1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
import os
import os.path as op
import warnings
from nose.tools import assert_true, assert_raises
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_equal,
assert_array_equal, assert_allclose)
from mne.datasets import sample
from mne.io import Raw
from mne import (read_forward_solution, apply_forward, apply_forward_raw,
average_forward_solutions, write_forward_solution,
convert_forward_solution)
from mne import SourceEstimate, pick_types_forward, read_evokeds
from mne.label import read_label
from mne.utils import requires_mne, run_subprocess, _TempDir
from mne.forward import (restrict_forward_to_stc, restrict_forward_to_label,
Forward)
data_path = sample.data_path(download=False)
fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis-meg-oct-6-fwd.fif')
fname_meeg = op.join(data_path, 'MEG', 'sample',
'sample_audvis-meg-eeg-oct-6-fwd.fif')
fname_raw = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data',
'test_raw.fif')
fname_evoked = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
'data', 'test-ave.fif')
fname_mri = op.join(data_path, 'MEG', 'sample', 'sample_audvis_raw-trans.fif')
subjects_dir = os.path.join(data_path, 'subjects')
fname_src = op.join(subjects_dir, 'sample', 'bem', 'sample-oct-6-src.fif')
temp_dir = _TempDir()
# make a file that exists with some data in it
existing_file = op.join(temp_dir, 'test.fif')
with open(existing_file, 'w') as fid:
fid.write('aoeu')
def compare_forwards(f1, f2):
"""Helper to compare two potentially converted forward solutions"""
assert_allclose(f1['sol']['data'], f2['sol']['data'])
assert_equal(f1['sol']['ncol'], f2['sol']['ncol'])
assert_allclose(f1['source_nn'], f2['source_nn'])
if f1['sol_grad'] is not None:
assert_allclose(f1['sol_grad']['data'], f2['sol_grad']['data'])
assert_equal(f1['sol_grad']['ncol'], f2['sol_grad']['ncol'])
else:
assert_equal(f2['sol_grad'], None)
assert_equal(f1['source_ori'], f2['source_ori'])
assert_equal(f1['surf_ori'], f2['surf_ori'])
@sample.requires_sample_data
def test_convert_forward():
"""Test converting forward solution between different representations
"""
fwd = read_forward_solution(fname_meeg)
print(fwd) # __repr__
assert_true(isinstance(fwd, Forward))
# look at surface orientation
fwd_surf = convert_forward_solution(fwd, surf_ori=True)
fwd_surf_io = read_forward_solution(fname_meeg, surf_ori=True)
compare_forwards(fwd_surf, fwd_surf_io)
# go back
fwd_new = convert_forward_solution(fwd_surf, surf_ori=False)
print(fwd_new)
assert_true(isinstance(fwd, Forward))
compare_forwards(fwd, fwd_new)
# now go to fixed
fwd_fixed = convert_forward_solution(fwd_surf, surf_ori=False,
force_fixed=True)
print(fwd_fixed)
assert_true(isinstance(fwd_fixed, Forward))
fwd_fixed_io = read_forward_solution(fname_meeg, surf_ori=False,
force_fixed=True)
compare_forwards(fwd_fixed, fwd_fixed_io)
# now go back to cartesian (original condition)
fwd_new = convert_forward_solution(fwd_fixed)
print(fwd_new)
assert_true(isinstance(fwd_new, Forward))
compare_forwards(fwd, fwd_new)
@sample.requires_sample_data
def test_io_forward():
"""Test IO for forward solutions
"""
# test M/EEG
fwd_meeg = read_forward_solution(fname_meeg)
assert_true(isinstance(fwd_meeg, Forward))
leadfield = fwd_meeg['sol']['data']
assert_equal(leadfield.shape, (366, 22494))
assert_equal(len(fwd_meeg['sol']['row_names']), 366)
fname_temp = op.join(temp_dir, 'test-fwd.fif')
write_forward_solution(fname_temp, fwd_meeg, overwrite=True)
fwd_meeg = read_forward_solution(fname_temp)
assert_allclose(leadfield, fwd_meeg['sol']['data'])
assert_equal(len(fwd_meeg['sol']['row_names']), 366)
# now do extensive tests with MEG
fwd = read_forward_solution(fname)
fwd = read_forward_solution(fname, surf_ori=True)
leadfield = fwd['sol']['data']
assert_equal(leadfield.shape, (306, 22494))
assert_equal(len(fwd['sol']['row_names']), 306)
fname_temp = op.join(temp_dir, 'test-fwd.fif')
write_forward_solution(fname_temp, fwd, overwrite=True)
fwd = read_forward_solution(fname, surf_ori=True)
fwd_read = read_forward_solution(fname_temp, surf_ori=True)
leadfield = fwd_read['sol']['data']
assert_equal(leadfield.shape, (306, 22494))
assert_equal(len(fwd_read['sol']['row_names']), 306)
assert_equal(len(fwd_read['info']['chs']), 306)
assert_true('dev_head_t' in fwd_read['info'])
assert_true('mri_head_t' in fwd_read)
assert_array_almost_equal(fwd['sol']['data'], fwd_read['sol']['data'])
fwd = read_forward_solution(fname, force_fixed=True)
leadfield = fwd['sol']['data']
assert_equal(leadfield.shape, (306, 22494 / 3))
assert_equal(len(fwd['sol']['row_names']), 306)
assert_equal(len(fwd['info']['chs']), 306)
assert_true('dev_head_t' in fwd['info'])
assert_true('mri_head_t' in fwd)
assert_true(fwd['surf_ori'])
# test warnings on bad filenames
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
fwd_badname = op.join(temp_dir, 'test-bad-name.fif.gz')
write_forward_solution(fwd_badname, fwd_meeg)
read_forward_solution(fwd_badname)
assert_true(len(w) == 2)
@sample.requires_sample_data
def test_apply_forward():
"""Test projection of source space data to sensor space
"""
start = 0
stop = 5
n_times = stop - start - 1
sfreq = 10.0
t_start = 0.123
fwd = read_forward_solution(fname, force_fixed=True)
fwd = pick_types_forward(fwd, meg=True)
assert_true(isinstance(fwd, Forward))
vertno = [fwd['src'][0]['vertno'], fwd['src'][1]['vertno']]
stc_data = np.ones((len(vertno[0]) + len(vertno[1]), n_times))
stc = SourceEstimate(stc_data, vertno, tmin=t_start, tstep=1.0 / sfreq)
gain_sum = np.sum(fwd['sol']['data'], axis=1)
# Evoked
with warnings.catch_warnings(record=True) as w:
evoked = read_evokeds(fname_evoked, condition=0)
evoked = apply_forward(fwd, stc, evoked, start=start, stop=stop)
assert_equal(len(w), 2)
data = evoked.data
times = evoked.times
# do some tests
assert_array_almost_equal(evoked.info['sfreq'], sfreq)
assert_array_almost_equal(np.sum(data, axis=1), n_times * gain_sum)
assert_array_almost_equal(times[0], t_start)
assert_array_almost_equal(times[-1], t_start + (n_times - 1) / sfreq)
# Raw
raw = Raw(fname_raw)
raw_proj = apply_forward_raw(fwd, stc, raw, start=start, stop=stop)
data, times = raw_proj[:, :]
# do some tests
assert_array_almost_equal(raw_proj.info['sfreq'], sfreq)
assert_array_almost_equal(np.sum(data, axis=1), n_times * gain_sum)
assert_array_almost_equal(times[0], t_start)
assert_array_almost_equal(times[-1], t_start + (n_times - 1) / sfreq)
@sample.requires_sample_data
def test_restrict_forward_to_stc():
"""Test restriction of source space to source SourceEstimate
"""
start = 0
stop = 5
n_times = stop - start - 1
sfreq = 10.0
t_start = 0.123
fwd = read_forward_solution(fname, force_fixed=True)
fwd = pick_types_forward(fwd, meg=True)
vertno = [fwd['src'][0]['vertno'][0:15], fwd['src'][1]['vertno'][0:5]]
stc_data = np.ones((len(vertno[0]) + len(vertno[1]), n_times))
stc = SourceEstimate(stc_data, vertno, tmin=t_start, tstep=1.0 / sfreq)
fwd_out = restrict_forward_to_stc(fwd, stc)
assert_true(isinstance(fwd_out, Forward))
assert_equal(fwd_out['sol']['ncol'], 20)
assert_equal(fwd_out['src'][0]['nuse'], 15)
assert_equal(fwd_out['src'][1]['nuse'], 5)
assert_equal(fwd_out['src'][0]['vertno'], fwd['src'][0]['vertno'][0:15])
assert_equal(fwd_out['src'][1]['vertno'], fwd['src'][1]['vertno'][0:5])
fwd = read_forward_solution(fname, force_fixed=False)
fwd = pick_types_forward(fwd, meg=True)
vertno = [fwd['src'][0]['vertno'][0:15], fwd['src'][1]['vertno'][0:5]]
stc_data = np.ones((len(vertno[0]) + len(vertno[1]), n_times))
stc = SourceEstimate(stc_data, vertno, tmin=t_start, tstep=1.0 / sfreq)
fwd_out = restrict_forward_to_stc(fwd, stc)
assert_equal(fwd_out['sol']['ncol'], 60)
assert_equal(fwd_out['src'][0]['nuse'], 15)
assert_equal(fwd_out['src'][1]['nuse'], 5)
assert_equal(fwd_out['src'][0]['vertno'], fwd['src'][0]['vertno'][0:15])
assert_equal(fwd_out['src'][1]['vertno'], fwd['src'][1]['vertno'][0:5])
@sample.requires_sample_data
def test_restrict_forward_to_label():
"""Test restriction of source space to label
"""
fwd = read_forward_solution(fname, force_fixed=True)
fwd = pick_types_forward(fwd, meg=True)
label_path = op.join(data_path, 'MEG', 'sample', 'labels')
labels = ['Aud-lh', 'Vis-rh']
label_lh = read_label(op.join(label_path, labels[0] + '.label'))
label_rh = read_label(op.join(label_path, labels[1] + '.label'))
fwd_out = restrict_forward_to_label(fwd, [label_lh, label_rh])
src_sel_lh = np.intersect1d(fwd['src'][0]['vertno'], label_lh.vertices)
src_sel_lh = np.searchsorted(fwd['src'][0]['vertno'], src_sel_lh)
src_sel_rh = np.intersect1d(fwd['src'][1]['vertno'], label_rh.vertices)
src_sel_rh = (np.searchsorted(fwd['src'][1]['vertno'], src_sel_rh)
+ len(fwd['src'][0]['vertno']))
assert_equal(fwd_out['sol']['ncol'], len(src_sel_lh) + len(src_sel_rh))
assert_equal(fwd_out['src'][0]['nuse'], len(src_sel_lh))
assert_equal(fwd_out['src'][1]['nuse'], len(src_sel_rh))
assert_equal(fwd_out['src'][0]['vertno'], src_sel_lh)
assert_equal(fwd_out['src'][1]['vertno'], src_sel_rh)
fwd = read_forward_solution(fname, force_fixed=False)
fwd = pick_types_forward(fwd, meg=True)
label_path = op.join(data_path, 'MEG', 'sample', 'labels')
labels = ['Aud-lh', 'Vis-rh']
label_lh = read_label(op.join(label_path, labels[0] + '.label'))
label_rh = read_label(op.join(label_path, labels[1] + '.label'))
fwd_out = restrict_forward_to_label(fwd, [label_lh, label_rh])
src_sel_lh = np.intersect1d(fwd['src'][0]['vertno'], label_lh.vertices)
src_sel_lh = np.searchsorted(fwd['src'][0]['vertno'], src_sel_lh)
src_sel_rh = np.intersect1d(fwd['src'][1]['vertno'], label_rh.vertices)
src_sel_rh = (np.searchsorted(fwd['src'][1]['vertno'], src_sel_rh)
+ len(fwd['src'][0]['vertno']))
assert_equal(fwd_out['sol']['ncol'],
3 * (len(src_sel_lh) + len(src_sel_rh)))
assert_equal(fwd_out['src'][0]['nuse'], len(src_sel_lh))
assert_equal(fwd_out['src'][1]['nuse'], len(src_sel_rh))
assert_equal(fwd_out['src'][0]['vertno'], src_sel_lh)
assert_equal(fwd_out['src'][1]['vertno'], src_sel_rh)
@sample.requires_sample_data
@requires_mne
def test_average_forward_solution():
"""Test averaging forward solutions
"""
fwd = read_forward_solution(fname)
# input not a list
assert_raises(TypeError, average_forward_solutions, 1)
# list is too short
assert_raises(ValueError, average_forward_solutions, [])
# negative weights
assert_raises(ValueError, average_forward_solutions, [fwd, fwd], [-1, 0])
# all zero weights
assert_raises(ValueError, average_forward_solutions, [fwd, fwd], [0, 0])
# weights not same length
assert_raises(ValueError, average_forward_solutions, [fwd, fwd], [0, 0, 0])
# list does not only have all dict()
assert_raises(TypeError, average_forward_solutions, [1, fwd])
# try an easy case
fwd_copy = average_forward_solutions([fwd])
assert_true(isinstance(fwd_copy, Forward))
assert_array_equal(fwd['sol']['data'], fwd_copy['sol']['data'])
# modify a fwd solution, save it, use MNE to average with old one
fwd_copy['sol']['data'] *= 0.5
fname_copy = op.join(temp_dir, 'copy-fwd.fif')
write_forward_solution(fname_copy, fwd_copy, overwrite=True)
cmd = ('mne_average_forward_solutions', '--fwd', fname, '--fwd',
fname_copy, '--out', fname_copy)
run_subprocess(cmd)
# now let's actually do it, with one filename and one fwd
fwd_ave = average_forward_solutions([fwd, fwd_copy])
assert_array_equal(0.75 * fwd['sol']['data'], fwd_ave['sol']['data'])
# fwd_ave_mne = read_forward_solution(fname_copy)
# assert_array_equal(fwd_ave_mne['sol']['data'], fwd_ave['sol']['data'])
|