File: egi.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (322 lines) | stat: -rw-r--r-- 12,658 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# Authors: Denis A. Engemann  <denis.engemann@gmail.com>
#          simplified BSD-3 license

import datetime
import os
import time
import warnings

import numpy as np

from ..base import _BaseRaw
from ..meas_info import Info
from ..constants import FIFF
from ...utils import verbose, logger

_other_fields = [
    'lowpass', 'buffer_size_sec', 'dev_ctf_t',
    'meas_id', 'subject_info',
    'dev_head_t', 'line_freq', 'acq_stim', 'proj_id', 'description',
    'highpass', 'experimenter', 'file_id', 'proj_name',
    'dig', 'ctf_head_t', 'orig_blocks', 'acq_pars'
]


def _read_header(fid):
    """Read EGI binary header"""

    version = np.fromfile(fid, np.int32, 1)[0]

    if version > 6 & ~np.bitwise_and(version, 6):
        version = version.byteswap().astype(np.uint32)
    else:
        ValueError('Watchout. This does not seem to be a simple '
                   'binary EGI file.')
    my_fread = lambda *x, **y: np.fromfile(*x, **y)[0]
    info = dict(
        version=version,
        year=my_fread(fid, '>i2', 1),
        month=my_fread(fid, '>i2', 1),
        day=my_fread(fid, '>i2', 1),
        hour=my_fread(fid, '>i2', 1),
        minute=my_fread(fid, '>i2', 1),
        second=my_fread(fid, '>i2', 1),
        millisecond=my_fread(fid, '>i4', 1),
        samp_rate=my_fread(fid, '>i2', 1),
        n_channels=my_fread(fid, '>i2', 1),
        gain=my_fread(fid, '>i2', 1),
        bits=my_fread(fid, '>i2', 1),
        value_range=my_fread(fid, '>i2', 1)
    )

    unsegmented = 1 if np.bitwise_and(version, 1) == 0 else 0
    precision = np.bitwise_and(version, 6)
    if precision == 0:
        RuntimeError('Floating point precision is undefined.')

    if unsegmented:
        info.update(dict(n_categories=0,
                         n_segments=1,
                         n_samples=np.fromfile(fid, '>i4', 1)[0],
                         n_events=np.fromfile(fid, '>i2', 1)[0],
                         event_codes=[],
                         category_names=[],
                         category_lengths=[],
                         pre_baseline=0))
        for event in range(info['n_events']):
            event_codes = ''.join(np.fromfile(fid, 'S1', 4).astype('U1'))
            info['event_codes'].append(event_codes)
        info['event_codes'] = np.array(info['event_codes'])
    else:
        raise NotImplementedError('Only continous files are supported')

    info.update(dict(precision=precision, unsegmented=unsegmented))

    return info


def _read_events(fid, info):
    """Read events"""
    unpack = [info[k] for k in ['n_events', 'n_segments', 'n_channels']]
    n_events, n_segments, n_channels = unpack
    n_samples = 1 if info['unsegmented'] else info['n_samples']
    events = np.zeros([n_events, n_segments * info['n_samples']])
    dtype, bytesize = {2: ('>i2', 2), 4: ('>f4', 4),
                       6: ('>f8', 8)}[info['precision']]

    info.update({'dtype': dtype, 'bytesize': bytesize})
    beg_dat = fid.tell()

    for ii in range(info['n_events']):
        fid.seek(beg_dat + (int(n_channels) + ii) * bytesize, 0)
        events[ii] = np.fromfile(fid, dtype, n_samples)
        fid.seek(int((n_channels + n_events) * bytesize), 1)
    return events


def _read_data(fid, info):
    """Aux function"""
    if not info['unsegmented']:
        raise NotImplementedError('Only continous files are supported')

    fid.seek(36 + info['n_events'] * 4, 0)  # skip header
    readsize = (info['n_channels'] + info['n_events']) * info['n_samples']
    final_shape = (info['n_samples'], info['n_channels'] + info['n_events'])
    data = np.fromfile(fid, info['dtype'], readsize).reshape(final_shape).T
    return data


def _combine_triggers(data, remapping=None):
    """Combine binary triggers"""
    new_trigger = np.zeros(data[0].shape)
    first = np.nonzero(data[0])[0]
    for d in data[1:]:
        if np.intersect1d(d.nonzero()[0], first).any():
            raise RuntimeError('Events must be mutually exclusive')

    if remapping is None:
        remapping = np.arange(data) + 1

    for d, event_id in zip(data, remapping):
        idx = d.nonzero()
        if np.any(idx):
            new_trigger[idx] += event_id

    return new_trigger[None]


@verbose
def read_raw_egi(input_fname, include=None, exclude=None, verbose=None):
    """Read EGI simple binary as raw object

    Note. The trigger channel names are based on the
    arbitrary user dependent event codes used. However this
    function will attempt to generate a synthetic trigger channel
    named ``STI 014`` in accordance with the general Neuromag / MNE
    naming pattern.
    The event_id assignment equals np.arange(n_events - n_excluded) + 1.
    The resulting `event_id` mapping is stored as attribute to
    the resulting raw object but will be ignored when saving to a fiff.
    Note. The trigger channel is artificially constructed based on
    timestamps received by the Netstation. As a consequence, triggers
    have only short durations.
    This step will fail if events are not mutually exclusive.

    Parameters
    ----------
    input_fname : str
        Path to the raw file.
    include : None | list
       The event channels to be ignored when creating the synthetic
       trigger. Defaults to None.
       Note. Overrides `exclude` parameter.
    exclude : None | list
       The event channels to be ignored when creating the synthetic
       trigger. Defaults to None. If None, channels that have more than
       one event and the ``sync`` and ``TREV`` channels will be
       ignored.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    raw : instance of mne.io.Raw
        A raw object containing EGI data.
    """
    return _RawEGI(input_fname, include, exclude, verbose)


class _RawEGI(_BaseRaw):
    """Raw object from EGI simple binary file
    """
    @verbose
    def __init__(self, input_fname, include=None, exclude=None,
                 verbose=None):
        """docstring for __init__"""
        with open(input_fname, 'rb') as fid:  # 'rb' important for py3k
            logger.info('Reading EGI header from %s...' % input_fname)
            egi_info = _read_header(fid)
            logger.info('    Reading events ...')
            _ = _read_events(fid, egi_info)  # update info + jump
            logger.info('    Reading data ...')
            # reads events as well
            data = _read_data(fid, egi_info).astype(np.float64)
            if egi_info['value_range'] and egi_info['bits']:
                mv = egi_info['value_range'] / 2 ** egi_info['bits']
            else:
                mv = 1e-6
            data[:egi_info['n_channels']] = data[:egi_info['n_channels']] * mv

        logger.info('    Assembling measurement info ...')

        event_codes = list(egi_info['event_codes'])
        egi_events = data[-egi_info['n_events']:]

        if include is None:
            exclude_list = ['sync', 'TREV'] if exclude is None else exclude
            exclude_inds = [i for i, k in enumerate(event_codes) if k in
                            exclude_list]
            more_excludes = []
            if exclude is None:
                for ii, event in enumerate(egi_events):
                    if event.sum() <= 1 and event_codes[ii]:
                        more_excludes.append(ii)
            if len(exclude_inds) + len(more_excludes) == len(event_codes):
                warnings.warn('Did not find any event code with more '
                              'than one event.', RuntimeWarning)
            else:
                exclude_inds.extend(more_excludes)

            exclude_inds.sort()
            include_ = [i for i in np.arange(egi_info['n_events']) if
                        i not in exclude_inds]
            include_names = [k for i, k in enumerate(event_codes)
                             if i in include_]
        else:
            include_ = [i for i, k in enumerate(event_codes) if k in include]
            include_names = include

        for kk, v in [('include', include_names), ('exclude', exclude)]:
            if isinstance(v, list):
                for k in v:
                    if k not in event_codes:
                        raise ValueError('Could find event named "%s"' % k)
            elif v is not None:
                raise ValueError('`%s` must be None or of type list' % kk)

        event_ids = np.arange(len(include_)) + 1
        try:
            logger.info('    Synthesizing trigger channel "STI 014" ...')
            logger.info('    Excluding events {%s} ...' %
                        ", ".join([k for i, k in enumerate(event_codes)
                                   if i not in include_]))
            new_trigger = _combine_triggers(egi_events[include_],
                                            remapping=event_ids)
            data = np.concatenate([data, new_trigger])
        except RuntimeError:
            logger.info('    Found multiple events at the same time sample. '
                        'Could not create trigger channel.')
            new_trigger = None

        self.event_id = dict(zip([e for e in event_codes if e in
                                  include_names], event_ids))
        self._data = data
        self.verbose = verbose
        self.info = info = Info(dict((k, None) for k in _other_fields))
        info['sfreq'] = egi_info['samp_rate']
        info['filename'] = input_fname
        my_time = datetime.datetime(
            egi_info['year'],
            egi_info['month'],
            egi_info['day'],
            egi_info['hour'],
            egi_info['minute'],
            egi_info['second']
        )
        my_timestamp = time.mktime(my_time.timetuple())
        info['meas_date'] = np.array([my_timestamp], dtype=np.float32)
        info['projs'] = []
        ch_names = ['EEG %03d' % (i + 1) for i in range(egi_info['n_channels'])]
        ch_names.extend(list(egi_info['event_codes']))
        if new_trigger is not None:
            ch_names.append('STI 014')  # our new_trigger
        info['nchan'] = len(data)
        info['chs'] = []
        info['ch_names'] = ch_names
        info['bads'] = []
        info['comps'] = []
        for ii, ch_name in enumerate(ch_names):
            ch_info = {'cal': 1.0,
                       'logno': ii + 1,
                       'scanno': ii + 1,
                       'range': 1.0,
                       'unit_mul': 0,
                       'ch_name': ch_name,
                       'unit': FIFF.FIFF_UNIT_V,
                       'coord_frame': FIFF.FIFFV_COORD_HEAD,
                       'coil_type': FIFF.FIFFV_COIL_EEG,
                       'kind': FIFF.FIFFV_EEG_CH,
                       'eeg_loc': None,
                       'loc': np.array([0, 0, 0, 1] * 3, dtype='f4')}

            if len(ch_name) == 4 or ch_name.startswith('STI'):
                u = {'unit_mul': 0,
                     'coil_type': FIFF.FIFFV_COIL_NONE,
                     'unit': FIFF.FIFF_UNIT_NONE,
                     'kind': FIFF.FIFFV_STIM_CH}
                ch_info.update(u)
            info['chs'].append(ch_info)

        self.preload = True
        self.first_samp, self.last_samp = 0, self._data.shape[1] - 1
        self._times = np.arange(self.first_samp, self.last_samp + 1,
                                dtype=np.float64)
        self._times /= self.info['sfreq']
        logger.info('    Range : %d ... %d =  %9.3f ... %9.3f secs'
                    % (self.first_samp, self.last_samp,
                       float(self.first_samp) / self.info['sfreq'],
                       float(self.last_samp) / self.info['sfreq']))

        # Raw attributes
        self._filenames = list()
        self._projector = None
        self.first_samp = 0
        self.last_samp = egi_info['n_samples'] - 1
        self.comp = None  # no compensation for egi
        self.proj = False
        self._first_samps = np.array([self.first_samp])
        self._last_samps = np.array([self.last_samp])
        self._raw_lengths = np.array([egi_info['n_samples']])
        self.rawdirs = np.array([])
        self.cals = np.ones(self.info['nchan'])
        # use information from egi
        self.orig_format = {'>f4': 'single', '>f4': 'double',
                            '>i2': 'int'}[egi_info['dtype']]
        logger.info('Ready.')

    def __repr__(self):
        n_chan = self.info['nchan']
        data_range = self.last_samp - self.first_samp + 1
        s = ('%r' % os.path.basename(self.info['filename']),
             "n_channels x n_times : %s x %s" % (n_chan, data_range))
        return "<RawEGI  |  %s>" % ', '.join(s)