File: raw.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (598 lines) | stat: -rw-r--r-- 25,902 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)

import copy
import warnings
import os
import os.path as op

import numpy as np

from ..constants import FIFF
from ..open import fiff_open, _fiff_get_fid
from ..meas_info import read_meas_info
from ..tree import dir_tree_find
from ..tag import read_tag
from ..proj import proj_equal
from ..compensator import get_current_comp, set_current_comp, make_compensator
from ..base import _BaseRaw

from ...utils import check_fname, logger, verbose
from ...externals.six import string_types


class RawFIFF(_BaseRaw):
    """Raw data

    Parameters
    ----------
    fnames : list, or string
        A list of the raw files to treat as a Raw instance, or a single
        raw file. For files that have automatically been split, only the
        name of the first file has to be specified. Filenames should end
        with raw.fif, raw.fif.gz, raw_sss.fif, raw_sss.fif.gz,
        raw_tsss.fif or raw_tsss.fif.gz.
    allow_maxshield : bool, (default False)
        allow_maxshield if True, allow loading of data that has been
        processed with Maxshield. Maxshield-processed data should generally
        not be loaded directly, but should be processed using SSS first.
    preload : bool or str (default False)
        Preload data into memory for data manipulation and faster indexing.
        If True, the data will be preloaded into memory (fast, requires
        large amount of memory). If preload is a string, preload is the
        file name of a memory-mapped file which is used to store the data
        on the hard drive (slower, requires less memory).
    proj : bool
        Apply the signal space projection (SSP) operators present in
        the file to the data. Note: Once the projectors have been
        applied, they can no longer be removed. It is usually not
        recommended to apply the projectors at this point as they are
        applied automatically later on (e.g. when computing inverse
        solutions).
    compensation : None | int
        If None the compensation in the data is not modified.
        If set to n, e.g. 3, apply gradient compensation of grade n as
        for CTF systems.
    add_eeg_ref : bool
        If True, add average EEG reference projector (if it's not already
        present).
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Attributes
    ----------
    info : dict
        Measurement info.
    ch_names : list of string
        List of channels' names.
    n_times : int
        Total number of time points in the raw file.
    preload : bool
        Indicates whether raw data are in memory.
    verbose : bool, str, int, or None
        See above.
    """
    @verbose
    def __init__(self, fnames, allow_maxshield=False, preload=False,
                 proj=False, compensation=None, add_eeg_ref=True,
                 verbose=None):

        if not isinstance(fnames, list):
            fnames = [fnames]
        fnames = [op.realpath(f) for f in fnames]
        split_fnames = []

        raws = []
        for ii, fname in enumerate(fnames):
            do_check_fname = fname not in split_fnames
            raw, next_fname = self._read_raw_file(fname, allow_maxshield,
                                                  preload, compensation,
                                                  do_check_fname)
            raws.append(raw)
            if next_fname is not None:
                if not op.exists(next_fname):
                    logger.warning('Split raw file detected but next file %s '
                                   'does not exist.' % next_fname)
                    continue
                if next_fname in fnames:
                    # the user manually specified the split files
                    logger.info('Note: %s is part of a split raw file. It is '
                                'not necessary to manually specify the parts '
                                'in this case; simply construct Raw using '
                                'the name of the first file.' % next_fname)
                    continue

                # process this file next
                fnames.insert(ii + 1, next_fname)
                split_fnames.append(next_fname)

        _check_raw_compatibility(raws)

        # combine information from each raw file to construct self
        self._filenames = [r.filename for r in raws]
        self.first_samp = raws[0].first_samp  # meta first sample
        self._first_samps = np.array([r.first_samp for r in raws])
        self._last_samps = np.array([r.last_samp for r in raws])
        self._raw_lengths = np.array([r.n_times for r in raws])
        self.last_samp = self.first_samp + sum(self._raw_lengths) - 1
        self.cals = raws[0].cals
        self.rawdirs = [r.rawdir for r in raws]
        self.comp = copy.deepcopy(raws[0].comp)
        self._orig_comp_grade = raws[0]._orig_comp_grade
        self.info = copy.deepcopy(raws[0].info)
        self.verbose = verbose
        self.orig_format = raws[0].orig_format
        self.proj = False
        self._add_eeg_ref(add_eeg_ref)

        if preload:
            self._preload_data(preload)
        else:
            self.preload = False

        self._projector = None
        # setup the SSP projector
        self.proj = proj
        if proj:
            self.apply_proj()

    def _preload_data(self, preload):
        """This function actually preloads the data"""
        if isinstance(preload, string_types):
            # we will use a memmap: preload is a filename
            data_buffer = preload
        else:
            data_buffer = None

        self._data, self._times = self._read_segment(data_buffer=data_buffer)
        self.preload = True
        # close files once data are preloaded
        self.close()

    @verbose
    def _read_raw_file(self, fname, allow_maxshield, preload, compensation,
                       do_check_fname=True, verbose=None):
        """Read in header information from a raw file"""
        logger.info('Opening raw data file %s...' % fname)

        if do_check_fname:
            check_fname(fname, 'raw', ('raw.fif', 'raw_sss.fif',
                                       'raw_tsss.fif', 'raw.fif.gz',
                                       'raw_sss.fif.gz', 'raw_tsss.fif.gz'))

        #   Read in the whole file if preload is on and .fif.gz (saves time)
        ext = os.path.splitext(fname)[1].lower()
        whole_file = preload if '.gz' in ext else False
        ff, tree, _ = fiff_open(fname, preload=whole_file)
        with ff as fid:
            #   Read the measurement info
            info, meas = read_meas_info(fid, tree)

            #   Locate the data of interest
            raw_node = dir_tree_find(meas, FIFF.FIFFB_RAW_DATA)
            if len(raw_node) == 0:
                raw_node = dir_tree_find(meas, FIFF.FIFFB_CONTINUOUS_DATA)
                if allow_maxshield:
                    raw_node = dir_tree_find(meas, FIFF.FIFFB_SMSH_RAW_DATA)
                    if len(raw_node) == 0:
                        raise ValueError('No raw data in %s' % fname)
                else:
                    if len(raw_node) == 0:
                        raise ValueError('No raw data in %s' % fname)

            if len(raw_node) == 1:
                raw_node = raw_node[0]

            #   Set up the output structure
            info['filename'] = fname

            #   Process the directory
            directory = raw_node['directory']
            nent = raw_node['nent']
            nchan = int(info['nchan'])
            first = 0
            first_samp = 0
            first_skip = 0

            #   Get first sample tag if it is there
            if directory[first].kind == FIFF.FIFF_FIRST_SAMPLE:
                tag = read_tag(fid, directory[first].pos)
                first_samp = int(tag.data)
                first += 1

            #   Omit initial skip
            if directory[first].kind == FIFF.FIFF_DATA_SKIP:
                # This first skip can be applied only after we know the bufsize
                tag = read_tag(fid, directory[first].pos)
                first_skip = int(tag.data)
                first += 1

            raw = _RawShell()
            raw.filename = fname
            raw.first_samp = first_samp

            #   Go through the remaining tags in the directory
            rawdir = list()
            nskip = 0
            orig_format = None
            for k in range(first, nent):
                ent = directory[k]
                if ent.kind == FIFF.FIFF_DATA_SKIP:
                    tag = read_tag(fid, ent.pos)
                    nskip = int(tag.data)
                elif ent.kind == FIFF.FIFF_DATA_BUFFER:
                    #   Figure out the number of samples in this buffer
                    if ent.type == FIFF.FIFFT_DAU_PACK16:
                        nsamp = ent.size // (2 * nchan)
                    elif ent.type == FIFF.FIFFT_SHORT:
                        nsamp = ent.size // (2 * nchan)
                    elif ent.type == FIFF.FIFFT_FLOAT:
                        nsamp = ent.size // (4 * nchan)
                    elif ent.type == FIFF.FIFFT_DOUBLE:
                        nsamp = ent.size // (8 * nchan)
                    elif ent.type == FIFF.FIFFT_INT:
                        nsamp = ent.size // (4 * nchan)
                    elif ent.type == FIFF.FIFFT_COMPLEX_FLOAT:
                        nsamp = ent.size // (8 * nchan)
                    elif ent.type == FIFF.FIFFT_COMPLEX_DOUBLE:
                        nsamp = ent.size // (16 * nchan)
                    else:
                        raise ValueError('Cannot handle data buffers of type '
                                         '%d' % ent.type)
                    if orig_format is None:
                        if ent.type == FIFF.FIFFT_DAU_PACK16:
                            orig_format = 'short'
                        elif ent.type == FIFF.FIFFT_SHORT:
                            orig_format = 'short'
                        elif ent.type == FIFF.FIFFT_FLOAT:
                            orig_format = 'single'
                        elif ent.type == FIFF.FIFFT_DOUBLE:
                            orig_format = 'double'
                        elif ent.type == FIFF.FIFFT_INT:
                            orig_format = 'int'
                        elif ent.type == FIFF.FIFFT_COMPLEX_FLOAT:
                            orig_format = 'single'
                        elif ent.type == FIFF.FIFFT_COMPLEX_DOUBLE:
                            orig_format = 'double'

                    #  Do we have an initial skip pending?
                    if first_skip > 0:
                        first_samp += nsamp * first_skip
                        raw.first_samp = first_samp
                        first_skip = 0

                    #  Do we have a skip pending?
                    if nskip > 0:
                        rawdir.append(dict(ent=None, first=first_samp,
                                           last=first_samp + nskip * nsamp - 1,
                                           nsamp=nskip * nsamp))
                        first_samp += nskip * nsamp
                        nskip = 0

                    #  Add a data buffer
                    rawdir.append(dict(ent=ent, first=first_samp,
                                       last=first_samp + nsamp - 1,
                                       nsamp=nsamp))
                    first_samp += nsamp

            # Try to get the next filename tag for split files
            nodes_list = dir_tree_find(tree, FIFF.FIFFB_REF)
            next_fname = None
            for nodes in nodes_list:
                next_fname = None
                for ent in nodes['directory']:
                    if ent.kind == FIFF.FIFF_REF_ROLE:
                        tag = read_tag(fid, ent.pos)
                        role = int(tag.data)
                        if role != FIFF.FIFFV_ROLE_NEXT_FILE:
                            next_fname = None
                            break
                    if ent.kind == FIFF.FIFF_REF_FILE_NAME:
                        tag = read_tag(fid, ent.pos)
                        next_fname = op.join(op.dirname(fname), tag.data)
                    if ent.kind == FIFF.FIFF_REF_FILE_NUM:
                        # Some files don't have the name, just the number. So
                        # we construct the name from the current name.
                        if next_fname is not None:
                            continue
                        next_num = read_tag(fid, ent.pos).data
                        path, base = op.split(fname)
                        idx = base.find('.')
                        idx2 = base.rfind('-')
                        if idx2 < 0 and next_num == 1:
                            # this is the first file, which may not be numbered
                            next_fname = op.join(path, '%s-%d.%s' % (base[:idx],
                                next_num, base[idx + 1:]))
                            continue
                        num_str = base[idx2 + 1:idx]
                        if not num_str.isdigit():
                            continue
                        next_fname = op.join(path, '%s-%d.%s' % (base[:idx2],
                                             next_num, base[idx + 1:]))
                if next_fname is not None:
                    break

        raw.last_samp = first_samp - 1
        raw.orig_format = orig_format

        #   Add the calibration factors
        cals = np.zeros(info['nchan'])
        for k in range(info['nchan']):
            cals[k] = info['chs'][k]['range'] * info['chs'][k]['cal']

        raw.cals = cals
        raw.rawdir = rawdir
        raw.comp = None
        raw._orig_comp_grade = None

        #   Set up the CTF compensator
        current_comp = get_current_comp(info)
        if current_comp is not None:
            logger.info('Current compensation grade : %d' % current_comp)

        if compensation is not None:
            raw.comp = make_compensator(info, current_comp, compensation)
            if raw.comp is not None:
                logger.info('Appropriate compensator added to change to '
                            'grade %d.' % (compensation))
                raw._orig_comp_grade = current_comp
                set_current_comp(info, compensation)

        logger.info('    Range : %d ... %d =  %9.3f ... %9.3f secs' % (
                    raw.first_samp, raw.last_samp,
                    float(raw.first_samp) / info['sfreq'],
                    float(raw.last_samp) / info['sfreq']))

        # store the original buffer size
        info['buffer_size_sec'] = (np.median([r['nsamp'] for r in rawdir])
                                   / info['sfreq'])

        raw.info = info
        raw.verbose = verbose

        logger.info('Ready.')

        return raw, next_fname

    def _read_segment(self, start=0, stop=None, sel=None, data_buffer=None,
                      verbose=None, projector=None):
        """Read a chunk of raw data

        Parameters
        ----------
        start : int, (optional)
            first sample to include (first is 0). If omitted, defaults to the
            first sample in data.
        stop : int, (optional)
            First sample to not include.
            If omitted, data is included to the end.
        sel : array, optional
            Indices of channels to select.
        data_buffer : array or str, optional
            numpy array to fill with data read, must have the correct shape.
            If str, a np.memmap with the correct data type will be used
            to store the data.
        verbose : bool, str, int, or None
            If not None, override default verbose level (see mne.verbose).
        projector : array
            SSP operator to apply to the data.

        Returns
        -------
        data : array, [channels x samples]
           the data matrix (channels x samples).
        times : array, [samples]
            returns the time values corresponding to the samples.
        """
        #  Initial checks
        start = int(start)
        stop = self.n_times if stop is None else min([int(stop), self.n_times])

        if start >= stop:
            raise ValueError('No data in this range')

        logger.info('Reading %d ... %d  =  %9.3f ... %9.3f secs...' %
                    (start, stop - 1, start / float(self.info['sfreq']),
                     (stop - 1) / float(self.info['sfreq'])))

        #  Initialize the data and calibration vector
        nchan = self.info['nchan']

        n_sel_channels = nchan if sel is None else len(sel)
        # convert sel to a slice if possible for efficiency
        if sel is not None and len(sel) > 1 and np.all(np.diff(sel) == 1):
            sel = slice(sel[0], sel[-1] + 1)
        idx = slice(None, None, None) if sel is None else sel
        data_shape = (n_sel_channels, stop - start)
        if isinstance(data_buffer, np.ndarray):
            if data_buffer.shape != data_shape:
                raise ValueError('data_buffer has incorrect shape')
            data = data_buffer
        else:
            data = None  # we will allocate it later, once we know the type

        mult = list()
        for ri in range(len(self._raw_lengths)):
            mult.append(np.diag(self.cals.ravel()))
            if self.comp is not None:
                mult[ri] = np.dot(self.comp, mult[ri])
            if projector is not None:
                mult[ri] = np.dot(projector, mult[ri])
            mult[ri] = mult[ri][idx]

        # deal with having multiple files accessed by the raw object
        cumul_lens = np.concatenate(([0], np.array(self._raw_lengths,
                                                   dtype='int')))
        cumul_lens = np.cumsum(cumul_lens)
        files_used = np.logical_and(np.less(start, cumul_lens[1:]),
                                    np.greater_equal(stop - 1,
                                                     cumul_lens[:-1]))

        first_file_used = False
        s_off = 0
        dest = 0
        if isinstance(idx, slice):
            cals = self.cals.ravel()[idx][:, np.newaxis]
        else:
            cals = self.cals.ravel()[:, np.newaxis]

        for fi in np.nonzero(files_used)[0]:
            start_loc = self._first_samps[fi]
            # first iteration (only) could start in the middle somewhere
            if not first_file_used:
                first_file_used = True
                start_loc += start - cumul_lens[fi]
            stop_loc = np.min([stop - 1 - cumul_lens[fi] +
                               self._first_samps[fi], self._last_samps[fi]])
            if start_loc < self._first_samps[fi]:
                raise ValueError('Bad array indexing, could be a bug')
            if stop_loc > self._last_samps[fi]:
                raise ValueError('Bad array indexing, could be a bug')
            if stop_loc < start_loc:
                raise ValueError('Bad array indexing, could be a bug')
            len_loc = stop_loc - start_loc + 1
            fid = _fiff_get_fid(self._filenames[fi])

            for this in self.rawdirs[fi]:

                #  Do we need this buffer
                if this['last'] >= start_loc:
                    #  The picking logic is a bit complicated
                    if stop_loc > this['last'] and start_loc < this['first']:
                        #    We need the whole buffer
                        first_pick = 0
                        last_pick = this['nsamp']
                        logger.debug('W')

                    elif start_loc >= this['first']:
                        first_pick = start_loc - this['first']
                        if stop_loc <= this['last']:
                            #   Something from the middle
                            last_pick = this['nsamp'] + stop_loc - this['last']
                            logger.debug('M')
                        else:
                            #   From the middle to the end
                            last_pick = this['nsamp']
                            logger.debug('E')
                    else:
                        #    From the beginning to the middle
                        first_pick = 0
                        last_pick = stop_loc - this['first'] + 1
                        logger.debug('B')

                    #   Now we are ready to pick
                    picksamp = last_pick - first_pick
                    if picksamp > 0:
                        # only read data if it exists
                        if this['ent'] is not None:
                            one = read_tag(fid, this['ent'].pos,
                                           shape=(this['nsamp'], nchan),
                                           rlims=(first_pick, last_pick)).data
                            if np.isrealobj(one):
                                dtype = np.float
                            else:
                                dtype = np.complex128
                            one.shape = (picksamp, nchan)
                            one = one.T.astype(dtype)
                            # use proj + cal factors in mult
                            if mult is not None:
                                one[idx] = np.dot(mult[fi], one)
                            else:  # apply just the calibration factors
                                # this logic is designed to limit memory copies
                                if isinstance(idx, slice):
                                    # This is a view operation, so it's fast
                                    one[idx] *= cals
                                else:
                                    # Extra operations are actually faster here
                                    # than creating a new array
                                    # (fancy indexing)
                                    one *= cals

                            # if not already done, allocate array with
                            # right type
                            data = _allocate_data(data, data_buffer,
                                                  data_shape, dtype)
                            if isinstance(idx, slice):
                                # faster to slice in data than doing
                                # one = one[idx] sooner
                                data[:, dest:(dest + picksamp)] = one[idx]
                            else:
                                # faster than doing one = one[idx]
                                data_view = data[:, dest:(dest + picksamp)]
                                for ii, ix in enumerate(idx):
                                    data_view[ii] = one[ix]
                        dest += picksamp

                #   Done?
                if this['last'] >= stop_loc:
                    # if not already done, allocate array with float dtype
                    data = _allocate_data(data, data_buffer, data_shape,
                                          np.float)
                    break

            fid.close()  # clean it up
            s_off += len_loc
            # double-check our math
            if not s_off == dest:
                raise ValueError('Incorrect file reading')

        logger.info('[done]')
        times = np.arange(start, stop) / self.info['sfreq']

        return data, times


def _allocate_data(data, data_buffer, data_shape, dtype):
    if data is None:
        # if not already done, allocate array with right type
        if isinstance(data_buffer, string_types):
            # use a memmap
            data = np.memmap(data_buffer, mode='w+',
                             dtype=dtype, shape=data_shape)
        else:
            data = np.zeros(data_shape, dtype=dtype)
    return data


class _RawShell():
    """Used for creating a temporary raw object"""
    def __init__(self):
        self.first_samp = None
        self.last_samp = None
        self.cals = None
        self.rawdir = None
        self._projector = None

    @property
    def n_times(self):
        return self.last_samp - self.first_samp + 1


def _check_raw_compatibility(raw):
    """Check to make sure all instances of Raw
    in the input list raw have compatible parameters"""
    for ri in range(1, len(raw)):
        if not raw[ri].info['nchan'] == raw[0].info['nchan']:
            raise ValueError('raw[%d][\'info\'][\'nchan\'] must match' % ri)
        if not raw[ri].info['bads'] == raw[0].info['bads']:
            raise ValueError('raw[%d][\'info\'][\'bads\'] must match' % ri)
        if not raw[ri].info['sfreq'] == raw[0].info['sfreq']:
            raise ValueError('raw[%d][\'info\'][\'sfreq\'] must match' % ri)
        if not set(raw[ri].info['ch_names']) == set(raw[0].info['ch_names']):
            raise ValueError('raw[%d][\'info\'][\'ch_names\'] must match' % ri)
        if not all(raw[ri].cals == raw[0].cals):
            raise ValueError('raw[%d].cals must match' % ri)
        if len(raw[0].info['projs']) != len(raw[ri].info['projs']):
            raise ValueError('SSP projectors in raw files must be the same')
        if not all(proj_equal(p1, p2) for p1, p2 in
                   zip(raw[0].info['projs'], raw[ri].info['projs'])):
            raise ValueError('SSP projectors in raw files must be the same')
    if not all([r.orig_format == raw[0].orig_format for r in raw]):
        warnings.warn('raw files do not all have the same data format, '
                      'could result in precision mismatch. Setting '
                      'raw.orig_format="unknown"')
        raw[0].orig_format = 'unknown'