1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)
import copy
import warnings
import os
import os.path as op
import numpy as np
from ..constants import FIFF
from ..open import fiff_open, _fiff_get_fid
from ..meas_info import read_meas_info
from ..tree import dir_tree_find
from ..tag import read_tag
from ..proj import proj_equal
from ..compensator import get_current_comp, set_current_comp, make_compensator
from ..base import _BaseRaw
from ...utils import check_fname, logger, verbose
from ...externals.six import string_types
class RawFIFF(_BaseRaw):
"""Raw data
Parameters
----------
fnames : list, or string
A list of the raw files to treat as a Raw instance, or a single
raw file. For files that have automatically been split, only the
name of the first file has to be specified. Filenames should end
with raw.fif, raw.fif.gz, raw_sss.fif, raw_sss.fif.gz,
raw_tsss.fif or raw_tsss.fif.gz.
allow_maxshield : bool, (default False)
allow_maxshield if True, allow loading of data that has been
processed with Maxshield. Maxshield-processed data should generally
not be loaded directly, but should be processed using SSS first.
preload : bool or str (default False)
Preload data into memory for data manipulation and faster indexing.
If True, the data will be preloaded into memory (fast, requires
large amount of memory). If preload is a string, preload is the
file name of a memory-mapped file which is used to store the data
on the hard drive (slower, requires less memory).
proj : bool
Apply the signal space projection (SSP) operators present in
the file to the data. Note: Once the projectors have been
applied, they can no longer be removed. It is usually not
recommended to apply the projectors at this point as they are
applied automatically later on (e.g. when computing inverse
solutions).
compensation : None | int
If None the compensation in the data is not modified.
If set to n, e.g. 3, apply gradient compensation of grade n as
for CTF systems.
add_eeg_ref : bool
If True, add average EEG reference projector (if it's not already
present).
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Attributes
----------
info : dict
Measurement info.
ch_names : list of string
List of channels' names.
n_times : int
Total number of time points in the raw file.
preload : bool
Indicates whether raw data are in memory.
verbose : bool, str, int, or None
See above.
"""
@verbose
def __init__(self, fnames, allow_maxshield=False, preload=False,
proj=False, compensation=None, add_eeg_ref=True,
verbose=None):
if not isinstance(fnames, list):
fnames = [fnames]
fnames = [op.realpath(f) for f in fnames]
split_fnames = []
raws = []
for ii, fname in enumerate(fnames):
do_check_fname = fname not in split_fnames
raw, next_fname = self._read_raw_file(fname, allow_maxshield,
preload, compensation,
do_check_fname)
raws.append(raw)
if next_fname is not None:
if not op.exists(next_fname):
logger.warning('Split raw file detected but next file %s '
'does not exist.' % next_fname)
continue
if next_fname in fnames:
# the user manually specified the split files
logger.info('Note: %s is part of a split raw file. It is '
'not necessary to manually specify the parts '
'in this case; simply construct Raw using '
'the name of the first file.' % next_fname)
continue
# process this file next
fnames.insert(ii + 1, next_fname)
split_fnames.append(next_fname)
_check_raw_compatibility(raws)
# combine information from each raw file to construct self
self._filenames = [r.filename for r in raws]
self.first_samp = raws[0].first_samp # meta first sample
self._first_samps = np.array([r.first_samp for r in raws])
self._last_samps = np.array([r.last_samp for r in raws])
self._raw_lengths = np.array([r.n_times for r in raws])
self.last_samp = self.first_samp + sum(self._raw_lengths) - 1
self.cals = raws[0].cals
self.rawdirs = [r.rawdir for r in raws]
self.comp = copy.deepcopy(raws[0].comp)
self._orig_comp_grade = raws[0]._orig_comp_grade
self.info = copy.deepcopy(raws[0].info)
self.verbose = verbose
self.orig_format = raws[0].orig_format
self.proj = False
self._add_eeg_ref(add_eeg_ref)
if preload:
self._preload_data(preload)
else:
self.preload = False
self._projector = None
# setup the SSP projector
self.proj = proj
if proj:
self.apply_proj()
def _preload_data(self, preload):
"""This function actually preloads the data"""
if isinstance(preload, string_types):
# we will use a memmap: preload is a filename
data_buffer = preload
else:
data_buffer = None
self._data, self._times = self._read_segment(data_buffer=data_buffer)
self.preload = True
# close files once data are preloaded
self.close()
@verbose
def _read_raw_file(self, fname, allow_maxshield, preload, compensation,
do_check_fname=True, verbose=None):
"""Read in header information from a raw file"""
logger.info('Opening raw data file %s...' % fname)
if do_check_fname:
check_fname(fname, 'raw', ('raw.fif', 'raw_sss.fif',
'raw_tsss.fif', 'raw.fif.gz',
'raw_sss.fif.gz', 'raw_tsss.fif.gz'))
# Read in the whole file if preload is on and .fif.gz (saves time)
ext = os.path.splitext(fname)[1].lower()
whole_file = preload if '.gz' in ext else False
ff, tree, _ = fiff_open(fname, preload=whole_file)
with ff as fid:
# Read the measurement info
info, meas = read_meas_info(fid, tree)
# Locate the data of interest
raw_node = dir_tree_find(meas, FIFF.FIFFB_RAW_DATA)
if len(raw_node) == 0:
raw_node = dir_tree_find(meas, FIFF.FIFFB_CONTINUOUS_DATA)
if allow_maxshield:
raw_node = dir_tree_find(meas, FIFF.FIFFB_SMSH_RAW_DATA)
if len(raw_node) == 0:
raise ValueError('No raw data in %s' % fname)
else:
if len(raw_node) == 0:
raise ValueError('No raw data in %s' % fname)
if len(raw_node) == 1:
raw_node = raw_node[0]
# Set up the output structure
info['filename'] = fname
# Process the directory
directory = raw_node['directory']
nent = raw_node['nent']
nchan = int(info['nchan'])
first = 0
first_samp = 0
first_skip = 0
# Get first sample tag if it is there
if directory[first].kind == FIFF.FIFF_FIRST_SAMPLE:
tag = read_tag(fid, directory[first].pos)
first_samp = int(tag.data)
first += 1
# Omit initial skip
if directory[first].kind == FIFF.FIFF_DATA_SKIP:
# This first skip can be applied only after we know the bufsize
tag = read_tag(fid, directory[first].pos)
first_skip = int(tag.data)
first += 1
raw = _RawShell()
raw.filename = fname
raw.first_samp = first_samp
# Go through the remaining tags in the directory
rawdir = list()
nskip = 0
orig_format = None
for k in range(first, nent):
ent = directory[k]
if ent.kind == FIFF.FIFF_DATA_SKIP:
tag = read_tag(fid, ent.pos)
nskip = int(tag.data)
elif ent.kind == FIFF.FIFF_DATA_BUFFER:
# Figure out the number of samples in this buffer
if ent.type == FIFF.FIFFT_DAU_PACK16:
nsamp = ent.size // (2 * nchan)
elif ent.type == FIFF.FIFFT_SHORT:
nsamp = ent.size // (2 * nchan)
elif ent.type == FIFF.FIFFT_FLOAT:
nsamp = ent.size // (4 * nchan)
elif ent.type == FIFF.FIFFT_DOUBLE:
nsamp = ent.size // (8 * nchan)
elif ent.type == FIFF.FIFFT_INT:
nsamp = ent.size // (4 * nchan)
elif ent.type == FIFF.FIFFT_COMPLEX_FLOAT:
nsamp = ent.size // (8 * nchan)
elif ent.type == FIFF.FIFFT_COMPLEX_DOUBLE:
nsamp = ent.size // (16 * nchan)
else:
raise ValueError('Cannot handle data buffers of type '
'%d' % ent.type)
if orig_format is None:
if ent.type == FIFF.FIFFT_DAU_PACK16:
orig_format = 'short'
elif ent.type == FIFF.FIFFT_SHORT:
orig_format = 'short'
elif ent.type == FIFF.FIFFT_FLOAT:
orig_format = 'single'
elif ent.type == FIFF.FIFFT_DOUBLE:
orig_format = 'double'
elif ent.type == FIFF.FIFFT_INT:
orig_format = 'int'
elif ent.type == FIFF.FIFFT_COMPLEX_FLOAT:
orig_format = 'single'
elif ent.type == FIFF.FIFFT_COMPLEX_DOUBLE:
orig_format = 'double'
# Do we have an initial skip pending?
if first_skip > 0:
first_samp += nsamp * first_skip
raw.first_samp = first_samp
first_skip = 0
# Do we have a skip pending?
if nskip > 0:
rawdir.append(dict(ent=None, first=first_samp,
last=first_samp + nskip * nsamp - 1,
nsamp=nskip * nsamp))
first_samp += nskip * nsamp
nskip = 0
# Add a data buffer
rawdir.append(dict(ent=ent, first=first_samp,
last=first_samp + nsamp - 1,
nsamp=nsamp))
first_samp += nsamp
# Try to get the next filename tag for split files
nodes_list = dir_tree_find(tree, FIFF.FIFFB_REF)
next_fname = None
for nodes in nodes_list:
next_fname = None
for ent in nodes['directory']:
if ent.kind == FIFF.FIFF_REF_ROLE:
tag = read_tag(fid, ent.pos)
role = int(tag.data)
if role != FIFF.FIFFV_ROLE_NEXT_FILE:
next_fname = None
break
if ent.kind == FIFF.FIFF_REF_FILE_NAME:
tag = read_tag(fid, ent.pos)
next_fname = op.join(op.dirname(fname), tag.data)
if ent.kind == FIFF.FIFF_REF_FILE_NUM:
# Some files don't have the name, just the number. So
# we construct the name from the current name.
if next_fname is not None:
continue
next_num = read_tag(fid, ent.pos).data
path, base = op.split(fname)
idx = base.find('.')
idx2 = base.rfind('-')
if idx2 < 0 and next_num == 1:
# this is the first file, which may not be numbered
next_fname = op.join(path, '%s-%d.%s' % (base[:idx],
next_num, base[idx + 1:]))
continue
num_str = base[idx2 + 1:idx]
if not num_str.isdigit():
continue
next_fname = op.join(path, '%s-%d.%s' % (base[:idx2],
next_num, base[idx + 1:]))
if next_fname is not None:
break
raw.last_samp = first_samp - 1
raw.orig_format = orig_format
# Add the calibration factors
cals = np.zeros(info['nchan'])
for k in range(info['nchan']):
cals[k] = info['chs'][k]['range'] * info['chs'][k]['cal']
raw.cals = cals
raw.rawdir = rawdir
raw.comp = None
raw._orig_comp_grade = None
# Set up the CTF compensator
current_comp = get_current_comp(info)
if current_comp is not None:
logger.info('Current compensation grade : %d' % current_comp)
if compensation is not None:
raw.comp = make_compensator(info, current_comp, compensation)
if raw.comp is not None:
logger.info('Appropriate compensator added to change to '
'grade %d.' % (compensation))
raw._orig_comp_grade = current_comp
set_current_comp(info, compensation)
logger.info(' Range : %d ... %d = %9.3f ... %9.3f secs' % (
raw.first_samp, raw.last_samp,
float(raw.first_samp) / info['sfreq'],
float(raw.last_samp) / info['sfreq']))
# store the original buffer size
info['buffer_size_sec'] = (np.median([r['nsamp'] for r in rawdir])
/ info['sfreq'])
raw.info = info
raw.verbose = verbose
logger.info('Ready.')
return raw, next_fname
def _read_segment(self, start=0, stop=None, sel=None, data_buffer=None,
verbose=None, projector=None):
"""Read a chunk of raw data
Parameters
----------
start : int, (optional)
first sample to include (first is 0). If omitted, defaults to the
first sample in data.
stop : int, (optional)
First sample to not include.
If omitted, data is included to the end.
sel : array, optional
Indices of channels to select.
data_buffer : array or str, optional
numpy array to fill with data read, must have the correct shape.
If str, a np.memmap with the correct data type will be used
to store the data.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
projector : array
SSP operator to apply to the data.
Returns
-------
data : array, [channels x samples]
the data matrix (channels x samples).
times : array, [samples]
returns the time values corresponding to the samples.
"""
# Initial checks
start = int(start)
stop = self.n_times if stop is None else min([int(stop), self.n_times])
if start >= stop:
raise ValueError('No data in this range')
logger.info('Reading %d ... %d = %9.3f ... %9.3f secs...' %
(start, stop - 1, start / float(self.info['sfreq']),
(stop - 1) / float(self.info['sfreq'])))
# Initialize the data and calibration vector
nchan = self.info['nchan']
n_sel_channels = nchan if sel is None else len(sel)
# convert sel to a slice if possible for efficiency
if sel is not None and len(sel) > 1 and np.all(np.diff(sel) == 1):
sel = slice(sel[0], sel[-1] + 1)
idx = slice(None, None, None) if sel is None else sel
data_shape = (n_sel_channels, stop - start)
if isinstance(data_buffer, np.ndarray):
if data_buffer.shape != data_shape:
raise ValueError('data_buffer has incorrect shape')
data = data_buffer
else:
data = None # we will allocate it later, once we know the type
mult = list()
for ri in range(len(self._raw_lengths)):
mult.append(np.diag(self.cals.ravel()))
if self.comp is not None:
mult[ri] = np.dot(self.comp, mult[ri])
if projector is not None:
mult[ri] = np.dot(projector, mult[ri])
mult[ri] = mult[ri][idx]
# deal with having multiple files accessed by the raw object
cumul_lens = np.concatenate(([0], np.array(self._raw_lengths,
dtype='int')))
cumul_lens = np.cumsum(cumul_lens)
files_used = np.logical_and(np.less(start, cumul_lens[1:]),
np.greater_equal(stop - 1,
cumul_lens[:-1]))
first_file_used = False
s_off = 0
dest = 0
if isinstance(idx, slice):
cals = self.cals.ravel()[idx][:, np.newaxis]
else:
cals = self.cals.ravel()[:, np.newaxis]
for fi in np.nonzero(files_used)[0]:
start_loc = self._first_samps[fi]
# first iteration (only) could start in the middle somewhere
if not first_file_used:
first_file_used = True
start_loc += start - cumul_lens[fi]
stop_loc = np.min([stop - 1 - cumul_lens[fi] +
self._first_samps[fi], self._last_samps[fi]])
if start_loc < self._first_samps[fi]:
raise ValueError('Bad array indexing, could be a bug')
if stop_loc > self._last_samps[fi]:
raise ValueError('Bad array indexing, could be a bug')
if stop_loc < start_loc:
raise ValueError('Bad array indexing, could be a bug')
len_loc = stop_loc - start_loc + 1
fid = _fiff_get_fid(self._filenames[fi])
for this in self.rawdirs[fi]:
# Do we need this buffer
if this['last'] >= start_loc:
# The picking logic is a bit complicated
if stop_loc > this['last'] and start_loc < this['first']:
# We need the whole buffer
first_pick = 0
last_pick = this['nsamp']
logger.debug('W')
elif start_loc >= this['first']:
first_pick = start_loc - this['first']
if stop_loc <= this['last']:
# Something from the middle
last_pick = this['nsamp'] + stop_loc - this['last']
logger.debug('M')
else:
# From the middle to the end
last_pick = this['nsamp']
logger.debug('E')
else:
# From the beginning to the middle
first_pick = 0
last_pick = stop_loc - this['first'] + 1
logger.debug('B')
# Now we are ready to pick
picksamp = last_pick - first_pick
if picksamp > 0:
# only read data if it exists
if this['ent'] is not None:
one = read_tag(fid, this['ent'].pos,
shape=(this['nsamp'], nchan),
rlims=(first_pick, last_pick)).data
if np.isrealobj(one):
dtype = np.float
else:
dtype = np.complex128
one.shape = (picksamp, nchan)
one = one.T.astype(dtype)
# use proj + cal factors in mult
if mult is not None:
one[idx] = np.dot(mult[fi], one)
else: # apply just the calibration factors
# this logic is designed to limit memory copies
if isinstance(idx, slice):
# This is a view operation, so it's fast
one[idx] *= cals
else:
# Extra operations are actually faster here
# than creating a new array
# (fancy indexing)
one *= cals
# if not already done, allocate array with
# right type
data = _allocate_data(data, data_buffer,
data_shape, dtype)
if isinstance(idx, slice):
# faster to slice in data than doing
# one = one[idx] sooner
data[:, dest:(dest + picksamp)] = one[idx]
else:
# faster than doing one = one[idx]
data_view = data[:, dest:(dest + picksamp)]
for ii, ix in enumerate(idx):
data_view[ii] = one[ix]
dest += picksamp
# Done?
if this['last'] >= stop_loc:
# if not already done, allocate array with float dtype
data = _allocate_data(data, data_buffer, data_shape,
np.float)
break
fid.close() # clean it up
s_off += len_loc
# double-check our math
if not s_off == dest:
raise ValueError('Incorrect file reading')
logger.info('[done]')
times = np.arange(start, stop) / self.info['sfreq']
return data, times
def _allocate_data(data, data_buffer, data_shape, dtype):
if data is None:
# if not already done, allocate array with right type
if isinstance(data_buffer, string_types):
# use a memmap
data = np.memmap(data_buffer, mode='w+',
dtype=dtype, shape=data_shape)
else:
data = np.zeros(data_shape, dtype=dtype)
return data
class _RawShell():
"""Used for creating a temporary raw object"""
def __init__(self):
self.first_samp = None
self.last_samp = None
self.cals = None
self.rawdir = None
self._projector = None
@property
def n_times(self):
return self.last_samp - self.first_samp + 1
def _check_raw_compatibility(raw):
"""Check to make sure all instances of Raw
in the input list raw have compatible parameters"""
for ri in range(1, len(raw)):
if not raw[ri].info['nchan'] == raw[0].info['nchan']:
raise ValueError('raw[%d][\'info\'][\'nchan\'] must match' % ri)
if not raw[ri].info['bads'] == raw[0].info['bads']:
raise ValueError('raw[%d][\'info\'][\'bads\'] must match' % ri)
if not raw[ri].info['sfreq'] == raw[0].info['sfreq']:
raise ValueError('raw[%d][\'info\'][\'sfreq\'] must match' % ri)
if not set(raw[ri].info['ch_names']) == set(raw[0].info['ch_names']):
raise ValueError('raw[%d][\'info\'][\'ch_names\'] must match' % ri)
if not all(raw[ri].cals == raw[0].cals):
raise ValueError('raw[%d].cals must match' % ri)
if len(raw[0].info['projs']) != len(raw[ri].info['projs']):
raise ValueError('SSP projectors in raw files must be the same')
if not all(proj_equal(p1, p2) for p1, p2 in
zip(raw[0].info['projs'], raw[ri].info['projs'])):
raise ValueError('SSP projectors in raw files must be the same')
if not all([r.orig_format == raw[0].orig_format for r in raw]):
warnings.warn('raw files do not all have the same data format, '
'could result in precision mismatch. Setting '
'raw.orig_format="unknown"')
raw[0].orig_format = 'unknown'
|