1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)
from math import floor, ceil
import copy
from copy import deepcopy
import warnings
import os
import os.path as op
import numpy as np
from scipy.signal import hilbert
from scipy import linalg
from .constants import FIFF
from .pick import pick_types, channel_type, pick_channels
from .meas_info import write_meas_info
from .proj import (setup_proj, activate_proj, proj_equal, ProjMixin,
_has_eeg_average_ref_proj, make_eeg_average_ref_proj)
from ..channels import ContainsMixin, PickDropChannelsMixin
from .compensator import set_current_comp
from .write import (start_file, end_file, start_block, end_block,
write_dau_pack16, write_float, write_double,
write_complex64, write_complex128, write_int,
write_id, write_string)
from ..filter import (low_pass_filter, high_pass_filter, band_pass_filter,
notch_filter, band_stop_filter, resample)
from ..parallel import parallel_func
from ..utils import (_check_fname, estimate_rank, _check_pandas_installed,
check_fname, _get_stim_channel, object_hash,
logger, verbose)
from ..viz import plot_raw, plot_raw_psds, _mutable_defaults
from ..externals.six import string_types
from ..event import concatenate_events
class _BaseRaw(ProjMixin, ContainsMixin, PickDropChannelsMixin):
"""Base class for Raw data"""
@verbose
def __init__(self, *args, **kwargs):
raise NotImplementedError
def _read_segment(start, stop, sel, projector, verbose):
raise NotImplementedError
def __del__(self):
# remove file for memmap
if hasattr(self, '_data') and hasattr(self._data, 'filename'):
# First, close the file out; happens automatically on del
filename = self._data.filename
del self._data
# Now file can be removed
os.remove(filename)
def __enter__(self):
""" Entering with block """
return self
def __exit__(self, exception_type, exception_val, trace):
""" Exiting with block """
try:
self.close()
except:
return exception_type, exception_val, trace
def __hash__(self):
if not self.preload:
raise RuntimeError('Cannot hash raw unless preloaded')
return object_hash(dict(info=self.info, data=self._data))
def _add_eeg_ref(self, add_eeg_ref):
"""Helper to add an average EEG reference"""
if add_eeg_ref:
eegs = pick_types(self.info, meg=False, eeg=True, ref_meg=False)
projs = self.info['projs']
if len(eegs) > 0 and not _has_eeg_average_ref_proj(projs):
eeg_ref = make_eeg_average_ref_proj(self.info, activate=False)
projs.append(eeg_ref)
def _parse_get_set_params(self, item):
# make sure item is a tuple
if not isinstance(item, tuple): # only channel selection passed
item = (item, slice(None, None, None))
if len(item) != 2: # should be channels and time instants
raise RuntimeError("Unable to access raw data (need both channels "
"and time)")
if isinstance(item[0], slice):
start = item[0].start if item[0].start is not None else 0
nchan = self.info['nchan']
stop = item[0].stop if item[0].stop is not None else nchan
step = item[0].step if item[0].step is not None else 1
sel = list(range(start, stop, step))
else:
sel = item[0]
if isinstance(item[1], slice):
time_slice = item[1]
start, stop, step = (time_slice.start, time_slice.stop,
time_slice.step)
else:
item1 = item[1]
# Let's do automated type conversion to integer here
if np.array(item[1]).dtype.kind == 'i':
item1 = int(item1)
if isinstance(item1, int):
start, stop, step = item1, item1 + 1, 1
else:
raise ValueError('Must pass int or slice to __getitem__')
if start is None:
start = 0
if (step is not None) and (step is not 1):
raise ValueError('step needs to be 1 : %d given' % step)
if isinstance(sel, int):
sel = np.array([sel])
if sel is not None and len(sel) == 0:
raise ValueError("Empty channel list")
return sel, start, stop
def __getitem__(self, item):
"""getting raw data content with python slicing"""
sel, start, stop = self._parse_get_set_params(item)
if self.preload:
data, times = self._data[sel, start:stop], self._times[start:stop]
else:
data, times = self._read_segment(start=start, stop=stop, sel=sel,
projector=self._projector,
verbose=self.verbose)
return data, times
def __setitem__(self, item, value):
"""setting raw data content with python slicing"""
if not self.preload:
raise RuntimeError('Modifying data of Raw is only supported '
'when preloading is used. Use preload=True '
'(or string) in the constructor.')
sel, start, stop = self._parse_get_set_params(item)
# set the data
self._data[sel, start:stop] = value
def anonymize(self):
"""Anonymize data
This function will remove info['subject_info'] if it exists."""
self.info._anonymize()
@verbose
def apply_function(self, fun, picks, dtype, n_jobs, verbose=None, *args,
**kwargs):
""" Apply a function to a subset of channels.
The function "fun" is applied to the channels defined in "picks". The
data of the Raw object is modified inplace. If the function returns
a different data type (e.g. numpy.complex) it must be specified using
the dtype parameter, which causes the data type used for representing
the raw data to change.
The Raw object has to be constructed using preload=True (or string).
Note: If n_jobs > 1, more memory is required as "len(picks) * n_times"
additional time points need to be temporaily stored in memory.
Note: If the data type changes (dtype != None), more memory is required
since the original and the converted data needs to be stored in
memory.
Parameters
----------
fun : function
A function to be applied to the channels. The first argument of
fun has to be a timeseries (numpy.ndarray). The function must
return an numpy.ndarray with the same size as the input.
picks : array-like of int
Indices of channels to apply the function to.
dtype : numpy.dtype
Data type to use for raw data after applying the function. If None
the data type is not modified.
n_jobs: int
Number of jobs to run in parallel.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Defaults to self.verbose.
*args :
Additional positional arguments to pass to fun (first pos. argument
of fun is the timeseries of a channel).
**kwargs :
Keyword arguments to pass to fun.
"""
if not self.preload:
raise RuntimeError('Raw data needs to be preloaded. Use '
'preload=True (or string) in the constructor.')
if not callable(fun):
raise ValueError('fun needs to be a function')
data_in = self._data
if dtype is not None and dtype != self._data.dtype:
self._data = self._data.astype(dtype)
if n_jobs == 1:
# modify data inplace to save memory
for idx in picks:
self._data[idx, :] = fun(data_in[idx, :], *args, **kwargs)
else:
# use parallel function
parallel, p_fun, _ = parallel_func(fun, n_jobs)
data_picks_new = parallel(p_fun(data_in[p], *args, **kwargs)
for p in picks)
for pp, p in enumerate(picks):
self._data[p, :] = data_picks_new[pp]
@verbose
def apply_hilbert(self, picks, envelope=False, n_jobs=1, verbose=None):
""" Compute analytic signal or envelope for a subset of channels.
If envelope=False, the analytic signal for the channels defined in
"picks" is computed and the data of the Raw object is converted to
a complex representation (the analytic signal is complex valued).
If envelope=True, the absolute value of the analytic signal for the
channels defined in "picks" is computed, resulting in the envelope
signal.
Note: DO NOT use envelope=True if you intend to compute an inverse
solution from the raw data. If you want to compute the
envelope in source space, use envelope=False and compute the
envelope after the inverse solution has been obtained.
Note: If envelope=False, more memory is required since the original
raw data as well as the analytic signal have temporarily to
be stored in memory.
Note: If n_jobs > 1 and envelope=True, more memory is required as
"len(picks) * n_times" additional time points need to be
temporaily stored in memory.
Parameters
----------
picks : array-like of int
Indices of channels to apply the function to.
envelope : bool (default: False)
Compute the envelope signal of each channel.
n_jobs: int
Number of jobs to run in parallel.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Defaults to self.verbose.
Notes
-----
The analytic signal "x_a(t)" of "x(t)" is::
x_a = F^{-1}(F(x) 2U) = x + i y
where "F" is the Fourier transform, "U" the unit step function,
and "y" the Hilbert transform of "x". One usage of the analytic
signal is the computation of the envelope signal, which is given by
"e(t) = abs(x_a(t))". Due to the linearity of Hilbert transform and the
MNE inverse solution, the enevlope in source space can be obtained
by computing the analytic signal in sensor space, applying the MNE
inverse, and computing the envelope in source space.
"""
if envelope:
self.apply_function(_envelope, picks, None, n_jobs)
else:
self.apply_function(hilbert, picks, np.complex64, n_jobs)
@verbose
def filter(self, l_freq, h_freq, picks=None, filter_length='10s',
l_trans_bandwidth=0.5, h_trans_bandwidth=0.5, n_jobs=1,
method='fft', iir_params=None, verbose=None):
"""Filter a subset of channels.
Applies a zero-phase low-pass, high-pass, band-pass, or band-stop
filter to the channels selected by "picks". The data of the Raw
object is modified inplace.
The Raw object has to be constructed using preload=True (or string).
l_freq and h_freq are the frequencies below which and above which,
respectively, to filter out of the data. Thus the uses are:
l_freq < h_freq: band-pass filter
l_freq > h_freq: band-stop filter
l_freq is not None, h_freq is None: low-pass filter
l_freq is None, h_freq is not None: high-pass filter
Note: If n_jobs > 1, more memory is required as "len(picks) * n_times"
additional time points need to be temporarily stored in memory.
Note: self.info['lowpass'] and self.info['highpass'] are only updated
with picks=None.
Parameters
----------
l_freq : float | None
Low cut-off frequency in Hz. If None the data are only low-passed.
h_freq : float | None
High cut-off frequency in Hz. If None the data are only
high-passed.
picks : array-like of int | None
Indices of channels to filter. If None only the data (MEG/EEG)
channels will be filtered.
filter_length : str (Default: '10s') | int | None
Length of the filter to use. If None or "len(x) < filter_length",
the filter length used is len(x). Otherwise, if int, overlap-add
filtering with a filter of the specified length in samples) is
used (faster for long signals). If str, a human-readable time in
units of "s" or "ms" (e.g., "10s" or "5500ms") will be converted
to the shortest power-of-two length at least that duration.
l_trans_bandwidth : float
Width of the transition band at the low cut-off frequency in Hz.
h_trans_bandwidth : float
Width of the transition band at the high cut-off frequency in Hz.
n_jobs : int | str
Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda
is installed properly, CUDA is initialized, and method='fft'.
method : str
'fft' will use overlap-add FIR filtering, 'iir' will use IIR
forward-backward filtering (via filtfilt).
iir_params : dict | None
Dictionary of parameters to use for IIR filtering.
See mne.filter.construct_iir_filter for details. If iir_params
is None and method="iir", 4th order Butterworth will be used.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Defaults to self.verbose.
"""
if verbose is None:
verbose = self.verbose
fs = float(self.info['sfreq'])
if l_freq == 0:
l_freq = None
if h_freq is not None and h_freq > (fs / 2.):
h_freq = None
if l_freq is not None and not isinstance(l_freq, float):
l_freq = float(l_freq)
if h_freq is not None and not isinstance(h_freq, float):
h_freq = float(h_freq)
if not self.preload:
raise RuntimeError('Raw data needs to be preloaded to filter. Use '
'preload=True (or string) in the constructor.')
if picks is None:
if 'ICA ' in ','.join(self.ch_names):
pick_parameters = dict(misc=True, ref_meg=False)
else:
pick_parameters = dict(meg=True, eeg=True, ref_meg=False)
picks = pick_types(self.info, exclude=[], **pick_parameters)
# let's be safe.
if len(picks) < 1:
raise RuntimeError('Could not find any valid channels for '
'your Raw object. Please contact the '
'MNE-Python developers.')
# update info if filter is applied to all data channels,
# and it's not a band-stop filter
if h_freq is not None and (l_freq is None or l_freq < h_freq) and \
h_freq < self.info['lowpass']:
self.info['lowpass'] = h_freq
if l_freq is not None and (h_freq is None or l_freq < h_freq) and \
l_freq > self.info['highpass']:
self.info['highpass'] = l_freq
if l_freq is None and h_freq is not None:
logger.info('Low-pass filtering at %0.2g Hz' % h_freq)
low_pass_filter(self._data, fs, h_freq,
filter_length=filter_length,
trans_bandwidth=l_trans_bandwidth, method=method,
iir_params=iir_params, picks=picks, n_jobs=n_jobs,
copy=False)
if l_freq is not None and h_freq is None:
logger.info('High-pass filtering at %0.2g Hz' % l_freq)
high_pass_filter(self._data, fs, l_freq,
filter_length=filter_length,
trans_bandwidth=h_trans_bandwidth, method=method,
iir_params=iir_params, picks=picks, n_jobs=n_jobs,
copy=False)
if l_freq is not None and h_freq is not None:
if l_freq < h_freq:
logger.info('Band-pass filtering from %0.2g - %0.2g Hz'
% (l_freq, h_freq))
self._data = band_pass_filter(self._data, fs, l_freq, h_freq,
filter_length=filter_length,
l_trans_bandwidth=l_trans_bandwidth,
h_trans_bandwidth=h_trans_bandwidth,
method=method, iir_params=iir_params, picks=picks,
n_jobs=n_jobs, copy=False)
else:
logger.info('Band-stop filtering from %0.2g - %0.2g Hz'
% (h_freq, l_freq))
self._data = band_stop_filter(self._data, fs, h_freq, l_freq,
filter_length=filter_length,
l_trans_bandwidth=h_trans_bandwidth,
h_trans_bandwidth=l_trans_bandwidth, method=method,
iir_params=iir_params, picks=picks, n_jobs=n_jobs,
copy=False)
@verbose
def notch_filter(self, freqs, picks=None, filter_length='10s',
notch_widths=None, trans_bandwidth=1.0, n_jobs=1,
method='fft', iir_params=None,
mt_bandwidth=None, p_value=0.05, verbose=None):
"""Notch filter a subset of channels.
Applies a zero-phase notch filter to the channels selected by
"picks". The data of the Raw object is modified inplace.
The Raw object has to be constructed using preload=True (or string).
Note: If n_jobs > 1, more memory is required as "len(picks) * n_times"
additional time points need to be temporaily stored in memory.
Parameters
----------
freqs : float | array of float | None
Specific frequencies to filter out from data, e.g.,
np.arange(60, 241, 60) in the US or np.arange(50, 251, 50) in
Europe. None can only be used with the mode 'spectrum_fit',
where an F test is used to find sinusoidal components.
picks : array-like of int | None
Indices of channels to filter. If None only the data (MEG/EEG)
channels will be filtered.
filter_length : str (Default: '10s') | int | None
Length of the filter to use. If None or "len(x) < filter_length",
the filter length used is len(x). Otherwise, if int, overlap-add
filtering with a filter of the specified length in samples) is
used (faster for long signals). If str, a human-readable time in
units of "s" or "ms" (e.g., "10s" or "5500ms") will be converted
to the shortest power-of-two length at least that duration.
notch_widths : float | array of float | None
Width of each stop band (centred at each freq in freqs) in Hz.
If None, freqs / 200 is used.
trans_bandwidth : float
Width of the transition band in Hz.
n_jobs : int | str
Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda
is installed properly, CUDA is initialized, and method='fft'.
method : str
'fft' will use overlap-add FIR filtering, 'iir' will use IIR
forward-backward filtering (via filtfilt). 'spectrum_fit' will
use multi-taper estimation of sinusoidal components.
iir_params : dict | None
Dictionary of parameters to use for IIR filtering.
See mne.filter.construct_iir_filter for details. If iir_params
is None and method="iir", 4th order Butterworth will be used.
mt_bandwidth : float | None
The bandwidth of the multitaper windowing function in Hz.
Only used in 'spectrum_fit' mode.
p_value : float
p-value to use in F-test thresholding to determine significant
sinusoidal components to remove when method='spectrum_fit' and
freqs=None. Note that this will be Bonferroni corrected for the
number of frequencies, so large p-values may be justified.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Defaults to self.verbose.
Notes
-----
For details, see mne.filter.notch_filter.
"""
if verbose is None:
verbose = self.verbose
fs = float(self.info['sfreq'])
if picks is None:
if 'ICA ' in ','.join(self.ch_names):
pick_parameters = dict(misc=True)
else:
pick_parameters = dict(meg=True, eeg=True)
picks = pick_types(self.info, exclude=[], **pick_parameters)
# let's be safe.
if len(picks) < 1:
raise RuntimeError('Could not find any valid channels for '
'your Raw object. Please contact the '
'MNE-Python developers.')
if not self.preload:
raise RuntimeError('Raw data needs to be preloaded to filter. Use '
'preload=True (or string) in the constructor.')
self._data = notch_filter(self._data, fs, freqs,
filter_length=filter_length,
notch_widths=notch_widths,
trans_bandwidth=trans_bandwidth,
method=method, iir_params=iir_params,
mt_bandwidth=mt_bandwidth, p_value=p_value,
picks=picks, n_jobs=n_jobs, copy=False)
@verbose
def resample(self, sfreq, npad=100, window='boxcar',
stim_picks=None, n_jobs=1, verbose=None):
"""Resample data channels.
Resamples all channels. The data of the Raw object is modified inplace.
The Raw object has to be constructed using preload=True (or string).
WARNING: The intended purpose of this function is primarily to speed
up computations (e.g., projection calculation) when precise timing
of events is not required, as downsampling raw data effectively
jitters trigger timings. It is generally recommended not to epoch
downsampled data, but instead epoch and then downsample, as epoching
downsampled data jitters triggers.
Parameters
----------
sfreq : float
New sample rate to use.
npad : int
Amount to pad the start and end of the data.
window : string or tuple
Window to use in resampling. See scipy.signal.resample.
stim_picks : array of int | None
Stim channels. These channels are simply subsampled or
supersampled (without applying any filtering). This reduces
resampling artifacts in stim channels, but may lead to missing
triggers. If None, stim channels are automatically chosen using
mne.pick_types(raw.info, meg=False, stim=True, exclude=[]).
n_jobs : int | str
Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda
is installed properly and CUDA is initialized.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Defaults to self.verbose.
Notes
-----
For some data, it may be more accurate to use npad=0 to reduce
artifacts. This is dataset dependent -- check your data!
"""
if not self.preload:
raise RuntimeError('Can only resample preloaded data')
sfreq = float(sfreq)
o_sfreq = float(self.info['sfreq'])
offsets = np.concatenate(([0], np.cumsum(self._raw_lengths)))
new_data = list()
# set up stim channel processing
if stim_picks is None:
stim_picks = pick_types(self.info, meg=False, ref_meg=False,
stim=True, exclude=[])
stim_picks = np.asanyarray(stim_picks)
ratio = sfreq / o_sfreq
for ri in range(len(self._raw_lengths)):
data_chunk = self._data[:, offsets[ri]:offsets[ri + 1]]
new_data.append(resample(data_chunk, sfreq, o_sfreq, npad,
n_jobs=n_jobs))
new_ntimes = new_data[ri].shape[1]
# Now deal with the stim channels. In empirical testing, it was
# faster to resample all channels (above) and then replace the
# stim channels than it was to only resample the proper subset
# of channels and then use np.insert() to restore the stims
# figure out which points in old data to subsample
# protect against out-of-bounds, which can happen (having
# one sample more than expected) due to padding
stim_inds = np.minimum(np.floor(np.arange(new_ntimes)
/ ratio).astype(int),
data_chunk.shape[1] - 1)
for sp in stim_picks:
new_data[ri][sp] = data_chunk[[sp]][:, stim_inds]
self._first_samps[ri] = int(self._first_samps[ri] * ratio)
self._last_samps[ri] = self._first_samps[ri] + new_ntimes - 1
self._raw_lengths[ri] = new_ntimes
# adjust affected variables
self._data = np.concatenate(new_data, axis=1)
self.first_samp = self._first_samps[0]
self.last_samp = self.first_samp + self._data.shape[1] - 1
self.info['sfreq'] = sfreq
self._times = (np.arange(self.n_times, dtype=np.float64)
/ self.info['sfreq'])
def crop(self, tmin=0.0, tmax=None, copy=True):
"""Crop raw data file.
Limit the data from the raw file to go between specific times. Note
that the new tmin is assumed to be t=0 for all subsequently called
functions (e.g., time_as_index, or Epochs). New first_samp and
last_samp are set accordingly. And data are modified in-place when
called with copy=False.
Parameters
----------
tmin : float
New start time (must be >= 0).
tmax : float | None
New end time of the data (cannot exceed data duration).
copy : bool
If False Raw is cropped in place.
Returns
-------
raw : instance of Raw
The cropped raw object.
"""
raw = self.copy() if copy is True else self
max_time = (raw.n_times - 1) / raw.info['sfreq']
if tmax is None:
tmax = max_time
if tmin > tmax:
raise ValueError('tmin must be less than tmax')
if tmin < 0.0:
raise ValueError('tmin must be >= 0')
elif tmax > max_time:
raise ValueError('tmax must be less than or equal to the max raw '
'time (%0.4f sec)' % max_time)
smin = raw.time_as_index(tmin)[0]
smax = raw.time_as_index(tmax)[0]
cumul_lens = np.concatenate(([0], np.array(raw._raw_lengths,
dtype='int')))
cumul_lens = np.cumsum(cumul_lens)
keepers = np.logical_and(np.less(smin, cumul_lens[1:]),
np.greater_equal(smax, cumul_lens[:-1]))
keepers = np.where(keepers)[0]
raw._first_samps = np.atleast_1d(raw._first_samps[keepers])
# Adjust first_samp of first used file!
raw._first_samps[0] += smin - cumul_lens[keepers[0]]
raw._last_samps = np.atleast_1d(raw._last_samps[keepers])
raw._last_samps[-1] -= cumul_lens[keepers[-1] + 1] - 1 - smax
raw._raw_lengths = raw._last_samps - raw._first_samps + 1
raw.rawdirs = [r for ri, r in enumerate(raw.rawdirs)
if ri in keepers]
raw.first_samp = raw._first_samps[0]
raw.last_samp = raw.first_samp + (smax - smin)
if raw.preload:
raw._data = raw._data[:, smin:smax + 1]
raw._times = np.arange(raw.n_times) / raw.info['sfreq']
return raw
@verbose
def save(self, fname, picks=None, tmin=0, tmax=None, buffer_size_sec=10,
drop_small_buffer=False, proj=False, format='single',
overwrite=False, split_size='2GB', verbose=None):
"""Save raw data to file
Parameters
----------
fname : string
File name of the new dataset. This has to be a new filename
unless data have been preloaded. Filenames should end with
raw.fif, raw.fif.gz, raw_sss.fif, raw_sss.fif.gz, raw_tsss.fif
or raw_tsss.fif.gz.
picks : array-like of int | None
Indices of channels to include. If None all channels are kept.
tmin : float | None
Time in seconds of first sample to save. If None first sample
is used.
tmax : float | None
Time in seconds of last sample to save. If None last sample
is used.
buffer_size_sec : float | None
Size of data chunks in seconds. If None, the buffer size of
the original file is used.
drop_small_buffer : bool
Drop or not the last buffer. It is required by maxfilter (SSS)
that only accepts raw files with buffers of the same size.
proj : bool
If True the data is saved with the projections applied (active).
Note: If apply_proj() was used to apply the projections,
the projectons will be active even if proj is False.
format : str
Format to use to save raw data. Valid options are 'double',
'single', 'int', and 'short' for 64- or 32-bit float, or 32- or
16-bit integers, respectively. It is STRONGLY recommended to use
'single', as this is backward-compatible, and is standard for
maintaining precision. Note that using 'short' or 'int' may result
in loss of precision, complex data cannot be saved as 'short',
and neither complex data types nor real data stored as 'double'
can be loaded with the MNE command-line tools. See raw.orig_format
to determine the format the original data were stored in.
overwrite : bool
If True, the destination file (if it exists) will be overwritten.
If False (default), an error will be raised if the file exists.
split_size : string | int
Large raw files are automatically split into multiple pieces. This
parameter specifies the maximum size of each piece. If the
parameter is an integer, it specifies the size in Bytes. It is
also possible to pass a human-readable string, e.g., 100MB.
Note: Due to FIFF file limitations, the maximum split size is 2GB.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Defaults to self.verbose.
Notes
-----
If Raw is a concatenation of several raw files, *be warned* that only
the measurement information from the first raw file is stored. This
likely means that certain operations with external tools may not
work properly on a saved concatenated file (e.g., probably some
or all forms of SSS). It is recommended not to concatenate and
then save raw files for this reason.
"""
check_fname(fname, 'raw', ('raw.fif', 'raw_sss.fif', 'raw_tsss.fif',
'raw.fif.gz', 'raw_sss.fif.gz',
'raw_tsss.fif.gz'))
if isinstance(split_size, string_types):
exp = dict(MB=20, GB=30).get(split_size[-2:], None)
if exp is None:
raise ValueError('split_size has to end with either'
'"MB" or "GB"')
split_size = int(float(split_size[:-2]) * 2 ** exp)
if split_size > 2147483648:
raise ValueError('split_size cannot be larger than 2GB')
fname = op.realpath(fname)
if not self.preload and fname in self._filenames:
raise ValueError('You cannot save data to the same file.'
' Please use a different filename.')
if self.preload:
if np.iscomplexobj(self._data):
warnings.warn('Saving raw file with complex data. Loading '
'with command-line MNE tools will not work.')
type_dict = dict(short=FIFF.FIFFT_DAU_PACK16,
int=FIFF.FIFFT_INT,
single=FIFF.FIFFT_FLOAT,
double=FIFF.FIFFT_DOUBLE)
if not format in type_dict.keys():
raise ValueError('format must be "short", "int", "single", '
'or "double"')
reset_dict = dict(short=False, int=False, single=True, double=True)
reset_range = reset_dict[format]
data_type = type_dict[format]
data_test = self[0, 0][0]
if format == 'short' and np.iscomplexobj(data_test):
raise ValueError('Complex data must be saved as "single" or '
'"double", not "short"')
# check for file existence
_check_fname(fname, overwrite)
if proj:
info = copy.deepcopy(self.info)
projector, info = setup_proj(info)
activate_proj(info['projs'], copy=False)
else:
info = self.info
projector = None
# set the correct compensation grade and make inverse compensator
inv_comp = None
if self.comp is not None:
inv_comp = linalg.inv(self.comp)
set_current_comp(info, self._orig_comp_grade)
#
# Set up the reading parameters
#
# Convert to samples
start = int(floor(tmin * self.info['sfreq']))
if tmax is None:
stop = self.last_samp + 1 - self.first_samp
else:
stop = int(floor(tmax * self.info['sfreq']))
if buffer_size_sec is None:
if 'buffer_size_sec' in self.info:
buffer_size_sec = self.info['buffer_size_sec']
else:
buffer_size_sec = 10.0
buffer_size = int(ceil(buffer_size_sec * self.info['sfreq']))
# write the raw file
_write_raw(fname, self, info, picks, format, data_type, reset_range,
start, stop, buffer_size, projector, inv_comp,
drop_small_buffer, split_size, 0, None)
def plot(raw, events=None, duration=10.0, start=0.0, n_channels=20,
bgcolor='w', color=None, bad_color=(0.8, 0.8, 0.8),
event_color='cyan', scalings=None, remove_dc=True, order='type',
show_options=False, title=None, show=True, block=False):
"""Plot raw data
Parameters
----------
raw : instance of Raw
The raw data to plot.
events : array | None
Events to show with vertical bars.
duration : float
Time window (sec) to plot in a given time.
start : float
Initial time to show (can be changed dynamically once plotted).
n_channels : int
Number of channels to plot at once.
bgcolor : color object
Color of the background.
color : dict | color object | None
Color for the data traces. If None, defaults to:
`dict(mag='darkblue', grad='b', eeg='k', eog='k', ecg='r', emg='k',
ref_meg='steelblue', misc='k', stim='k', resp='k', chpi='k')`
bad_color : color object
Color to make bad channels.
event_color : color object
Color to use for events.
scalings : dict | None
Scale factors for the traces. If None, defaults to:
`dict(mag=1e-12, grad=4e-11, eeg=20e-6,
eog=150e-6, ecg=5e-4, emg=1e-3,
ref_meg=1e-12, misc=1e-3, stim=1, resp=1, chpi=1e-4)`
remove_dc : bool
If True remove DC component when plotting data.
order : 'type' | 'original' | array
Order in which to plot data. 'type' groups by channel type,
'original' plots in the order of ch_names, array gives the
indices to use in plotting.
show_options : bool
If True, a dialog for options related to projection is shown.
title : str | None
The title of the window. If None, and either the filename of the
raw object or '<unknown>' will be displayed as title.
show : bool
Show figures if True
block : bool
Whether to halt program execution until the figure is closed.
Useful for setting bad channels on the fly (click on line).
Returns
-------
fig : Instance of matplotlib.figure.Figure
Raw traces.
Notes
-----
The arrow keys (up/down/left/right) can typically be used to navigate
between channels and time ranges, but this depends on the backend
matplotlib is configured to use (e.g., mpl.use('TkAgg') should work).
To mark or un-mark a channel as bad, click on the rather flat segments
of a channel's time series. The changes will be reflected immediately
in the raw object's ``raw.info['bads']`` entry.
"""
return plot_raw(raw, events, duration, start, n_channels, bgcolor,
color, bad_color, event_color, scalings, remove_dc,
order, show_options, title, show, block)
@verbose
def plot_psds(self, tmin=0.0, tmax=60.0, fmin=0, fmax=np.inf,
proj=False, n_fft=2048, picks=None, ax=None, color='black',
area_mode='std', area_alpha=0.33, n_jobs=1, verbose=None):
"""Plot the power spectral density across channels
Parameters
----------
tmin : float
Start time for calculations.
tmax : float
End time for calculations.
fmin : float
Start frequency to consider.
fmax : float
End frequency to consider.
proj : bool
Apply projection.
n_fft : int
Number of points to use in Welch FFT calculations.
picks : array-like of int | None
List of channels to use. Cannot be None if `ax` is supplied. If
both `picks` and `ax` are None, separate subplots will be created
for each standard channel type (`mag`, `grad`, and `eeg`).
ax : instance of matplotlib Axes | None
Axes to plot into. If None, axes will be created.
color : str | tuple
A matplotlib-compatible color to use.
area_mode : str | None
How to plot area. If 'std', the mean +/- 1 STD (across channels)
will be plotted. If 'range', the min and max (across channels)
will be plotted. Bad channels will be excluded from these
calculations. If None, no area will be plotted.
area_alpha : float
Alpha for the area.
n_jobs : int
Number of jobs to run in parallel.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
"""
return plot_raw_psds(self, tmin, tmax, fmin, fmax, proj, n_fft, picks,
ax, color, area_mode, area_alpha, n_jobs)
def time_as_index(self, times, use_first_samp=False):
"""Convert time to indices
Parameters
----------
times : list-like | float | int
List of numbers or a number representing points in time.
use_first_samp : boolean
If True, time is treated as relative to the session onset, else
as relative to the recording onset.
Returns
-------
index : ndarray
Indices corresponding to the times supplied.
"""
return _time_as_index(times, self.info['sfreq'], self.first_samp,
use_first_samp)
def index_as_time(self, index, use_first_samp=False):
"""Convert indices to time
Parameters
----------
index : list-like | int
List of ints or int representing points in time.
use_first_samp : boolean
If True, the time returned is relative to the session onset, else
relative to the recording onset.
Returns
-------
times : ndarray
Times corresponding to the index supplied.
"""
return _index_as_time(index, self.info['sfreq'], self.first_samp,
use_first_samp)
def estimate_rank(self, tstart=0.0, tstop=30.0, tol=1e-4,
return_singular=False, picks=None):
"""Estimate rank of the raw data
This function is meant to provide a reasonable estimate of the rank.
The true rank of the data depends on many factors, so use at your
own risk.
Parameters
----------
tstart : float
Start time to use for rank estimation. Default is 0.0.
tstop : float | None
End time to use for rank estimation. Default is 30.0.
If None, the end time of the raw file is used.
tol : float
Tolerance for singular values to consider non-zero in
calculating the rank. The singular values are calculated
in this method such that independent data are expected to
have singular value around one.
return_singular : bool
If True, also return the singular values that were used
to determine the rank.
picks : array_like of int, shape (n_selected_channels,)
The channels to be considered for rank estimation.
If None (default) meg and eeg channels are included.
Returns
-------
rank : int
Estimated rank of the data.
s : array
If return_singular is True, the singular values that were
thresholded to determine the rank are also returned.
Notes
-----
If data are not pre-loaded, the appropriate data will be loaded
by this function (can be memory intensive).
Projectors are not taken into account unless they have been applied
to the data using apply_proj(), since it is not always possible
to tell whether or not projectors have been applied previously.
Bad channels will be excluded from calculations.
"""
start = max(0, self.time_as_index(tstart)[0])
if tstop is None:
stop = self.n_times - 1
else:
stop = min(self.n_times - 1, self.time_as_index(tstop)[0])
tslice = slice(start, stop + 1)
if picks is None:
picks = pick_types(self.info, meg=True, eeg=True, ref_meg=False,
exclude='bads')
# ensure we don't get a view of data
if len(picks) == 1:
return 1.0, 1.0
# this should already be a copy, so we can overwrite it
data = self[picks, tslice][0]
return estimate_rank(data, tol, return_singular, copy=False)
@property
def ch_names(self):
"""Channel names"""
return self.info['ch_names']
@property
def n_times(self):
"""Number of time points"""
return self.last_samp - self.first_samp + 1
def __len__(self):
return self.n_times
def load_bad_channels(self, bad_file=None, force=False):
"""
Mark channels as bad from a text file, in the style
(mostly) of the C function mne_mark_bad_channels
Parameters
----------
bad_file : string
File name of the text file containing bad channels
If bad_file = None, bad channels are cleared, but this
is more easily done directly as raw.info['bads'] = [].
force : boolean
Whether or not to force bad channel marking (of those
that exist) if channels are not found, instead of
raising an error.
"""
if bad_file is not None:
# Check to make sure bad channels are there
names = frozenset(self.info['ch_names'])
with open(bad_file) as fid:
bad_names = [l for l in fid.read().splitlines() if l]
names_there = [ci for ci in bad_names if ci in names]
count_diff = len(bad_names) - len(names_there)
if count_diff > 0:
if not force:
raise ValueError('Bad channels from:\n%s\n not found '
'in:\n%s' % (bad_file,
self._filenames[0]))
else:
warnings.warn('%d bad channels from:\n%s\nnot found '
'in:\n%s' % (count_diff, bad_file,
self._filenames[0]))
self.info['bads'] = names_there
else:
self.info['bads'] = []
def append(self, raws, preload=None):
"""Concatenate raw instances as if they were continuous
Parameters
----------
raws : list, or Raw instance
list of Raw instances to concatenate to the current instance
(in order), or a single raw instance to concatenate.
preload : bool, str, or None (default None)
Preload data into memory for data manipulation and faster indexing.
If True, the data will be preloaded into memory (fast, requires
large amount of memory). If preload is a string, preload is the
file name of a memory-mapped file which is used to store the data
on the hard drive (slower, requires less memory). If preload is
None, preload=True or False is inferred using the preload status
of the raw files passed in.
"""
if not isinstance(raws, list):
raws = [raws]
# make sure the raws are compatible
all_raws = [self]
all_raws += raws
_check_raw_compatibility(all_raws)
# deal with preloading data first (while files are separate)
all_preloaded = self.preload and all(r.preload for r in raws)
if preload is None:
if all_preloaded:
preload = True
else:
preload = False
if preload is False:
if self.preload:
self._data = None
self._times = None
self.preload = False
else:
# do the concatenation ourselves since preload might be a string
nchan = self.info['nchan']
c_ns = np.cumsum([rr.n_times for rr in ([self] + raws)])
nsamp = c_ns[-1]
if not self.preload:
this_data = self._read_segment()[0]
else:
this_data = self._data
# allocate the buffer
if isinstance(preload, string_types):
_data = np.memmap(preload, mode='w+', dtype=this_data.dtype,
shape=(nchan, nsamp))
else:
_data = np.empty((nchan, nsamp), dtype=this_data.dtype)
_data[:, 0:c_ns[0]] = this_data
for ri in range(len(raws)):
if not raws[ri].preload:
# read the data directly into the buffer
data_buffer = _data[:, c_ns[ri]:c_ns[ri + 1]]
raws[ri]._read_segment(data_buffer=data_buffer)
else:
_data[:, c_ns[ri]:c_ns[ri + 1]] = raws[ri]._data
self._data = _data
self.preload = True
# now combine information from each raw file to construct new self
for r in raws:
self._first_samps = np.r_[self._first_samps, r._first_samps]
self._last_samps = np.r_[self._last_samps, r._last_samps]
self._raw_lengths = np.r_[self._raw_lengths, r._raw_lengths]
self.rawdirs += r.rawdirs
self._filenames += r._filenames
self.last_samp = self.first_samp + sum(self._raw_lengths) - 1
# this has to be done after first and last sample are set appropriately
if self.preload:
self._times = np.arange(self.n_times) / self.info['sfreq']
def close(self):
"""Clean up the object.
Does nothing for now.
"""
pass
def copy(self):
""" Return copy of Raw instance
"""
return deepcopy(self)
def as_data_frame(self, picks=None, start=None, stop=None, scale_time=1e3,
scalings=None, use_time_index=True, copy=True):
"""Get the epochs as Pandas DataFrame
Export raw data in tabular structure with MEG channels.
Caveat! To save memory, depending on selected data size consider
setting copy to False.
Parameters
----------
picks : array-like of int | None
If None only MEG and EEG channels are kept
otherwise the channels indices in picks are kept.
start : int | None
Data-extraction start index. If None, data will be exported from
the first sample.
stop : int | None
Data-extraction stop index. If None, data will be exported to the
last index.
scale_time : float
Scaling to be applied to time units.
scalings : dict | None
Scaling to be applied to the channels picked. If None, defaults to
``scalings=dict(eeg=1e6, grad=1e13, mag=1e15, misc=1.0)`.
use_time_index : bool
If False, times will be included as in the data table, else it will
be used as index object.
copy : bool
If true, data will be copied. Else data may be modified in place.
Returns
-------
df : instance of pandas.core.DataFrame
Raw data exported into tabular data structure.
"""
pd = _check_pandas_installed()
if picks is None:
picks = list(range(self.info['nchan']))
data, times = self[picks, start:stop]
if copy:
data = data.copy()
types = [channel_type(self.info, idx) for idx in picks]
n_channel_types = 0
ch_types_used = []
scalings = _mutable_defaults(('scalings', scalings))[0]
for t in scalings.keys():
if t in types:
n_channel_types += 1
ch_types_used.append(t)
for t in ch_types_used:
scaling = scalings[t]
idx = [picks[i] for i in range(len(picks)) if types[i] == t]
if len(idx) > 0:
data[idx] *= scaling
assert times.shape[0] == data.shape[1]
col_names = [self.ch_names[k] for k in picks]
df = pd.DataFrame(data.T, columns=col_names)
df.insert(0, 'time', times * scale_time)
if use_time_index is True:
if 'time' in df:
df['time'] = df['time'].astype(np.int64)
with warnings.catch_warnings(record=True):
df.set_index('time', inplace=True)
return df
def to_nitime(self, picks=None, start=None, stop=None,
use_first_samp=False, copy=True):
""" Raw data as nitime TimeSeries
Parameters
----------
picks : array-like of int | None
Indices of channels to apply. If None, all channels will be
exported.
start : int | None
Data-extraction start index. If None, data will be exported from
the first sample.
stop : int | None
Data-extraction stop index. If None, data will be exported to the
last index.
use_first_samp: bool
If True, the time returned is relative to the session onset, else
relative to the recording onset.
copy : bool
Whether to copy the raw data or not.
Returns
-------
raw_ts : instance of nitime.TimeSeries
"""
try:
from nitime import TimeSeries # to avoid strong dependency
except ImportError:
raise Exception('the nitime package is missing')
data, _ = self[picks, start:stop]
if copy:
data = data.copy()
start_time = self.index_as_time(start if start else 0, use_first_samp)
raw_ts = TimeSeries(data, sampling_rate=self.info['sfreq'],
t0=start_time)
raw_ts.ch_names = [self.ch_names[k] for k in picks]
return raw_ts
def __repr__(self):
s = "n_channels x n_times : %s x %s" % (len(self.info['ch_names']),
self.n_times)
return "<Raw | %s>" % s
def add_events(self, events, stim_channel=None):
"""Add events to stim channel
Parameters
----------
events : ndarray, shape (n_events, 3)
Events to add. The first column specifies the sample number of
each event, the second column is ignored, and the third column
provides the event value. If events already exist in the Raw
instance at the given sample numbers, the event values will be
added together.
stim_channel : str | None
Name of the stim channel to add to. If None, the config variable
'MNE_STIM_CHANNEL' is used. If this is not found, it will default
to 'STI 014'.
Notes
-----
Data must be preloaded in order to add events.
"""
if not self.preload:
raise RuntimeError('cannot add events unless data are preloaded')
events = np.asarray(events)
if events.ndim != 2 or events.shape[1] != 3:
raise ValueError('events must be shape (n_events, 3)')
stim_channel = _get_stim_channel(stim_channel)
pick = pick_channels(self.ch_names, stim_channel)
if len(pick) == 0:
raise ValueError('Channel %s not found' % stim_channel)
pick = pick[0]
idx = events[:, 0].astype(int)
if np.any(idx < self.first_samp) or np.any(idx > self.last_samp):
raise ValueError('event sample numbers must be between %s and %s'
% (self.first_samp, self.last_samp))
if not all(idx == events[:, 0]):
raise ValueError('event sample numbers must be integers')
self._data[pick, idx - self.first_samp] += events[:, 2]
def set_eeg_reference(raw, ref_channels, copy=True):
"""Rereference eeg channels to new reference channel(s).
If multiple reference channels are specified, they will be averaged.
Parameters
----------
raw : instance of Raw
Instance of Raw with eeg channels and reference channel(s).
ref_channels : list of str
The name(s) of the reference channel(s).
copy : bool
Specifies whether instance of Raw will be copied or modified in place.
Returns
-------
raw : instance of Raw
Instance of Raw with eeg channels rereferenced.
ref_data : array
Array of reference data subtracted from eeg channels.
"""
# Check to see that raw data is preloaded
if not raw.preload:
raise RuntimeError('Raw data needs to be preloaded. Use '
'preload=True (or string) in the constructor.')
# Make sure that reference channels are loaded as list of string
if not isinstance(ref_channels, list):
raise IOError('Reference channel(s) must be a list of string. '
'If using a single reference channel, enter as '
'a list with one element.')
# Find the indices to the reference electrodes
ref_idx = [raw.ch_names.index(c) for c in ref_channels]
# Get the reference array
ref_data = raw._data[ref_idx].mean(0)
# Get the indices to the eeg channels using the pick_types function
eeg_idx = pick_types(raw.info, exclude="bads", eeg=True, meg=False,
ref_meg=False)
# Copy raw data or modify raw data in place
if copy: # copy data
raw = raw.copy()
# Rereference the eeg channels
raw._data[eeg_idx] -= ref_data
# Return rereferenced data and reference array
return raw, ref_data
def _allocate_data(data, data_buffer, data_shape, dtype):
if data is None:
# if not already done, allocate array with right type
if isinstance(data_buffer, string_types):
# use a memmap
data = np.memmap(data_buffer, mode='w+',
dtype=dtype, shape=data_shape)
else:
data = np.zeros(data_shape, dtype=dtype)
return data
def _time_as_index(times, sfreq, first_samp=0, use_first_samp=False):
"""Convert time to indices
Parameters
----------
times : list-like | float | int
List of numbers or a number representing points in time.
use_first_samp : boolean
If True, time is treated as relative to the session onset, else
as relative to the recording onset.
Returns
-------
index : ndarray
Indices corresponding to the times supplied.
"""
index = np.atleast_1d(times) * sfreq
index -= (first_samp if use_first_samp else 0)
return index.astype(int)
def _index_as_time(index, sfreq, first_samp=0, use_first_samp=False):
"""Convert indices to time
Parameters
----------
index : list-like | int
List of ints or int representing points in time.
use_first_samp : boolean
If True, the time returned is relative to the session onset, else
relative to the recording onset.
Returns
-------
times : ndarray
Times corresponding to the index supplied.
"""
times = np.atleast_1d(index) + (first_samp if use_first_samp else 0)
return times / sfreq
class _RawShell():
"""Used for creating a temporary raw object"""
def __init__(self):
self.first_samp = None
self.last_samp = None
self.cals = None
self.rawdir = None
self._projector = None
@property
def n_times(self):
return self.last_samp - self.first_samp + 1
###############################################################################
# Writing
def _write_raw(fname, raw, info, picks, format, data_type, reset_range, start,
stop, buffer_size, projector, inv_comp, drop_small_buffer,
split_size, part_idx, prev_fname):
"""Write raw file with splitting
"""
if part_idx > 0:
# insert index in filename
path, base = op.split(fname)
idx = base.find('.')
use_fname = op.join(path, '%s-%d.%s' % (base[:idx], part_idx,
base[idx + 1:]))
else:
use_fname = fname
logger.info('Writing %s' % use_fname)
meas_id = info['meas_id']
fid, cals = _start_writing_raw(use_fname, info, picks, data_type,
reset_range)
first_samp = raw.first_samp + start
if first_samp != 0:
write_int(fid, FIFF.FIFF_FIRST_SAMPLE, first_samp)
# previous file name and id
if part_idx > 0 and prev_fname is not None:
start_block(fid, FIFF.FIFFB_REF)
write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_PREV_FILE)
write_string(fid, FIFF.FIFF_REF_FILE_NAME, prev_fname)
if meas_id is not None:
write_id(fid, FIFF.FIFF_REF_FILE_ID, meas_id)
write_int(fid, FIFF.FIFF_REF_FILE_NUM, part_idx - 1)
end_block(fid, FIFF.FIFFB_REF)
pos_prev = None
for first in range(start, stop, buffer_size):
last = first + buffer_size
if last >= stop:
last = stop + 1
if picks is None:
data, times = raw[:, first:last]
else:
data, times = raw[picks, first:last]
if projector is not None:
data = np.dot(projector, data)
if ((drop_small_buffer and (first > start)
and (len(times) < buffer_size))):
logger.info('Skipping data chunk due to small buffer ... '
'[done]')
break
logger.info('Writing ...')
if pos_prev is None:
pos_prev = fid.tell()
_write_raw_buffer(fid, data, cals, format, inv_comp)
pos = fid.tell()
this_buff_size_bytes = pos - pos_prev
if this_buff_size_bytes > split_size / 2:
raise ValueError('buffer size is too large for the given split'
'size: decrease "buffer_size_sec" or increase'
'"split_size".')
if pos > split_size:
raise logger.warning('file is larger than "split_size"')
# Split files if necessary, leave some space for next file info
if pos >= split_size - this_buff_size_bytes - 2 ** 20:
next_fname, next_idx = _write_raw(fname, raw, info, picks, format,
data_type, reset_range, first + buffer_size, stop, buffer_size,
projector, inv_comp, drop_small_buffer, split_size,
part_idx + 1, use_fname)
start_block(fid, FIFF.FIFFB_REF)
write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_NEXT_FILE)
write_string(fid, FIFF.FIFF_REF_FILE_NAME, op.basename(next_fname))
if meas_id is not None:
write_id(fid, FIFF.FIFF_REF_FILE_ID, meas_id)
write_int(fid, FIFF.FIFF_REF_FILE_NUM, next_idx)
end_block(fid, FIFF.FIFFB_REF)
break
pos_prev = pos
logger.info('Closing %s [done]' % use_fname)
_finish_writing_raw(fid)
return use_fname, part_idx
def _start_writing_raw(name, info, sel=None, data_type=FIFF.FIFFT_FLOAT,
reset_range=True):
"""Start write raw data in file
Data will be written in float
Parameters
----------
name : string
Name of the file to create.
info : dict
Measurement info.
sel : array of int, optional
Indices of channels to include. By default all channels are included.
data_type : int
The data_type in case it is necessary. Should be 4 (FIFFT_FLOAT),
5 (FIFFT_DOUBLE), 16 (FIFFT_DAU_PACK16), or 3 (FIFFT_INT) for raw data.
reset_range : bool
If True, the info['chs'][k]['range'] parameter will be set to unity.
Returns
-------
fid : file
The file descriptor.
cals : list
calibration factors.
"""
#
# Create the file and save the essentials
#
fid = start_file(name)
start_block(fid, FIFF.FIFFB_MEAS)
write_id(fid, FIFF.FIFF_BLOCK_ID)
if info['meas_id'] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info['meas_id'])
#
# Measurement info
#
info = copy.deepcopy(info)
if sel is not None:
info['chs'] = [info['chs'][k] for k in sel]
info['nchan'] = len(sel)
ch_names = [c['ch_name'] for c in info['chs']] # name of good channels
comps = copy.deepcopy(info['comps'])
for c in comps:
row_idx = [k for k, n in enumerate(c['data']['row_names'])
if n in ch_names]
row_names = [c['data']['row_names'][i] for i in row_idx]
rowcals = c['rowcals'][row_idx]
c['rowcals'] = rowcals
c['data']['nrow'] = len(row_names)
c['data']['row_names'] = row_names
c['data']['data'] = c['data']['data'][row_idx]
info['comps'] = comps
cals = []
for k in range(info['nchan']):
#
# Scan numbers may have been messed up
#
info['chs'][k]['scanno'] = k + 1 # scanno starts at 1 in FIF format
if reset_range is True:
info['chs'][k]['range'] = 1.0
cals.append(info['chs'][k]['cal'] * info['chs'][k]['range'])
write_meas_info(fid, info, data_type=data_type, reset_range=reset_range)
#
# Start the raw data
#
start_block(fid, FIFF.FIFFB_RAW_DATA)
return fid, cals
def _write_raw_buffer(fid, buf, cals, format, inv_comp):
"""Write raw buffer
Parameters
----------
fid : file descriptor
an open raw data file.
buf : array
The buffer to write.
cals : array
Calibration factors.
format : str
'short', 'int', 'single', or 'double' for 16/32 bit int or 32/64 bit
float for each item. This will be doubled for complex datatypes. Note
that short and int formats cannot be used for complex data.
inv_comp : array | None
The CTF compensation matrix used to revert compensation
change when reading.
"""
if buf.shape[0] != len(cals):
raise ValueError('buffer and calibration sizes do not match')
if not format in ['short', 'int', 'single', 'double']:
raise ValueError('format must be "short", "single", or "double"')
if np.isrealobj(buf):
if format == 'short':
write_function = write_dau_pack16
elif format == 'int':
write_function = write_int
elif format == 'single':
write_function = write_float
else:
write_function = write_double
else:
if format == 'single':
write_function = write_complex64
elif format == 'double':
write_function = write_complex128
else:
raise ValueError('only "single" and "double" supported for '
'writing complex data')
if inv_comp is not None:
buf = np.dot(inv_comp / np.ravel(cals)[:, None], buf)
else:
buf = buf / np.ravel(cals)[:, None]
write_function(fid, FIFF.FIFF_DATA_BUFFER, buf)
def _finish_writing_raw(fid):
"""Finish writing raw FIF file
Parameters
----------
fid : file descriptor
an open raw data file.
"""
end_block(fid, FIFF.FIFFB_RAW_DATA)
end_block(fid, FIFF.FIFFB_MEAS)
end_file(fid)
def _envelope(x):
""" Compute envelope signal """
return np.abs(hilbert(x))
def _check_raw_compatibility(raw):
"""Check to make sure all instances of Raw
in the input list raw have compatible parameters"""
for ri in range(1, len(raw)):
if not raw[ri].info['nchan'] == raw[0].info['nchan']:
raise ValueError('raw[%d][\'info\'][\'nchan\'] must match' % ri)
if not raw[ri].info['bads'] == raw[0].info['bads']:
raise ValueError('raw[%d][\'info\'][\'bads\'] must match' % ri)
if not raw[ri].info['sfreq'] == raw[0].info['sfreq']:
raise ValueError('raw[%d][\'info\'][\'sfreq\'] must match' % ri)
if not set(raw[ri].info['ch_names']) == set(raw[0].info['ch_names']):
raise ValueError('raw[%d][\'info\'][\'ch_names\'] must match' % ri)
if not all(raw[ri].cals == raw[0].cals):
raise ValueError('raw[%d].cals must match' % ri)
if len(raw[0].info['projs']) != len(raw[ri].info['projs']):
raise ValueError('SSP projectors in raw files must be the same')
if not all(proj_equal(p1, p2) for p1, p2 in
zip(raw[0].info['projs'], raw[ri].info['projs'])):
raise ValueError('SSP projectors in raw files must be the same')
if not all([r.orig_format == raw[0].orig_format for r in raw]):
warnings.warn('raw files do not all have the same data format, '
'could result in precision mismatch. Setting '
'raw.orig_format="unknown"')
raw[0].orig_format = 'unknown'
def concatenate_raws(raws, preload=None, events_list=None):
"""Concatenate raw instances as if they were continuous. Note that raws[0]
is modified in-place to achieve the concatenation.
Parameters
----------
raws : list
list of Raw instances to concatenate (in order).
preload : bool, or None
If None, preload status is inferred using the preload status of the
raw files passed in. True or False sets the resulting raw file to
have or not have data preloaded.
events_list : None | list
The events to concatenate. Defaults to None.
Returns
-------
raw : instance of Raw
The result of the concatenation (first Raw instance passed in).
events : ndarray of int, shape (n events, 3)
The events. Only returned if `event_list` is not None.
"""
if events_list is not None:
if len(events_list) != len(raws):
raise ValueError('`raws` and `event_list` are required '
'to be of the same length')
first, last = zip(*[(r.first_samp, r.last_samp) for r in raws])
events = concatenate_events(events_list, first, last)
raws[0].append(raws[1:], preload)
if events_list is None:
return raws[0]
else:
return raws[0], events
def get_chpi_positions(raw, t_step=None):
"""Extract head positions
Note that the raw instance must have CHPI channels recorded.
Parameters
----------
raw : instance of Raw | str
Raw instance to extract the head positions from. Can also be a
path to a Maxfilter log file (str).
t_step : float | None
Sampling interval to use when converting data. If None, it will
be automatically determined. By default, a sampling interval of
1 second is used if processing a raw data. If processing a
Maxfilter log file, this must be None because the log file
itself will determine the sampling interval.
Returns
-------
translation : array
A 2-dimensional array of head position vectors (n_time x 3).
rotation : array
A 3-dimensional array of rotation matrices (n_time x 3 x 3).
t : array
The time points associated with each position (n_time).
Notes
-----
The digitized HPI head frame y is related to the frame position X as:
Y = np.dot(rotation, X) + translation
Note that if a Maxfilter log file is being processed, the start time
may not use the same reference point as the rest of mne-python (i.e.,
it could be referenced relative to raw.first_samp or something else).
"""
if isinstance(raw, _BaseRaw):
# for simplicity, we'll sample at 1 sec intervals like maxfilter
if t_step is None:
t_step = 1.0
if not np.isscalar(t_step):
raise TypeError('t_step must be a scalar or None')
picks = pick_types(raw.info, meg=False, ref_meg=False,
chpi=True, exclude=[])
if len(picks) == 0:
raise RuntimeError('raw file has no CHPI channels')
time_idx = raw.time_as_index(np.arange(0, raw.n_times
/ raw.info['sfreq'], t_step))
data = [raw[picks, ti] for ti in time_idx]
t = np.array([d[1] for d in data])
data = np.array([d[0][:, 0] for d in data])
data = np.c_[t, data]
else:
if not isinstance(raw, string_types):
raise TypeError('raw must be an instance of Raw or string')
if not op.isfile(raw):
raise IOError('File "%s" does not exist' % raw)
if t_step is not None:
raise ValueError('t_step must be None if processing a log')
data = np.loadtxt(raw, skiprows=1) # first line is header, skip it
t = data[:, 0]
translation = data[:, 4:7].copy()
rotation = _quart_to_rot(data[:, 1:4])
return translation, rotation, t
def _quart_to_rot(q):
"""Helper to convert quarternions to rotations"""
q0 = np.sqrt(1 - np.sum(q[:, 0:3] ** 2, 1))
q1 = q[:, 0]
q2 = q[:, 1]
q3 = q[:, 2]
rotation = np.array((np.c_[(q0 ** 2 + q1 ** 2 - q2 ** 2 - q3 ** 2,
2 * (q1 * q2 - q0 * q3),
2 * (q1 * q3 + q0 * q2))],
np.c_[(2 * (q1 * q2 + q0 * q3),
q0 ** 2 + q2 ** 2 - q1 ** 2 - q3 ** 2,
2 * (q2 * q3 - q0 * q1))],
np.c_[(2 * (q1 * q3 - q0 * q2),
2 * (q2 * q3 + q0 * q1),
q0 ** 2 + q3 ** 2 - q1 ** 2 - q2 ** 2)]
))
rotation = np.swapaxes(rotation, 0, 1).copy()
return rotation
|