1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Daniel Strohmeier <daniel.strohmeier@tu-ilmenau.de>
#
# License: Simplified BSD
import os.path as op
import copy
import numpy as np
from numpy.testing import assert_array_almost_equal
from nose.tools import assert_true
from mne.datasets import sample
from mne.label import read_label
from mne import read_cov, read_forward_solution, read_evokeds
from mne.inverse_sparse import mixed_norm, tf_mixed_norm
from mne.minimum_norm import apply_inverse, make_inverse_operator
data_path = sample.data_path(download=False)
fname_data = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif')
fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis-cov.fif')
fname_fwd = op.join(data_path, 'MEG', 'sample',
'sample_audvis-meg-oct-6-fwd.fif')
label = 'Aud-rh'
fname_label = op.join(data_path, 'MEG', 'sample', 'labels', '%s.label' % label)
@sample.requires_sample_data
def test_mxne_inverse():
"""Test (TF-)MxNE inverse computation"""
# Handling forward solution
evoked = read_evokeds(fname_data, condition=1, baseline=(None, 0))
# Read noise covariance matrix
cov = read_cov(fname_cov)
# Handling average file
loose = None
depth = 0.9
evoked = read_evokeds(fname_data, condition=0, baseline=(None, 0))
evoked.crop(tmin=-0.1, tmax=0.4)
evoked_l21 = copy.deepcopy(evoked)
evoked_l21.crop(tmin=0.08, tmax=0.1)
label = read_label(fname_label)
weights_min = 0.5
forward = read_forward_solution(fname_fwd, force_fixed=False,
surf_ori=True)
# Reduce source space to make test computation faster
inverse_operator = make_inverse_operator(evoked.info, forward, cov,
loose=loose, depth=depth,
fixed=True)
stc_dspm = apply_inverse(evoked_l21, inverse_operator, lambda2=1. / 9.,
method='dSPM')
stc_dspm.data[np.abs(stc_dspm.data) < 12] = 0.0
stc_dspm.data[np.abs(stc_dspm.data) >= 12] = 1.
# MxNE tests
alpha = 60 # spatial regularization parameter
stc_prox = mixed_norm(evoked_l21, forward, cov, alpha, loose=None,
depth=0.9, maxit=1000, tol=1e-8, active_set_size=10,
solver='prox')
stc_cd = mixed_norm(evoked_l21, forward, cov, alpha, loose=None,
depth=0.9, maxit=1000, tol=1e-8, active_set_size=10,
solver='cd')
assert_array_almost_equal(stc_prox.times, evoked_l21.times, 5)
assert_array_almost_equal(stc_cd.times, evoked_l21.times, 5)
assert_array_almost_equal(stc_prox.data, stc_cd.data, 5)
assert_true(stc_prox.vertno[1][0] in label.vertices)
assert_true(stc_cd.vertno[1][0] in label.vertices)
stc, _ = mixed_norm(evoked_l21, forward, cov, alpha, loose=None,
depth=depth, maxit=500, tol=1e-4, active_set_size=10,
weights=stc_dspm, weights_min=weights_min,
return_residual=True)
assert_array_almost_equal(stc.times, evoked_l21.times, 5)
assert_true(stc.vertno[1][0] in label.vertices)
# Do with TF-MxNE for test memory savings
alpha_space = 60. # spatial regularization parameter
alpha_time = 1. # temporal regularization parameter
stc, _ = tf_mixed_norm(evoked, forward, cov, alpha_space, alpha_time,
loose=loose, depth=depth, maxit=100, tol=1e-4,
tstep=4, wsize=16, window=0.1, weights=stc_dspm,
weights_min=weights_min, return_residual=True)
assert_array_almost_equal(stc.times, evoked.times, 5)
assert_true(stc.vertno[1][0] in label.vertices)
|