File: test_gamma_map.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (51 lines) | stat: -rw-r--r-- 1,903 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Author: Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#
# License: Simplified BSD

import os.path as op
import numpy as np
from nose.tools import assert_true
from numpy.testing import assert_array_almost_equal

from mne.datasets import sample
from mne import read_cov, read_forward_solution, read_evokeds
from mne.cov import regularize
from mne.inverse_sparse import gamma_map

data_path = sample.data_path(download=False)
fname_evoked = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif')
fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis-cov.fif')
fname_fwd = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis-eeg-oct-6-fwd.fif')


@sample.requires_sample_data
def test_gamma_map():
    """Test Gamma MAP inverse"""
    forward = read_forward_solution(fname_fwd, force_fixed=False,
                                    surf_ori=True)
    evoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0))
    evoked.crop(tmin=0, tmax=0.3)

    cov = read_cov(fname_cov)
    cov = regularize(cov, evoked.info)

    alpha = 0.2
    stc = gamma_map(evoked, forward, cov, alpha, tol=1e-5,
                    xyz_same_gamma=True, update_mode=1)
    idx = np.argmax(np.sum(stc.data ** 2, axis=1))
    assert_true(np.concatenate(stc.vertno)[idx] == 96397)

    stc = gamma_map(evoked, forward, cov, alpha, tol=1e-5,
                    xyz_same_gamma=False, update_mode=1)
    idx = np.argmax(np.sum(stc.data ** 2, axis=1))
    assert_true(np.concatenate(stc.vertno)[idx] == 82010)

    # force fixed orientation
    stc, res = gamma_map(evoked, forward, cov, alpha, tol=1e-5,
                         xyz_same_gamma=False, update_mode=2,
                         loose=None, return_residual=True)
    idx = np.argmax(np.sum(stc.data ** 2, axis=1))
    assert_true(np.concatenate(stc.vertno)[idx] == 83398)

    assert_array_almost_equal(evoked.times, res.times)