fwd_out['src'][i]['inuse'][stc.vertno[i]] = 1
fwd_out['src'][i]['use_tris'] = np.array([])
fwd_out['src'][i]['nuse_tri'] = np.array([0])
return fwd_out
def restrict_forward_to_label(fwd, labels):
"""Restricts forward operator to labels
Parameters
----------
fwd : dict
Forward operator.
labels : label object | list
Label object or list of label objects.
Returns
-------
fwd_out : dict
Restricted forward operator.
"""
if not isinstance(labels, list):
labels = [labels]
fwd_out = deepcopy(fwd)
fwd_out['source_rr'] = np.zeros((0, 3))
fwd_out['nsource'] = 0
fwd_out['source_nn'] = np.zeros((0, 3))
fwd_out['sol']['data'] = np.zeros((fwd['sol']['data'].shape[0], 0))
fwd_out['sol']['ncol'] = 0
for i in range(2):
fwd_out['src'][i]['vertno'] = np.array([])
fwd_out['src'][i]['nuse'] = 0
fwd_out['src'][i]['inuse'] = fwd['src'][i]['inuse'].copy()
fwd_out['src'][i]['inuse'].fill(0)
fwd_out['src'][i]['use_tris'] = np.array([])
fwd_out['src'][i]['nuse_tri'] = np.array([0])
for label in labels:
if label.hemi == 'lh':
i = 0
src_sel = np.intersect1d(fwd['src'][0]['vertno'], label.vertices)
src_sel = np.searchsorted(fwd['src'][0]['vertno'], src_sel)
else:
i = 1
src_sel = np.intersect1d(fwd['src'][1]['vertno'], label.vertices)
src_sel = (np.searchsorted(fwd['src'][1]['vertno'], src_sel)
+ len(fwd['src'][0]['vertno']))
fwd_out['source_rr'] = np.vstack([fwd_out['source_rr'],
fwd['source_rr'][src_sel]])
fwd_out['nsource'] += len(src_sel)
fwd_out['src'][i]['vertno'] = np.r_[fwd_out['src'][i]['vertno'],
src_sel]
fwd_out['src'][i]['nuse'] += len(src_sel)
fwd_out['src'][i]['inuse'][src_sel] = 1
if is_fixed_orient(fwd):
idx = src_sel
else:
idx = (3 * src_sel[:, None] + np.arange(3)).ravel()
fwd_out['source_nn'] = np.vstack([fwd_out['source_nn'],
fwd['source_nn'][idx]])
fwd_out['sol']['data'] = np.hstack([fwd_out['sol']['data'],
fwd['sol']['data'][:, idx]])
fwd_out['sol']['ncol'] += len(idx)
return fwd_out
@verbose
def do_forward_solution(subject, meas, fname=None, src=None, spacing=None,
mindist=None, bem=None, mri=None, trans=None,
eeg=True, meg=True, fixed=False, grad=False,
mricoord=False, overwrite=False, subjects_dir=None,
verbose=None):
"""Calculate a forward solution for a subject using MNE-C routines
This function wraps to mne_do_forward_solution, so the mne
command-line tools must be installed and accessible from Python.
Parameters
----------
subject : str
Name of the subject.
meas : Raw | Epochs | Evoked | str
If Raw or Epochs, a temporary evoked file will be created and
saved to a temporary directory. If str, then it should be a
filename to a file with measurement information the mne
command-line tools can understand (i.e., raw or evoked).
fname : str | None
Destination forward solution filename. If None, the solution
will be created in a temporary directory, loaded, and deleted.
src : str | None
Source space name. If None, the MNE default is used.
spacing : str
The spacing to use. Can be ``'#'`` for spacing in mm, ``'ico#'`` for a
recursively subdivided icosahedron, or ``'oct#'`` for a recursively
subdivided octahedron (e.g., ``spacing='ico4'``). Default is 7 mm.
mindist : float | str | None
Minimum distance of sources from inner skull surface (in mm).
If None, the MNE default value is used. If string, 'all'
indicates to include all points.
bem : str | None
Name of the BEM to use (e.g., "sample-5120-5120-5120"). If None
(Default), the MNE default will be used.
trans : str | None
File name of the trans file. If None, mri must not be None.
mri : dict | str | None
Either a transformation (usually made using mne_analyze) or an
info dict (usually opened using read_trans()), or a filename.
If dict, the trans will be saved in a temporary directory. If
None, trans must not be None.
eeg : bool
If True (Default), include EEG computations.
meg : bool
If True (Default), include MEG computations.
fixed : bool
If True, make a fixed-orientation forward solution (Default:
False). Note that fixed-orientation inverses can still be
created from free-orientation forward solutions.
grad : bool
If True, compute the gradient of the field with respect to the
dipole coordinates as well (Default: False).
mricoord : bool
If True, calculate in MRI coordinates (Default: False).
overwrite : bool
If True, the destination file (if it exists) will be overwritten.
If False (default), an error will be raised if the file exists.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
fwd : dict
The generated forward solution.
"""
if not has_command_line_tools():
raise RuntimeError('mne command line tools could not be found')
# check for file existence
temp_dir = tempfile.mkdtemp()
if fname is None:
fname = op.join(temp_dir, 'temp-fwd.fif')
_check_fname(fname, overwrite)
if not isinstance(subject, string_types):
raise ValueError('subject must be a string')
# check for meas to exist as string, or try to make evoked
meas_data = None
if isinstance(meas, string_types):
if not op.isfile(meas):
raise IOError('measurement file "%s" could not be found' % meas)
elif isinstance(meas, _BaseRaw):
events = np.array([[0, 0, 1]], dtype=np.int)
end = 1. / meas.info['sfreq']
meas_data = Epochs(meas, events, 1, 0, end, proj=False).average()
elif isinstance(meas, Epochs):
meas_data = meas.average()
elif isinstance(meas, Evoked):
meas_data = meas
else:
raise ValueError('meas must be string, Raw, Epochs, or Evoked')
if meas_data is not None:
meas = op.join(temp_dir, 'evoked.fif')
write_evokeds(meas, meas_data)
# deal with trans/mri
if mri is not None and trans is not None:
raise ValueError('trans and mri cannot both be specified')
if mri is None and trans is None:
# MNE allows this to default to a trans/mri in the subject's dir,
# but let's be safe here and force the user to pass us a trans/mri
raise ValueError('Either trans or mri must be specified')
if trans is not None:
if not isinstance(trans, string_types):
raise ValueError('trans must be a string')
if not op.isfile(trans):
raise IOError('trans file "%s" not found' % trans)
if mri is not None:
# deal with trans
if not isinstance(mri, string_types):
if isinstance(mri, dict):
mri_data = deepcopy(mri)
mri = op.join(temp_dir, 'mri-trans.fif')
try:
write_trans(mri, mri_data)
except Exception:
raise IOError('mri was a dict, but could not be '
'written to disk as a transform file')
else:
raise ValueError('trans must be a string or dict (trans)')
if not op.isfile(mri):
raise IOError('trans file "%s" could not be found' % trans)
# deal with meg/eeg
if not meg and not eeg:
raise ValueError('meg or eeg (or both) must be True')
path, fname = op.split(fname)
if not op.splitext(fname)[1] == '.fif':
raise ValueError('Forward name does not end with .fif')
path = op.abspath(path)
# deal with mindist
if mindist is not None:
if isinstance(mindist, string_types):
if not mindist.lower() == 'all':
raise ValueError('mindist, if string, must be "all"')
mindist = ['--all']
else:
mindist = ['--mindist', '%g' % mindist]
# src, spacing, bem
if src is not None:
if not isinstance(src, string_types):
raise ValueError('src must be a string or None')
if spacing is not None:
if not isinstance(spacing, string_types):
raise ValueError('spacing must be a string or None')
if bem is not None:
if not isinstance(bem, string_types):
raise ValueError('bem must be a string or None')
# put together the actual call
cmd = ['mne_do_forward_solution',
'--subject', subject,
'--meas', meas,
'--fwd', fname,
'--destdir', path]
if src is not None:
cmd += ['--src', src]
if spacing is not None:
if spacing.isdigit():
pass # spacing in mm
else:
# allow both "ico4" and "ico-4" style values
match = re.match("(oct|ico)-?(\d+)$", spacing)
if match is None:
raise ValueError("Invalid spacing parameter: %r" % spacing)
spacing = '-'.join(match.groups())
cmd += ['--spacing', spacing]
if mindist is not None:
cmd += mindist
if bem is not None:
cmd += ['--bem', bem]
if mri is not None:
cmd += ['--mri', '%s' % mri]
if trans is not None:
cmd += ['--trans', '%s' % trans]
if not meg:
cmd.append('--eegonly')
if not eeg:
cmd.append('--megonly')
if fixed:
cmd.append('--fixed')
if grad:
cmd.append('--grad')
if mricoord:
cmd.append('--mricoord')
if overwrite:
cmd.append('--overwrite')
env = os.environ.copy()
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
env['SUBJECTS_DIR'] = subjects_dir
try:
logger.info('Running forward solution generation command with '
'subjects_dir %s' % subjects_dir)
run_subprocess(cmd, env=env)
except:
raise
else:
fwd = read_forward_solution(op.join(path, fname), verbose=False)
finally:
shutil.rmtree(temp_dir, ignore_errors=True)
return fwd
@verbose
def average_forward_solutions(fwds, weights=None):
"""Average forward solutions
Parameters
----------
fwds : list of dict
Forward solutions to average. Each entry (dict) should be a
forward solution.
weights : array | None
Weights to apply to each forward solution in averaging. If None,
forward solutions will be equally weighted. Weights must be
non-negative, and will be adjusted to sum to one.
Returns
-------
fwd : dict
The averaged forward solution.
"""
# check for fwds being a list
if not isinstance(fwds, list):
raise TypeError('fwds must be a list')
if not len(fwds) > 0:
raise ValueError('fwds must not be empty')
# check weights
if weights is None:
weights = np.ones(len(fwds))
weights = np.asanyarray(weights) # in case it's a list, convert it
if not np.all(weights >= 0):
raise ValueError('weights must be non-negative')
if not len(weights) == len(fwds):
raise ValueError('weights must be None or the same length as fwds')
w_sum = np.sum(weights)
if not w_sum > 0:
raise ValueError('weights cannot all be zero')
weights /= w_sum
# check our forward solutions
for fwd in fwds:
# check to make sure it's a forward solution
if not isinstance(fwd, dict):
raise TypeError('Each entry in fwds must be a dict')
# check to make sure the dict is actually a fwd
check_keys = ['info', 'sol_grad', 'nchan', 'src', 'source_nn', 'sol',
'source_rr', 'source_ori', 'surf_ori', 'coord_frame',
'mri_head_t', 'nsource']
if not all([key in fwd for key in check_keys]):
raise KeyError('forward solution dict does not have all standard '
'entries, cannot compute average.')
# check forward solution compatibility
if any([fwd['sol'][k] != fwds[0]['sol'][k]
for fwd in fwds[1:] for k in ['nrow', 'ncol']]):
raise ValueError('Forward solutions have incompatible dimensions')
if any([fwd[k] != fwds[0][k] for fwd in fwds[1:]
for k in ['source_ori', 'surf_ori', 'coord_frame']]):
raise ValueError('Forward solutions have incompatible orientations')
# actually average them (solutions and gradients)
fwd_ave = deepcopy(fwds[0])
fwd_ave['sol']['data'] *= weights[0]
fwd_ave['_orig_sol'] *= weights[0]
for fwd, w in zip(fwds[1:], weights[1:]):
fwd_ave['sol']['data'] += w * fwd['sol']['data']
fwd_ave['_orig_sol'] += w * fwd['_orig_sol']
if fwd_ave['sol_grad'] is not None:
fwd_ave['sol_grad']['data'] *= weights[0]
fwd_ave['_orig_sol_grad'] *= weights[0]
for fwd, w in zip(fwds[1:], weights[1:]):
fwd_ave['sol_grad']['data'] += w * fwd['sol_grad']['data']
fwd_ave['_orig_sol_grad'] += w * fwd['_orig_sol_grad']
return fwd_ave
|