1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
# Authors: Denis A. Engemann <denis.engemann@gmail.com>
# simplified BSD-3 license
import datetime
import os
import time
import warnings
import numpy as np
from ..base import _BaseRaw
from ..meas_info import Info
from ..constants import FIFF
from ...utils import verbose, logger
_other_fields = [
'lowpass', 'buffer_size_sec', 'dev_ctf_t',
'meas_id', 'subject_info',
'dev_head_t', 'line_freq', 'acq_stim', 'proj_id', 'description',
'highpass', 'experimenter', 'file_id', 'proj_name',
'dig', 'ctf_head_t', 'orig_blocks', 'acq_pars'
]
def _read_header(fid):
"""Read EGI binary header"""
version = np.fromfile(fid, np.int32, 1)[0]
if version > 6 & ~np.bitwise_and(version, 6):
version = version.byteswap().astype(np.uint32)
else:
ValueError('Watchout. This does not seem to be a simple '
'binary EGI file.')
my_fread = lambda *x, **y: np.fromfile(*x, **y)[0]
info = dict(
version=version,
year=my_fread(fid, '>i2', 1),
month=my_fread(fid, '>i2', 1),
day=my_fread(fid, '>i2', 1),
hour=my_fread(fid, '>i2', 1),
minute=my_fread(fid, '>i2', 1),
second=my_fread(fid, '>i2', 1),
millisecond=my_fread(fid, '>i4', 1),
samp_rate=my_fread(fid, '>i2', 1),
n_channels=my_fread(fid, '>i2', 1),
gain=my_fread(fid, '>i2', 1),
bits=my_fread(fid, '>i2', 1),
value_range=my_fread(fid, '>i2', 1)
)
unsegmented = 1 if np.bitwise_and(version, 1) == 0 else 0
precision = np.bitwise_and(version, 6)
if precision == 0:
RuntimeError('Floating point precision is undefined.')
if unsegmented:
info.update(dict(n_categories=0,
n_segments=1,
n_samples=np.fromfile(fid, '>i4', 1)[0],
n_events=np.fromfile(fid, '>i2', 1)[0],
event_codes=[],
category_names=[],
category_lengths=[],
pre_baseline=0))
for event in range(info['n_events']):
event_codes = ''.join(np.fromfile(fid, 'S1', 4).astype('U1'))
info['event_codes'].append(event_codes)
info['event_codes'] = np.array(info['event_codes'])
else:
raise NotImplementedError('Only continous files are supported')
info.update(dict(precision=precision, unsegmented=unsegmented))
return info
def _read_events(fid, info):
"""Read events"""
unpack = [info[k] for k in ['n_events', 'n_segments', 'n_channels']]
n_events, n_segments, n_channels = unpack
n_samples = 1 if info['unsegmented'] else info['n_samples']
events = np.zeros([n_events, n_segments * info['n_samples']])
dtype, bytesize = {2: ('>i2', 2), 4: ('>f4', 4),
6: ('>f8', 8)}[info['precision']]
info.update({'dtype': dtype, 'bytesize': bytesize})
beg_dat = fid.tell()
for ii in range(info['n_events']):
fid.seek(beg_dat + (int(n_channels) + ii) * bytesize, 0)
events[ii] = np.fromfile(fid, dtype, n_samples)
fid.seek(int((n_channels + n_events) * bytesize), 1)
return events
def _read_data(fid, info):
"""Aux function"""
if not info['unsegmented']:
raise NotImplementedError('Only continous files are supported')
fid.seek(36 + info['n_events'] * 4, 0) # skip header
readsize = (info['n_channels'] + info['n_events']) * info['n_samples']
final_shape = (info['n_samples'], info['n_channels'] + info['n_events'])
data = np.fromfile(fid, info['dtype'], readsize).reshape(final_shape).T
return data
def _combine_triggers(data, remapping=None):
"""Combine binary triggers"""
new_trigger = np.zeros(data[0].shape)
first = np.nonzero(data[0])[0]
for d in data[1:]:
if np.intersect1d(d.nonzero()[0], first).any():
raise RuntimeError('Events must be mutually exclusive')
if remapping is None:
remapping = np.arange(data) + 1
for d, event_id in zip(data, remapping):
idx = d.nonzero()
if np.any(idx):
new_trigger[idx] += event_id
return new_trigger[None]
@verbose
def read_raw_egi(input_fname, include=None, exclude=None, verbose=None):
"""Read EGI simple binary as raw object
Note. The trigger channel names are based on the
arbitrary user dependent event codes used. However this
function will attempt to generate a synthetic trigger channel
named ``STI 014`` in accordance with the general Neuromag / MNE
naming pattern.
The event_id assignment equals np.arange(n_events - n_excluded) + 1.
The resulting `event_id` mapping is stored as attribute to
the resulting raw object but will be ignored when saving to a fiff.
Note. The trigger channel is artificially constructed based on
timestamps received by the Netstation. As a consequence, triggers
have only short durations.
This step will fail if events are not mutually exclusive.
Parameters
----------
input_fname : str
Path to the raw file.
include : None | list
The event channels to be ignored when creating the synthetic
trigger. Defaults to None.
Note. Overrides `exclude` parameter.
exclude : None | list
The event channels to be ignored when creating the synthetic
trigger. Defaults to None. If None, channels that have more than
one event and the ``sync`` and ``TREV`` channels will be
ignored.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
raw : instance of mne.io.Raw
A raw object containing EGI data.
"""
return _RawEGI(input_fname, include, exclude, verbose)
class _RawEGI(_BaseRaw):
"""Raw object from EGI simple binary file
"""
@verbose
def __init__(self, input_fname, include=None, exclude=None,
verbose=None):
"""docstring for __init__"""
with open(input_fname, 'rb') as fid: # 'rb' important for py3k
logger.info('Reading EGI header from %s...' % input_fname)
egi_info = _read_header(fid)
logger.info(' Reading events ...')
_ = _read_events(fid, egi_info) # update info + jump
logger.info(' Reading data ...')
# reads events as well
data = _read_data(fid, egi_info).astype(np.float64)
if egi_info['value_range'] and egi_info['bits']:
mv = egi_info['value_range'] / 2 ** egi_info['bits']
else:
mv = 1e-6
data[:egi_info['n_channels']] = data[:egi_info['n_channels']] * mv
logger.info(' Assembling measurement info ...')
event_codes = list(egi_info['event_codes'])
egi_events = data[-egi_info['n_events']:]
if include is None:
exclude_list = ['sync', 'TREV'] if exclude is None else exclude
exclude_inds = [i for i, k in enumerate(event_codes) if k in
exclude_list]
more_excludes = []
if exclude is None:
for ii, event in enumerate(egi_events):
if event.sum() <= 1 and event_codes[ii]:
more_excludes.append(ii)
if len(exclude_inds) + len(more_excludes) == len(event_codes):
warnings.warn('Did not find any event code with more '
'than one event.', RuntimeWarning)
else:
exclude_inds.extend(more_excludes)
exclude_inds.sort()
include_ = [i for i in np.arange(egi_info['n_events']) if
i not in exclude_inds]
include_names = [k for i, k in enumerate(event_codes)
if i in include_]
else:
include_ = [i for i, k in enumerate(event_codes) if k in include]
include_names = include
for kk, v in [('include', include_names), ('exclude', exclude)]:
if isinstance(v, list):
for k in v:
if k not in event_codes:
raise ValueError('Could find event named "%s"' % k)
elif v is not None:
raise ValueError('`%s` must be None or of type list' % kk)
event_ids = np.arange(len(include_)) + 1
try:
logger.info(' Synthesizing trigger channel "STI 014" ...')
logger.info(' Excluding events {%s} ...' %
", ".join([k for i, k in enumerate(event_codes)
if i not in include_]))
new_trigger = _combine_triggers(egi_events[include_],
remapping=event_ids)
data = np.concatenate([data, new_trigger])
except RuntimeError:
logger.info(' Found multiple events at the same time sample. '
'Could not create trigger channel.')
new_trigger = None
self.event_id = dict(zip([e for e in event_codes if e in
include_names], event_ids))
self._data = data
self.verbose = verbose
self.info = info = Info(dict((k, None) for k in _other_fields))
info['sfreq'] = egi_info['samp_rate']
info['filename'] = input_fname
my_time = datetime.datetime(
egi_info['year'],
egi_info['month'],
egi_info['day'],
egi_info['hour'],
egi_info['minute'],
egi_info['second']
)
my_timestamp = time.mktime(my_time.timetuple())
info['meas_date'] = np.array([my_timestamp], dtype=np.float32)
info['projs'] = []
ch_names = ['EEG %03d' % (i + 1) for i in range(egi_info['n_channels'])]
ch_names.extend(list(egi_info['event_codes']))
if new_trigger is not None:
ch_names.append('STI 014') # our new_trigger
info['nchan'] = len(data)
info['chs'] = []
info['ch_names'] = ch_names
info['bads'] = []
info['comps'] = []
for ii, ch_name in enumerate(ch_names):
ch_info = {'cal': 1.0,
'logno': ii + 1,
'scanno': ii + 1,
'range': 1.0,
'unit_mul': 0,
'ch_name': ch_name,
'unit': FIFF.FIFF_UNIT_V,
'coord_frame': FIFF.FIFFV_COORD_HEAD,
'coil_type': FIFF.FIFFV_COIL_EEG,
'kind': FIFF.FIFFV_EEG_CH,
'eeg_loc': None,
'loc': np.array([0, 0, 0, 1] * 3, dtype='f4')}
if len(ch_name) == 4 or ch_name.startswith('STI'):
u = {'unit_mul': 0,
'coil_type': FIFF.FIFFV_COIL_NONE,
'unit': FIFF.FIFF_UNIT_NONE,
'kind': FIFF.FIFFV_STIM_CH}
ch_info.update(u)
info['chs'].append(ch_info)
self.preload = True
self.first_samp, self.last_samp = 0, self._data.shape[1] - 1
self._times = np.arange(self.first_samp, self.last_samp + 1,
dtype=np.float64)
self._times /= self.info['sfreq']
logger.info(' Range : %d ... %d = %9.3f ... %9.3f secs'
% (self.first_samp, self.last_samp,
float(self.first_samp) / self.info['sfreq'],
float(self.last_samp) / self.info['sfreq']))
# Raw attributes
self._filenames = list()
self._projector = None
self.first_samp = 0
self.last_samp = egi_info['n_samples'] - 1
self.comp = None # no compensation for egi
self.proj = False
self._first_samps = np.array([self.first_samp])
self._last_samps = np.array([self.last_samp])
self._raw_lengths = np.array([egi_info['n_samples']])
self.rawdirs = np.array([])
self.cals = np.ones(self.info['nchan'])
# use information from egi
self.orig_format = {'>f4': 'single', '>f4': 'double',
'>i2': 'int'}[egi_info['dtype']]
logger.info('Ready.')
def __repr__(self):
n_chan = self.info['nchan']
data_range = self.last_samp - self.first_samp + 1
s = ('%r' % os.path.basename(self.info['filename']),
"n_channels x n_times : %s x %s" % (n_chan, data_range))
return "<RawEGI | %s>" % ', '.join(s)
|