1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
|
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: Simplified BSD
from copy import deepcopy
import numpy as np
from scipy import linalg, signal
from ..source_estimate import SourceEstimate
from ..minimum_norm.inverse import combine_xyz, _prepare_forward
from ..forward import compute_orient_prior, is_fixed_orient, _to_fixed_ori
from ..io.pick import pick_channels_evoked
from .mxne_optim import mixed_norm_solver, norm_l2inf, tf_mixed_norm_solver
from ..utils import logger, verbose
@verbose
def _prepare_gain(gain, forward, whitener, depth, loose, weights, weights_min,
verbose=None):
logger.info('Whitening lead field matrix.')
gain = np.dot(whitener, gain)
# Handle depth prior scaling
source_weighting = np.sum(gain ** 2, axis=0) ** depth
# apply loose orientations
orient_prior = compute_orient_prior(forward, loose)
source_weighting /= orient_prior
source_weighting = np.sqrt(source_weighting)
gain /= source_weighting[None, :]
# Handle weights
mask = None
if weights is not None:
if isinstance(weights, SourceEstimate):
# weights = np.sqrt(np.sum(weights.data ** 2, axis=1))
weights = np.max(np.abs(weights.data), axis=1)
weights_max = np.max(weights)
if weights_min > weights_max:
raise ValueError('weights_min > weights_max (%s > %s)' %
(weights_min, weights_max))
weights_min = weights_min / weights_max
weights = weights / weights_max
n_dip_per_pos = 1 if is_fixed_orient(forward) else 3
weights = np.ravel(np.tile(weights, [n_dip_per_pos, 1]).T)
if len(weights) != gain.shape[1]:
raise ValueError('weights do not have the correct dimension '
' (%d != %d)' % (len(weights), gain.shape[1]))
nz_idx = np.where(weights != 0.0)[0]
source_weighting[nz_idx] /= weights[nz_idx]
gain *= weights[None, :]
if weights_min is not None:
mask = (weights > weights_min)
gain = gain[:, mask]
n_sources = np.sum(mask) / n_dip_per_pos
logger.info("Reducing source space to %d sources" % n_sources)
return gain, source_weighting, mask
@verbose
def _make_sparse_stc(X, active_set, forward, tmin, tstep,
active_is_idx=False, verbose=None):
if not is_fixed_orient(forward):
logger.info('combining the current components...')
X = combine_xyz(X)
if not active_is_idx:
active_idx = np.where(active_set)[0]
else:
active_idx = active_set
n_dip_per_pos = 1 if is_fixed_orient(forward) else 3
if n_dip_per_pos > 1:
active_idx = np.unique(active_idx // n_dip_per_pos)
src = forward['src']
n_lh_points = len(src[0]['vertno'])
lh_vertno = src[0]['vertno'][active_idx[active_idx < n_lh_points]]
rh_vertno = src[1]['vertno'][active_idx[active_idx >= n_lh_points]
- n_lh_points]
vertices = [lh_vertno, rh_vertno]
stc = SourceEstimate(X, vertices=vertices, tmin=tmin, tstep=tstep)
return stc
@verbose
def mixed_norm(evoked, forward, noise_cov, alpha, loose=0.2, depth=0.8,
maxit=3000, tol=1e-4, active_set_size=10, pca=True,
debias=True, time_pca=True, weights=None, weights_min=None,
solver='auto', return_residual=False, verbose=None):
"""Mixed-norm estimate (MxNE)
Compute L1/L2 mixed-norm solution on evoked data.
References:
Gramfort A., Kowalski M. and Hamalainen, M,
Mixed-norm estimates for the M/EEG inverse problem using accelerated
gradient methods, Physics in Medicine and Biology, 2012
http://dx.doi.org/10.1088/0031-9155/57/7/1937
Parameters
----------
evoked : instance of Evoked or list of instances of Evoked
Evoked data to invert.
forward : dict
Forward operator.
noise_cov : instance of Covariance
Noise covariance to compute whitener.
alpha : float
Regularization parameter.
loose : float in [0, 1]
Value that weights the source variances of the dipole components
that are parallel (tangential) to the cortical surface. If loose
is 0 or None then the solution is computed with fixed orientation.
If loose is 1, it corresponds to free orientations.
depth: None | float in [0, 1]
Depth weighting coefficients. If None, no depth weighting is performed.
maxit : int
Maximum number of iterations.
tol : float
Tolerance parameter.
active_set_size : int | None
Size of active set increment. If None, no active set strategy is used.
pca : bool
If True the rank of the data is reduced to true dimension.
debias : bool
Remove coefficient amplitude bias due to L1 penalty.
time_pca : bool or int
If True the rank of the concatenated epochs is reduced to
its true dimension. If is 'int' the rank is limited to this value.
weights : None | array | SourceEstimate
Weight for penalty in mixed_norm. Can be None or
1d array of length n_sources or a SourceEstimate e.g. obtained
with wMNE or dSPM or fMRI.
weights_min : float
Do not consider in the estimation sources for which weights
is less than weights_min.
solver : 'prox' | 'cd' | 'auto'
The algorithm to use for the optimization. prox stands for
proximal interations using the FISTA algorithm while cd uses
coordinate descent. cd is only available for fixed orientation.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
return_residual : bool
If True, the residual is returned as an Evoked instance.
Returns
-------
stc : SourceEstimate | list of SourceEstimate
Source time courses for each evoked data passed as input.
residual : instance of Evoked
The residual a.k.a. data not explained by the sources.
Only returned if return_residual is True.
"""
if not isinstance(evoked, list):
evoked = [evoked]
all_ch_names = evoked[0].ch_names
if not all(all_ch_names == evoked[i].ch_names
for i in range(1, len(evoked))):
raise Exception('All the datasets must have the same good channels.')
# put the forward solution in fixed orientation if it's not already
if loose is None and not is_fixed_orient(forward):
forward = deepcopy(forward)
_to_fixed_ori(forward)
info = evoked[0].info
gain_info, gain, _, whitener, _ = _prepare_forward(forward, info,
noise_cov, pca)
# Whiten lead field.
gain, source_weighting, mask = _prepare_gain(gain, forward, whitener,
depth, loose, weights,
weights_min)
sel = [all_ch_names.index(name) for name in gain_info['ch_names']]
M = np.concatenate([e.data[sel] for e in evoked], axis=1)
# Whiten data
logger.info('Whitening data matrix.')
M = np.dot(whitener, M)
if time_pca:
U, s, Vh = linalg.svd(M, full_matrices=False)
if not isinstance(time_pca, bool) and isinstance(time_pca, int):
U = U[:, :time_pca]
s = s[:time_pca]
Vh = Vh[:time_pca]
M = U * s
# Scaling to make setting of alpha easy
n_dip_per_pos = 1 if is_fixed_orient(forward) else 3
alpha_max = norm_l2inf(np.dot(gain.T, M), n_dip_per_pos, copy=False)
alpha_max *= 0.01
gain /= alpha_max
source_weighting *= alpha_max
X, active_set, E = mixed_norm_solver(M, gain, alpha,
maxit=maxit, tol=tol,
active_set_size=active_set_size,
debias=debias,
n_orient=n_dip_per_pos,
solver=solver)
if mask is not None:
active_set_tmp = np.zeros(len(mask), dtype=np.bool)
active_set_tmp[mask] = active_set
active_set = active_set_tmp
del active_set_tmp
if time_pca:
X = np.dot(X, Vh)
if active_set.sum() == 0:
raise Exception("No active dipoles found. alpha is too big.")
# Reapply weights to have correct unit
X /= source_weighting[active_set][:, None]
stcs = list()
residual = list()
cnt = 0
for e in evoked:
tmin = e.times[0]
tstep = 1.0 / e.info['sfreq']
Xe = X[:, cnt:(cnt + len(e.times))]
stc = _make_sparse_stc(Xe, active_set, forward, tmin, tstep)
stcs.append(stc)
cnt += len(e.times)
if return_residual:
sel = [forward['sol']['row_names'].index(c)
for c in gain_info['ch_names']]
r = deepcopy(e)
r = pick_channels_evoked(r, include=gain_info['ch_names'])
r.data -= np.dot(forward['sol']['data'][sel, :][:, active_set], Xe)
residual.append(r)
logger.info('[done]')
if len(stcs) == 1:
out = stcs[0]
if return_residual:
residual = residual[0]
else:
out = stcs
if return_residual:
out = out, residual
return out
def _window_evoked(evoked, size):
"""Window evoked (size in seconds)"""
if isinstance(size, (float, int)):
lsize = rsize = float(size)
else:
lsize, rsize = size
evoked = deepcopy(evoked)
sfreq = float(evoked.info['sfreq'])
lsize = int(lsize * sfreq)
rsize = int(rsize * sfreq)
lhann = signal.hann(lsize * 2)
rhann = signal.hann(rsize * 2)
window = np.r_[lhann[:lsize],
np.ones(len(evoked.times) - lsize - rsize),
rhann[-rsize:]]
evoked.data *= window[None, :]
return evoked
@verbose
def tf_mixed_norm(evoked, forward, noise_cov, alpha_space, alpha_time,
loose=0.2, depth=0.8, maxit=3000, tol=1e-4,
weights=None, weights_min=None, pca=True, debias=True,
wsize=64, tstep=4, window=0.02,
return_residual=False, verbose=None):
"""Time-Frequency Mixed-norm estimate (TF-MxNE)
Compute L1/L2 + L1 mixed-norm solution on time frequency
dictionary. Works with evoked data.
References:
A. Gramfort, D. Strohmeier, J. Haueisen, M. Hamalainen, M. Kowalski
Time-Frequency Mixed-Norm Estimates: Sparse M/EEG imaging with
non-stationary source activations
Neuroimage, Volume 70, 15 April 2013, Pages 410-422, ISSN 1053-8119,
DOI: 10.1016/j.neuroimage.2012.12.051.
A. Gramfort, D. Strohmeier, J. Haueisen, M. Hamalainen, M. Kowalski
Functional Brain Imaging with M/EEG Using Structured Sparsity in
Time-Frequency Dictionaries
Proceedings Information Processing in Medical Imaging
Lecture Notes in Computer Science, 2011, Volume 6801/2011,
600-611, DOI: 10.1007/978-3-642-22092-0_49
http://dx.doi.org/10.1007/978-3-642-22092-0_49
Parameters
----------
evoked : instance of Evoked
Evoked data to invert.
forward : dict
Forward operator.
noise_cov : instance of Covariance
Noise covariance to compute whitener.
alpha_space : float
Regularization parameter for spatial sparsity. If larger than 100,
then no source will be active.
alpha_time : float
Regularization parameter for temporal sparsity. It set to 0,
no temporal regularization is applied. It this case, TF-MxNE is
equivalent to MxNE with L21 norm.
loose : float in [0, 1]
Value that weights the source variances of the dipole components
that are parallel (tangential) to the cortical surface. If loose
is 0 or None then the solution is computed with fixed orientation.
If loose is 1, it corresponds to free orientations.
depth: None | float in [0, 1]
Depth weighting coefficients. If None, no depth weighting is performed.
maxit : int
Maximum number of iterations.
tol : float
Tolerance parameter.
weights: None | array | SourceEstimate
Weight for penalty in mixed_norm. Can be None or
1d array of length n_sources or a SourceEstimate e.g. obtained
with wMNE or dSPM or fMRI.
weights_min: float
Do not consider in the estimation sources for which weights
is less than weights_min.
pca: bool
If True the rank of the data is reduced to true dimension.
wsize: int
Length of the STFT window in samples (must be a multiple of 4).
tstep: int
Step between successive windows in samples (must be a multiple of 2,
a divider of wsize and smaller than wsize/2) (default: wsize/2).
window : float or (float, float)
Length of time window used to take care of edge artifacts in seconds.
It can be one float or float if the values are different for left
and right window length.
debias: bool
Remove coefficient amplitude bias due to L1 penalty.
return_residual : bool
If True, the residual is returned as an Evoked instance.
verbose: bool
Verbose output or not.
Returns
-------
stc : instance of SourceEstimate
Source time courses.
residual : instance of Evoked
The residual a.k.a. data not explained by the sources.
Only returned if return_residual is True.
"""
all_ch_names = evoked.ch_names
info = evoked.info
# put the forward solution in fixed orientation if it's not already
if loose is None and not is_fixed_orient(forward):
forward = deepcopy(forward)
_to_fixed_ori(forward)
gain_info, gain, _, whitener, _ = _prepare_forward(forward,
info, noise_cov, pca)
# Whiten lead field.
gain, source_weighting, mask = _prepare_gain(gain, forward, whitener,
depth, loose, weights, weights_min)
if window is not None:
evoked = _window_evoked(evoked, window)
sel = [all_ch_names.index(name) for name in gain_info["ch_names"]]
M = evoked.data[sel]
# Whiten data
logger.info('Whitening data matrix.')
M = np.dot(whitener, M)
# Scaling to make setting of alpha easy
n_dip_per_pos = 1 if is_fixed_orient(forward) else 3
alpha_max = norm_l2inf(np.dot(gain.T, M), n_dip_per_pos, copy=False)
alpha_max *= 0.01
gain /= alpha_max
source_weighting *= alpha_max
X, active_set, E = tf_mixed_norm_solver(M, gain,
alpha_space, alpha_time,
wsize=wsize, tstep=tstep,
maxit=maxit, tol=tol,
verbose=verbose,
n_orient=n_dip_per_pos,
debias=debias)
if active_set.sum() == 0:
raise Exception("No active dipoles found. alpha is too big.")
if mask is not None:
active_set_tmp = np.zeros(len(mask), dtype=np.bool)
active_set_tmp[mask] = active_set
active_set = active_set_tmp
del active_set_tmp
# Reapply weights to have correct unit
X /= source_weighting[active_set][:, None]
if return_residual:
sel = [forward['sol']['row_names'].index(c)
for c in gain_info['ch_names']]
residual = deepcopy(evoked)
residual = pick_channels_evoked(residual, include=gain_info['ch_names'])
residual.data -= np.dot(forward['sol']['data'][sel, :][:, active_set],
X)
tmin = evoked.times[0]
tstep = 1.0 / info['sfreq']
out = _make_sparse_stc(X, active_set, forward, tmin, tstep)
logger.info('[done]')
if return_residual:
out = out, residual
return out
|