1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
|
"""Mayavi/traits GUI for converting data from KIT systems"""
# Authors: Christian Brodbeck <christianbrodbeck@nyu.edu>
#
# License: BSD (3-clause)
import os
from ..externals.six.moves import queue
from threading import Thread
import numpy as np
from scipy.linalg import inv
# allow import without traits
try:
from mayavi.core.ui.mayavi_scene import MayaviScene
from mayavi.tools.mlab_scene_model import MlabSceneModel
from pyface.api import confirm, error, FileDialog, OK, YES, information
from traits.api import (HasTraits, HasPrivateTraits, cached_property,
Instance, Property, Bool, Button, Enum, File, Int,
List, Str, Array, DelegatesTo)
from traitsui.api import (View, Item, HGroup, VGroup, spring,
CheckListEditor, EnumEditor, Handler)
from traitsui.menu import NoButtons
from tvtk.pyface.scene_editor import SceneEditor
except:
from ..utils import trait_wraith
HasTraits = object
HasPrivateTraits = object
Handler = object
cached_property = trait_wraith
MayaviScene = trait_wraith
MlabSceneModel = trait_wraith
Bool = trait_wraith
Button = trait_wraith
DelegatesTo = trait_wraith
Enum = trait_wraith
File = trait_wraith
Instance = trait_wraith
Int = trait_wraith
List = trait_wraith
Property = trait_wraith
Str = trait_wraith
Array = trait_wraith
spring = trait_wraith
View = trait_wraith
Item = trait_wraith
HGroup = trait_wraith
VGroup = trait_wraith
EnumEditor = trait_wraith
NoButtons = trait_wraith
CheckListEditor = trait_wraith
SceneEditor = trait_wraith
from ..io.kit.coreg import read_hsp
from ..io.kit.kit import RawKIT, KIT
from ..transforms import apply_trans, als_ras_trans, als_ras_trans_mm
from ..coreg import (read_elp, _decimate_points, fit_matched_points,
get_ras_to_neuromag_trans)
from ._marker_gui import CombineMarkersPanel, CombineMarkersModel
from ._viewer import HeadViewController, headview_item, PointObject
use_editor = CheckListEditor(cols=5, values=[(i, str(i)) for i in range(5)])
backend_is_wx = False # is there a way to determine this?
if backend_is_wx:
# wx backend allows labels for wildcards
hsp_points_wildcard = ['Head Shape Points (*.txt)|*.txt']
hsp_fid_wildcard = ['Head Shape Fiducials (*.txt)|*.txt']
kit_con_wildcard = ['Continuous KIT Files (*.sqd;*.con)|*.sqd;*.con']
else:
hsp_points_wildcard = ['*.txt']
hsp_fid_wildcard = ['*.txt']
kit_con_wildcard = ['*.sqd;*.con']
class Kit2FiffModel(HasPrivateTraits):
"""Data Model for Kit2Fiff conversion
- Markers are transformed into RAS coordinate system (as are the sensor
coordinates).
- Head shape digitizer data is transformed into neuromag-like space.
"""
# Input Traits
markers = Instance(CombineMarkersModel, ())
sqd_file = File(exists=True, filter=kit_con_wildcard)
hsp_file = File(exists=True, filter=hsp_points_wildcard, desc="Digitizer "
"head shape")
fid_file = File(exists=True, filter=hsp_fid_wildcard, desc="Digitizer "
"fiducials")
stim_chs = Enum(">", "<", "man")
stim_chs_manual = Array(int, (8,), range(168, 176))
stim_slope = Enum("-", "+")
# Marker Points
use_mrk = List(list(range(5)), desc="Which marker points to use for the device "
"head coregistration.")
# Derived Traits
mrk = Property(depends_on=('markers.mrk3.points'))
# Polhemus Fiducials
elp_raw = Property(depends_on=['fid_file'])
hsp_raw = Property(depends_on=['hsp_file'])
polhemus_neuromag_trans = Property(depends_on=['elp_raw'])
# Polhemus data (in neuromag space)
elp = Property(depends_on=['elp_raw', 'polhemus_neuromag_trans'])
fid = Property(depends_on=['elp_raw', 'polhemus_neuromag_trans'])
hsp = Property(depends_on=['hsp_raw', 'polhemus_neuromag_trans'])
# trans
dev_head_trans = Property(depends_on=['elp', 'mrk', 'use_mrk'])
head_dev_trans = Property(depends_on=['dev_head_trans'])
# info
sqd_fname = Property(Str, depends_on='sqd_file')
hsp_fname = Property(Str, depends_on='hsp_file')
fid_fname = Property(Str, depends_on='fid_file')
can_save = Property(Bool, depends_on=['sqd_file', 'fid', 'elp', 'hsp',
'dev_head_trans'])
@cached_property
def _get_can_save(self):
"Only allow saving when either all or no head shape elements are set."
has_sqd = bool(self.sqd_file)
if not has_sqd:
return False
has_all_hsp = (np.any(self.dev_head_trans) and np.any(self.hsp)
and np.any(self.elp) and np.any(self.fid))
if has_all_hsp:
return True
has_any_hsp = self.hsp_file or self.fid_file or np.any(self.mrk)
return not has_any_hsp
@cached_property
def _get_dev_head_trans(self):
if (self.mrk is None) or not np.any(self.fid):
return np.eye(4)
src_pts = self.mrk
dst_pts = self.elp
n_use = len(self.use_mrk)
if n_use < 3:
error(None, "Estimating the device head transform requires at "
"least 3 marker points. Please adjust the markers used.",
"Not Enough Marker Points")
return
elif n_use < 5:
src_pts = src_pts[self.use_mrk]
dst_pts = dst_pts[self.use_mrk]
trans = fit_matched_points(src_pts, dst_pts, out='trans')
return trans
@cached_property
def _get_elp(self):
if self.elp_raw is None:
return np.empty((0, 3))
pts = self.elp_raw[3:8]
pts = apply_trans(self.polhemus_neuromag_trans, pts)
return pts
@cached_property
def _get_elp_raw(self):
if not self.fid_file:
return
try:
pts = read_elp(self.fid_file)
if len(pts) < 8:
raise ValueError("File contains %i points, need 8" % len(pts))
except Exception as err:
error(None, str(err), "Error Reading Fiducials")
self.reset_traits(['fid_file'])
raise
else:
return pts
@cached_property
def _get_fid(self):
if self.elp_raw is None:
return np.empty((0, 3))
pts = self.elp_raw[:3]
pts = apply_trans(self.polhemus_neuromag_trans, pts)
return pts
@cached_property
def _get_fid_fname(self):
if self.fid_file:
return os.path.basename(self.fid_file)
else:
return '-'
@cached_property
def _get_head_dev_trans(self):
return inv(self.dev_head_trans)
@cached_property
def _get_hsp(self):
if (self.hsp_raw is None) or not np.any(self.polhemus_neuromag_trans):
return np.empty((0, 3))
else:
pts = apply_trans(self.polhemus_neuromag_trans, self.hsp_raw)
return pts
@cached_property
def _get_hsp_fname(self):
if self.hsp_file:
return os.path.basename(self.hsp_file)
else:
return '-'
@cached_property
def _get_hsp_raw(self):
fname = self.hsp_file
if not fname:
return
try:
pts = read_hsp(fname)
n_pts = len(pts)
if n_pts > KIT.DIG_POINTS:
msg = ("The selected head shape contains {n_in} points, "
"which is more than the recommended maximum ({n_rec}). "
"The file will be automatically downsampled, which "
"might take a while. A better way to downsample is "
"using FastScan.")
msg = msg.format(n_in=n_pts, n_rec=KIT.DIG_POINTS)
information(None, msg, "Too Many Head Shape Points")
pts = _decimate_points(pts, 5)
except Exception as err:
error(None, str(err), "Error Reading Head Shape")
self.reset_traits(['hsp_file'])
raise
else:
return pts
@cached_property
def _get_mrk(self):
return apply_trans(als_ras_trans, self.markers.mrk3.points)
@cached_property
def _get_polhemus_neuromag_trans(self):
if self.elp_raw is None:
return
pts = apply_trans(als_ras_trans_mm, self.elp_raw[:3])
nasion, lpa, rpa = pts
trans = get_ras_to_neuromag_trans(nasion, lpa, rpa)
trans = np.dot(trans, als_ras_trans_mm)
return trans
@cached_property
def _get_sqd_fname(self):
if self.sqd_file:
return os.path.basename(self.sqd_file)
else:
return '-'
def clear_all(self):
"""Clear all specified input parameters"""
self.markers.clear = True
self.reset_traits(['sqd_file', 'hsp_file', 'fid_file'])
def get_event_info(self):
"""
Return a string with the number of events found for each trigger value
"""
if len(self.events) == 0:
return "No events found."
count = ["Events found:"]
events = np.array(self.events)
for i in np.unique(events):
n = np.sum(events == i)
count.append('%3i: %i' % (i, n))
return os.linesep.join(count)
def get_raw(self, preload=False):
"""Create a raw object based on the current model settings
"""
if not self.sqd_file:
raise ValueError("sqd file not set")
if self.stim_chs == 'man':
stim = self.stim_chs_manual
else:
stim = self.stim_chs
raw = RawKIT(self.sqd_file, preload=preload, stim=stim,
slope=self.stim_slope)
if np.any(self.fid):
raw._set_dig_neuromag(self.fid, self.elp, self.hsp,
self.dev_head_trans)
return raw
class Kit2FiffFrameHandler(Handler):
"""Handler that checks for unfinished processes before closing its window
"""
def close(self, info, is_ok):
if info.object.kit2fiff_panel.queue.unfinished_tasks:
msg = ("Can not close the window while saving is still in "
"progress. Please wait until all files are processed.")
title = "Saving Still in Progress"
information(None, msg, title)
return False
else:
return True
class Kit2FiffPanel(HasPrivateTraits):
"""Control panel for kit2fiff conversion"""
model = Instance(Kit2FiffModel)
# model copies for view
use_mrk = DelegatesTo('model')
sqd_file = DelegatesTo('model')
hsp_file = DelegatesTo('model')
fid_file = DelegatesTo('model')
stim_chs = DelegatesTo('model')
stim_chs_manual = DelegatesTo('model')
stim_slope = DelegatesTo('model')
# info
can_save = DelegatesTo('model')
sqd_fname = DelegatesTo('model')
hsp_fname = DelegatesTo('model')
fid_fname = DelegatesTo('model')
# Source Files
reset_dig = Button
# Visualization
scene = Instance(MlabSceneModel)
fid_obj = Instance(PointObject)
elp_obj = Instance(PointObject)
hsp_obj = Instance(PointObject)
# Output
save_as = Button(label='Save FIFF...')
clear_all = Button(label='Clear All')
queue = Instance(queue.Queue, ())
queue_feedback = Str('')
queue_current = Str('')
queue_len = Int(0)
queue_len_str = Property(Str, depends_on=['queue_len'])
error = Str('')
view = View(VGroup(VGroup(Item('sqd_file', label="Data"),
Item('sqd_fname', show_label=False,
style='readonly'),
Item('hsp_file', label='Dig Head Shape'),
Item('hsp_fname', show_label=False,
style='readonly'),
Item('fid_file', label='Dig Points'),
Item('fid_fname', show_label=False,
style='readonly'),
Item('reset_dig', label='Clear Digitizer Files',
show_label=False),
Item('use_mrk', editor=use_editor,
style='custom'),
label="Sources", show_border=True),
VGroup(Item('stim_slope', label="Event Onset",
style='custom',
editor=EnumEditor(
values={'+': '2:Peak (0 to 5 V)',
'-': '1:Trough (5 to 0 V)'},
cols=2),
help="Whether events are marked by a decrease "
"(trough) or an increase (peak) in trigger "
"channel values"),
Item('stim_chs', label="Binary Coding",
style='custom',
editor=EnumEditor(values={'>': '1:1 ... 128',
'<': '3:128 ... 1',
'man': '2:Manual'},
cols=2),
help="Specifies the bit order in event "
"channels. Assign the first bit (1) to the "
"first or the last trigger channel."),
Item('stim_chs_manual', label='Stim Channels',
style='custom',
visible_when="stim_chs == 'man'"),
label='Events', show_border=True),
HGroup(Item('save_as', enabled_when='can_save'), spring,
'clear_all', show_labels=False),
Item('queue_feedback', show_label=False,
style='readonly'),
Item('queue_current', show_label=False,
style='readonly'),
Item('queue_len_str', show_label=False,
style='readonly'),
))
def __init__(self, *args, **kwargs):
super(Kit2FiffPanel, self).__init__(*args, **kwargs)
# setup save worker
def worker():
while True:
raw, fname = self.queue.get()
basename = os.path.basename(fname)
self.queue_len -= 1
self.queue_current = 'Processing: %s' % basename
# task
try:
raw.save(fname, overwrite=True)
except Exception as err:
self.error = str(err)
res = "Error saving: %s"
else:
res = "Saved: %s"
# finalize
self.queue_current = ''
self.queue_feedback = res % basename
self.queue.task_done()
t = Thread(target=worker)
t.daemon = True
t.start()
# setup mayavi visualization
m = self.model
self.fid_obj = PointObject(scene=self.scene, color=(25, 225, 25),
point_scale=5e-3)
m.sync_trait('fid', self.fid_obj, 'points', mutual=False)
m.sync_trait('head_dev_trans', self.fid_obj, 'trans', mutual=False)
self.elp_obj = PointObject(scene=self.scene, color=(50, 50, 220),
point_scale=1e-2, opacity=.2)
m.sync_trait('elp', self.elp_obj, 'points', mutual=False)
m.sync_trait('head_dev_trans', self.elp_obj, 'trans', mutual=False)
self.hsp_obj = PointObject(scene=self.scene, color=(200, 200, 200),
point_scale=2e-3)
m.sync_trait('hsp', self.hsp_obj, 'points', mutual=False)
m.sync_trait('head_dev_trans', self.hsp_obj, 'trans', mutual=False)
self.scene.camera.parallel_scale = 0.15
self.scene.mlab.view(0, 0, .15)
def _clear_all_fired(self):
self.model.clear_all()
@cached_property
def _get_queue_len_str(self):
if self.queue_len:
return "Queue length: %i" % self.queue_len
else:
return ''
def _reset_dig_fired(self):
self.reset_traits(['hsp_file', 'fid_file'])
def _save_as_fired(self):
# create raw
try:
raw = self.model.get_raw()
except Exception as err:
error(None, str(err), "Error Creating KIT Raw")
raise
# find default path
stem, _ = os.path.splitext(self.sqd_file)
if not stem.endswith('raw'):
stem += '-raw'
default_path = stem + '.fif'
# save as dialog
dlg = FileDialog(action="save as",
wildcard="fiff raw file (*.fif)|*.fif",
default_path=default_path)
dlg.open()
if dlg.return_code != OK:
return
fname = dlg.path
if not fname.endswith('.fif'):
fname += '.fif'
if os.path.exists(fname):
answer = confirm(None, "The file %r already exists. Should it "
"be replaced?", "Overwrite File?")
if answer != YES:
return
self.queue.put((raw, fname))
self.queue_len += 1
class Kit2FiffFrame(HasTraits):
"""GUI for interpolating between two KIT marker files"""
model = Instance(Kit2FiffModel, ())
scene = Instance(MlabSceneModel, ())
headview = Instance(HeadViewController)
marker_panel = Instance(CombineMarkersPanel)
kit2fiff_panel = Instance(Kit2FiffPanel)
view = View(HGroup(VGroup(Item('marker_panel', style='custom'),
show_labels=False),
VGroup(Item('scene',
editor=SceneEditor(scene_class=MayaviScene),
dock='vertical', show_label=False),
VGroup(headview_item, show_labels=False),
),
VGroup(Item('kit2fiff_panel', style='custom'),
show_labels=False),
show_labels=False,
),
handler=Kit2FiffFrameHandler(),
height=700, resizable=True, buttons=NoButtons)
def _headview_default(self):
return HeadViewController(scene=self.scene, scale=160, system='RAS')
def _kit2fiff_panel_default(self):
return Kit2FiffPanel(scene=self.scene, model=self.model)
def _marker_panel_default(self):
return CombineMarkersPanel(scene=self.scene, model=self.model.markers,
trans=als_ras_trans)
|