1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
|
from __future__ import print_function
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)
import os
import os.path as op
import glob
from copy import deepcopy
import warnings
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
assert_allclose)
from nose.tools import (assert_true, assert_raises, assert_equal,
assert_not_equal)
from mne import pick_types, pick_channels
from mne.io.constants import FIFF
from mne.io import (Raw, concatenate_raws,
get_chpi_positions, set_eeg_reference)
from mne import concatenate_events, find_events, equalize_channels
from mne.utils import (_TempDir, requires_nitime, requires_pandas,
requires_mne, run_subprocess)
from mne.externals.six.moves import zip
from mne.externals.six.moves import cPickle as pickle
warnings.simplefilter('always') # enable b/c these tests throw warnings
base_dir = op.join(op.dirname(__file__), '..', '..', 'tests', 'data')
fif_fname = op.join(base_dir, 'test_raw.fif')
fif_gz_fname = op.join(base_dir, 'test_raw.fif.gz')
ctf_fname = op.join(base_dir, 'test_ctf_raw.fif')
ctf_comp_fname = op.join(base_dir, 'test_ctf_comp_raw.fif')
fif_bad_marked_fname = op.join(base_dir, 'test_withbads_raw.fif')
bad_file_works = op.join(base_dir, 'test_bads.txt')
bad_file_wrong = op.join(base_dir, 'test_wrong_bads.txt')
hp_fname = op.join(base_dir, 'test_chpi_raw_hp.txt')
hp_fif_fname = op.join(base_dir, 'test_chpi_raw_sss.fif')
tempdir = _TempDir()
def test_hash_raw():
"""Test hashing raw objects
"""
raw = Raw(fif_fname)
assert_raises(RuntimeError, raw.__hash__)
raw = Raw(fif_fname, preload=True).crop(0, 0.5)
raw_2 = Raw(fif_fname, preload=True).crop(0, 0.5)
assert_equal(hash(raw), hash(raw_2))
# do NOT use assert_equal here, failing output is terrible
assert_true(pickle.dumps(raw) == pickle.dumps(raw_2))
raw_2._data[0, 0] -= 1
assert_not_equal(hash(raw), hash(raw_2))
def test_subject_info():
"""Test reading subject information
"""
raw = Raw(fif_fname)
raw.crop(0, 1, False)
assert_true(raw.info['subject_info'] is None)
# fake some subject data
keys = ['id', 'his_id', 'last_name', 'first_name', 'birthday', 'sex',
'hand']
vals = [1, 'foobar', 'bar', 'foo', (1901, 2, 3), 0, 1]
subject_info = dict()
for key, val in zip(keys, vals):
subject_info[key] = val
raw.info['subject_info'] = subject_info
out_fname = op.join(tempdir, 'test_subj_info_raw.fif')
raw.save(out_fname, overwrite=True)
raw_read = Raw(out_fname)
for key in keys:
assert_equal(subject_info[key], raw_read.info['subject_info'][key])
raw_read.anonymize()
assert_true(raw_read.info.get('subject_info') is None)
out_fname_anon = op.join(tempdir, 'test_subj_info_anon_raw.fif')
raw_read.save(out_fname_anon, overwrite=True)
raw_read = Raw(out_fname_anon)
assert_true(raw_read.info.get('subject_info') is None)
def test_get_chpi():
"""Test CHPI position computation
"""
trans0, rot0, _ = get_chpi_positions(hp_fname)
raw = Raw(hp_fif_fname)
out = get_chpi_positions(raw)
trans1, rot1, t1 = out
trans1 = trans1[2:]
rot1 = rot1[2:]
# these will not be exact because they don't use equiv. time points
assert_allclose(trans0, trans1, atol=1e-6, rtol=1e-1)
assert_allclose(rot0, rot1, atol=1e-6, rtol=1e-1)
# run through input checking
assert_raises(TypeError, get_chpi_positions, 1)
assert_raises(ValueError, get_chpi_positions, hp_fname, [1])
def test_copy_append():
"""Test raw copying and appending combinations
"""
raw = Raw(fif_fname, preload=True).copy()
raw_full = Raw(fif_fname)
raw_full.append(raw)
data = raw_full[:, :][0]
assert_true(data.shape[1] == 2 * raw._data.shape[1])
def test_rank_estimation():
"""Test raw rank estimation
"""
raw = Raw(fif_fname)
picks_meg = pick_types(raw.info, meg=True, eeg=False, exclude='bads')
n_meg = len(picks_meg)
picks_eeg = pick_types(raw.info, meg=False, eeg=True, exclude='bads')
n_eeg = len(picks_eeg)
raw = Raw(fif_fname, preload=True)
assert_array_equal(raw.estimate_rank(), n_meg + n_eeg)
assert_array_equal(raw.estimate_rank(picks=picks_eeg), n_eeg)
raw = Raw(fif_fname, preload=False)
raw.apply_proj()
n_proj = len(raw.info['projs'])
assert_array_equal(raw.estimate_rank(tstart=10, tstop=20),
n_meg + n_eeg - n_proj)
def test_output_formats():
"""Test saving and loading raw data using multiple formats
"""
formats = ['short', 'int', 'single', 'double']
tols = [1e-4, 1e-7, 1e-7, 1e-15]
# let's fake a raw file with different formats
raw = Raw(fif_fname, preload=True)
raw.crop(0, 1, copy=False)
temp_file = op.join(tempdir, 'raw.fif')
for ii, (format, tol) in enumerate(zip(formats, tols)):
# Let's test the overwriting error throwing while we're at it
if ii > 0:
assert_raises(IOError, raw.save, temp_file, format=format)
raw.save(temp_file, format=format, overwrite=True)
raw2 = Raw(temp_file)
raw2_data = raw2[:, :][0]
assert_allclose(raw2_data, raw._data, rtol=tol, atol=1e-25)
assert_true(raw2.orig_format == format)
def _compare_combo(raw, new, times, n_times):
for ti in times: # let's do a subset of points for speed
orig = raw[:, ti % n_times][0]
# these are almost_equals because of possible dtype differences
assert_allclose(orig, new[:, ti][0])
def test_multiple_files():
"""Test loading multiple files simultaneously
"""
# split file
raw = Raw(fif_fname, preload=True).crop(0, 10)
split_size = 3. # in seconds
sfreq = raw.info['sfreq']
nsamp = (raw.last_samp - raw.first_samp)
tmins = np.round(np.arange(0., nsamp, split_size * sfreq))
tmaxs = np.concatenate((tmins[1:] - 1, [nsamp]))
tmaxs /= sfreq
tmins /= sfreq
assert_equal(raw.n_times, len(raw._times))
# going in reverse order so the last fname is the first file (need later)
raws = [None] * len(tmins)
for ri in range(len(tmins) - 1, -1, -1):
fname = op.join(tempdir, 'test_raw_split-%d_raw.fif' % ri)
raw.save(fname, tmin=tmins[ri], tmax=tmaxs[ri])
raws[ri] = Raw(fname)
events = [find_events(r, stim_channel='STI 014') for r in raws]
last_samps = [r.last_samp for r in raws]
first_samps = [r.first_samp for r in raws]
# test concatenation of split file
assert_raises(ValueError, concatenate_raws, raws, True, events[1:])
all_raw_1, events1 = concatenate_raws(raws, preload=False,
events_list=events)
assert_true(raw.first_samp == all_raw_1.first_samp)
assert_true(raw.last_samp == all_raw_1.last_samp)
assert_allclose(raw[:, :][0], all_raw_1[:, :][0])
raws[0] = Raw(fname)
all_raw_2 = concatenate_raws(raws, preload=True)
assert_allclose(raw[:, :][0], all_raw_2[:, :][0])
# test proper event treatment for split files
events2 = concatenate_events(events, first_samps, last_samps)
events3 = find_events(all_raw_2, stim_channel='STI 014')
assert_array_equal(events1, events2)
assert_array_equal(events1, events3)
# test various methods of combining files
raw = Raw(fif_fname, preload=True)
n_times = len(raw._times)
# make sure that all our data match
times = list(range(0, 2 * n_times, 999))
# add potentially problematic points
times.extend([n_times - 1, n_times, 2 * n_times - 1])
raw_combo0 = Raw([fif_fname, fif_fname], preload=True)
_compare_combo(raw, raw_combo0, times, n_times)
raw_combo = Raw([fif_fname, fif_fname], preload=False)
_compare_combo(raw, raw_combo, times, n_times)
raw_combo = Raw([fif_fname, fif_fname], preload='memmap8.dat')
_compare_combo(raw, raw_combo, times, n_times)
assert_raises(ValueError, Raw, [fif_fname, ctf_fname])
assert_raises(ValueError, Raw, [fif_fname, fif_bad_marked_fname])
assert_true(raw[:, :][0].shape[1] * 2 == raw_combo0[:, :][0].shape[1])
assert_true(raw_combo0[:, :][0].shape[1] == len(raw_combo0._times))
# with all data preloaded, result should be preloaded
raw_combo = Raw(fif_fname, preload=True)
raw_combo.append(Raw(fif_fname, preload=True))
assert_true(raw_combo.preload is True)
assert_true(len(raw_combo._times) == raw_combo._data.shape[1])
_compare_combo(raw, raw_combo, times, n_times)
# with any data not preloaded, don't set result as preloaded
raw_combo = concatenate_raws([Raw(fif_fname, preload=True),
Raw(fif_fname, preload=False)])
assert_true(raw_combo.preload is False)
assert_array_equal(find_events(raw_combo, stim_channel='STI 014'),
find_events(raw_combo0, stim_channel='STI 014'))
_compare_combo(raw, raw_combo, times, n_times)
# user should be able to force data to be preloaded upon concat
raw_combo = concatenate_raws([Raw(fif_fname, preload=False),
Raw(fif_fname, preload=True)],
preload=True)
assert_true(raw_combo.preload is True)
_compare_combo(raw, raw_combo, times, n_times)
raw_combo = concatenate_raws([Raw(fif_fname, preload=False),
Raw(fif_fname, preload=True)],
preload='memmap3.dat')
_compare_combo(raw, raw_combo, times, n_times)
raw_combo = concatenate_raws([Raw(fif_fname, preload=True),
Raw(fif_fname, preload=True)],
preload='memmap4.dat')
_compare_combo(raw, raw_combo, times, n_times)
raw_combo = concatenate_raws([Raw(fif_fname, preload=False),
Raw(fif_fname, preload=False)],
preload='memmap5.dat')
_compare_combo(raw, raw_combo, times, n_times)
# verify that combining raws with different projectors throws an exception
raw.add_proj([], remove_existing=True)
assert_raises(ValueError, raw.append, Raw(fif_fname, preload=True))
# now test event treatment for concatenated raw files
events = [find_events(raw, stim_channel='STI 014'),
find_events(raw, stim_channel='STI 014')]
last_samps = [raw.last_samp, raw.last_samp]
first_samps = [raw.first_samp, raw.first_samp]
events = concatenate_events(events, first_samps, last_samps)
events2 = find_events(raw_combo0, stim_channel='STI 014')
assert_array_equal(events, events2)
# check out the len method
assert_true(len(raw) == raw.n_times)
assert_true(len(raw) == raw.last_samp - raw.first_samp + 1)
def test_split_files():
"""Test writing and reading of split raw files
"""
raw_1 = Raw(fif_fname, preload=True)
split_fname = op.join(tempdir, 'split_raw.fif')
raw_1.save(split_fname, buffer_size_sec=1.0, split_size='10MB')
raw_2 = Raw(split_fname)
data_1, times_1 = raw_1[:, :]
data_2, times_2 = raw_2[:, :]
assert_array_equal(data_1, data_2)
assert_array_equal(times_1, times_2)
# test the case where the silly user specifies the split files
fnames = [split_fname]
fnames.extend(sorted(glob.glob(op.join(tempdir, 'split_raw-*.fif'))))
with warnings.catch_warnings(record=True):
warnings.simplefilter('always')
raw_2 = Raw(fnames)
data_2, times_2 = raw_2[:, :]
assert_array_equal(data_1, data_2)
assert_array_equal(times_1, times_2)
def test_load_bad_channels():
"""Test reading/writing of bad channels
"""
# Load correctly marked file (manually done in mne_process_raw)
raw_marked = Raw(fif_bad_marked_fname)
correct_bads = raw_marked.info['bads']
raw = Raw(fif_fname)
# Make sure it starts clean
assert_array_equal(raw.info['bads'], [])
# Test normal case
raw.load_bad_channels(bad_file_works)
# Write it out, read it in, and check
raw.save(op.join(tempdir, 'foo_raw.fif'))
raw_new = Raw(op.join(tempdir, 'foo_raw.fif'))
assert_equal(correct_bads, raw_new.info['bads'])
# Reset it
raw.info['bads'] = []
# Test bad case
assert_raises(ValueError, raw.load_bad_channels, bad_file_wrong)
# Test forcing the bad case
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
raw.load_bad_channels(bad_file_wrong, force=True)
n_found = sum(['1 bad channel' in str(ww.message) for ww in w])
assert_equal(n_found, 1) # there could be other irrelevant errors
# write it out, read it in, and check
raw.save(op.join(tempdir, 'foo_raw.fif'), overwrite=True)
raw_new = Raw(op.join(tempdir, 'foo_raw.fif'))
assert_equal(correct_bads, raw_new.info['bads'])
# Check that bad channels are cleared
raw.load_bad_channels(None)
raw.save(op.join(tempdir, 'foo_raw.fif'), overwrite=True)
raw_new = Raw(op.join(tempdir, 'foo_raw.fif'))
assert_equal([], raw_new.info['bads'])
def test_io_raw():
"""Test IO for raw data (Neuromag + CTF + gz)
"""
# test unicode io
for chars in [b'\xc3\xa4\xc3\xb6\xc3\xa9', b'a']:
with Raw(fif_fname) as r:
desc1 = r.info['description'] = chars.decode('utf-8')
temp_file = op.join(tempdir, 'raw.fif')
r.save(temp_file, overwrite=True)
with Raw(temp_file) as r2:
desc2 = r2.info['description']
assert_equal(desc1, desc2)
# Let's construct a simple test for IO first
raw = Raw(fif_fname, preload=True)
raw.crop(0, 3.5)
# put in some data that we know the values of
data = np.random.randn(raw._data.shape[0], raw._data.shape[1])
raw._data[:, :] = data
# save it somewhere
fname = op.join(tempdir, 'test_copy_raw.fif')
raw.save(fname, buffer_size_sec=1.0)
# read it in, make sure the whole thing matches
raw = Raw(fname)
assert_true(np.allclose(data, raw[:, :][0], 1e-6, 1e-20))
# let's read portions across the 1-sec tag boundary, too
inds = raw.time_as_index([1.75, 2.25])
sl = slice(inds[0], inds[1])
assert_true(np.allclose(data[:, sl], raw[:, sl][0], 1e-6, 1e-20))
# now let's do some real I/O
fnames_in = [fif_fname, fif_gz_fname, ctf_fname]
fnames_out = ['raw.fif', 'raw.fif.gz', 'raw.fif']
for fname_in, fname_out in zip(fnames_in, fnames_out):
fname_out = op.join(tempdir, fname_out)
raw = Raw(fname_in)
nchan = raw.info['nchan']
ch_names = raw.info['ch_names']
meg_channels_idx = [k for k in range(nchan)
if ch_names[k][0] == 'M']
n_channels = 100
meg_channels_idx = meg_channels_idx[:n_channels]
start, stop = raw.time_as_index([0, 5])
data, times = raw[meg_channels_idx, start:(stop + 1)]
meg_ch_names = [ch_names[k] for k in meg_channels_idx]
# Set up pick list: MEG + STI 014 - bad channels
include = ['STI 014']
include += meg_ch_names
picks = pick_types(raw.info, meg=True, eeg=False, stim=True,
misc=True, ref_meg=True, include=include,
exclude='bads')
# Writing with drop_small_buffer True
raw.save(fname_out, picks, tmin=0, tmax=4, buffer_size_sec=3,
drop_small_buffer=True, overwrite=True)
raw2 = Raw(fname_out, preload=True)
sel = pick_channels(raw2.ch_names, meg_ch_names)
data2, times2 = raw2[sel, :]
assert_true(times2.max() <= 3)
# Writing
raw.save(fname_out, picks, tmin=0, tmax=5, overwrite=True)
if fname_in == fif_fname or fname_in == fif_fname + '.gz':
assert_true(len(raw.info['dig']) == 146)
raw2 = Raw(fname_out)
sel = pick_channels(raw2.ch_names, meg_ch_names)
data2, times2 = raw2[sel, :]
assert_true(np.allclose(data, data2, 1e-6, 1e-20))
assert_allclose(times, times2)
assert_allclose(raw.info['sfreq'], raw2.info['sfreq'], rtol=1e-5)
# check transformations
for trans in ['dev_head_t', 'dev_ctf_t', 'ctf_head_t']:
if raw.info[trans] is None:
assert_true(raw2.info[trans] is None)
else:
assert_array_equal(raw.info[trans]['trans'],
raw2.info[trans]['trans'])
# check transformation 'from' and 'to'
if trans.startswith('dev'):
from_id = FIFF.FIFFV_COORD_DEVICE
else:
from_id = FIFF.FIFFV_MNE_COORD_CTF_HEAD
if trans[4:8] == 'head':
to_id = FIFF.FIFFV_COORD_HEAD
else:
to_id = FIFF.FIFFV_MNE_COORD_CTF_HEAD
for raw_ in [raw, raw2]:
assert_true(raw_.info[trans]['from'] == from_id)
assert_true(raw_.info[trans]['to'] == to_id)
if fname_in == fif_fname or fname_in == fif_fname + '.gz':
assert_allclose(raw.info['dig'][0]['r'], raw2.info['dig'][0]['r'])
# test warnings on bad filenames
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
raw_badname = op.join(tempdir, 'test-bad-name.fif.gz')
raw.save(raw_badname)
Raw(raw_badname)
assert_true(len(w) > 0) # len(w) should be 2 but Travis sometimes has more
def test_io_complex():
"""Test IO with complex data types
"""
dtypes = [np.complex64, np.complex128]
raw = Raw(fif_fname, preload=True)
picks = np.arange(5)
start, stop = raw.time_as_index([0, 5])
data_orig, _ = raw[picks, start:stop]
for di, dtype in enumerate(dtypes):
imag_rand = np.array(1j * np.random.randn(data_orig.shape[0],
data_orig.shape[1]), dtype)
raw_cp = raw.copy()
raw_cp._data = np.array(raw_cp._data, dtype)
raw_cp._data[picks, start:stop] += imag_rand
# this should throw an error because it's complex
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
raw_cp.save(op.join(tempdir, 'raw.fif'), picks, tmin=0, tmax=5,
overwrite=True)
# warning gets thrown on every instance b/c simplifilter('always')
assert_equal(len(w), 1)
raw2 = Raw(op.join(tempdir, 'raw.fif'))
raw2_data, _ = raw2[picks, :]
n_samp = raw2_data.shape[1]
assert_allclose(raw2_data[:, :n_samp], raw_cp._data[picks, :n_samp])
# with preloading
raw2 = Raw(op.join(tempdir, 'raw.fif'), preload=True)
raw2_data, _ = raw2[picks, :]
n_samp = raw2_data.shape[1]
assert_allclose(raw2_data[:, :n_samp], raw_cp._data[picks, :n_samp])
def test_getitem():
"""Test getitem/indexing of Raw
"""
for preload in [False, True, 'memmap.dat']:
raw = Raw(fif_fname, preload=preload)
data, times = raw[0, :]
data1, times1 = raw[0]
assert_array_equal(data, data1)
assert_array_equal(times, times1)
data, times = raw[0:2, :]
data1, times1 = raw[0:2]
assert_array_equal(data, data1)
assert_array_equal(times, times1)
data1, times1 = raw[[0, 1]]
assert_array_equal(data, data1)
assert_array_equal(times, times1)
def test_proj():
"""Test SSP proj operations
"""
for proj in [True, False]:
raw = Raw(fif_fname, preload=False, proj=proj)
assert_true(all(p['active'] == proj for p in raw.info['projs']))
data, times = raw[0:2, :]
data1, times1 = raw[0:2]
assert_array_equal(data, data1)
assert_array_equal(times, times1)
# test adding / deleting proj
if proj:
assert_raises(ValueError, raw.add_proj, [],
{'remove_existing': True})
assert_raises(ValueError, raw.del_proj, 0)
else:
projs = deepcopy(raw.info['projs'])
n_proj = len(raw.info['projs'])
raw.del_proj(0)
assert_true(len(raw.info['projs']) == n_proj - 1)
raw.add_proj(projs, remove_existing=False)
assert_true(len(raw.info['projs']) == 2 * n_proj - 1)
raw.add_proj(projs, remove_existing=True)
assert_true(len(raw.info['projs']) == n_proj)
# test apply_proj() with and without preload
for preload in [True, False]:
raw = Raw(fif_fname, preload=preload, proj=False)
data, times = raw[:, 0:2]
raw.apply_proj()
data_proj_1 = np.dot(raw._projector, data)
# load the file again without proj
raw = Raw(fif_fname, preload=preload, proj=False)
# write the file with proj. activated, make sure proj has been applied
raw.save(op.join(tempdir, 'raw.fif'), proj=True, overwrite=True)
raw2 = Raw(op.join(tempdir, 'raw.fif'), proj=False)
data_proj_2, _ = raw2[:, 0:2]
assert_allclose(data_proj_1, data_proj_2)
assert_true(all(p['active'] for p in raw2.info['projs']))
# read orig file with proj. active
raw2 = Raw(fif_fname, preload=preload, proj=True)
data_proj_2, _ = raw2[:, 0:2]
assert_allclose(data_proj_1, data_proj_2)
assert_true(all(p['active'] for p in raw2.info['projs']))
# test that apply_proj works
raw.apply_proj()
data_proj_2, _ = raw[:, 0:2]
assert_allclose(data_proj_1, data_proj_2)
assert_allclose(data_proj_2, np.dot(raw._projector, data_proj_2))
def test_preload_modify():
"""Test preloading and modifying data
"""
for preload in [False, True, 'memmap.dat']:
raw = Raw(fif_fname, preload=preload)
nsamp = raw.last_samp - raw.first_samp + 1
picks = pick_types(raw.info, meg='grad', exclude='bads')
data = np.random.randn(len(picks), nsamp // 2)
try:
raw[picks, :nsamp // 2] = data
except RuntimeError as err:
if not preload:
continue
else:
raise err
tmp_fname = op.join(tempdir, 'raw.fif')
raw.save(tmp_fname, overwrite=True)
raw_new = Raw(tmp_fname)
data_new, _ = raw_new[picks, :nsamp / 2]
assert_allclose(data, data_new)
def test_filter():
"""Test filtering (FIR and IIR) and Raw.apply_function interface
"""
raw = Raw(fif_fname, preload=True).crop(0, 7, False)
sig_dec = 11
sig_dec_notch = 12
sig_dec_notch_fit = 12
picks_meg = pick_types(raw.info, meg=True, exclude='bads')
picks = picks_meg[:4]
raw_lp = raw.copy()
raw_lp.filter(0., 4.0 - 0.25, picks=picks, n_jobs=2)
raw_hp = raw.copy()
raw_hp.filter(8.0 + 0.25, None, picks=picks, n_jobs=2)
raw_bp = raw.copy()
raw_bp.filter(4.0 + 0.25, 8.0 - 0.25, picks=picks)
raw_bs = raw.copy()
raw_bs.filter(8.0 + 0.25, 4.0 - 0.25, picks=picks, n_jobs=2)
data, _ = raw[picks, :]
lp_data, _ = raw_lp[picks, :]
hp_data, _ = raw_hp[picks, :]
bp_data, _ = raw_bp[picks, :]
bs_data, _ = raw_bs[picks, :]
assert_array_almost_equal(data, lp_data + bp_data + hp_data, sig_dec)
assert_array_almost_equal(data, bp_data + bs_data, sig_dec)
raw_lp_iir = raw.copy()
raw_lp_iir.filter(0., 4.0, picks=picks, n_jobs=2, method='iir')
raw_hp_iir = raw.copy()
raw_hp_iir.filter(8.0, None, picks=picks, n_jobs=2, method='iir')
raw_bp_iir = raw.copy()
raw_bp_iir.filter(4.0, 8.0, picks=picks, method='iir')
lp_data_iir, _ = raw_lp_iir[picks, :]
hp_data_iir, _ = raw_hp_iir[picks, :]
bp_data_iir, _ = raw_bp_iir[picks, :]
summation = lp_data_iir + hp_data_iir + bp_data_iir
assert_array_almost_equal(data[:, 100:-100], summation[:, 100:-100],
sig_dec)
# make sure we didn't touch other channels
data, _ = raw[picks_meg[4:], :]
bp_data, _ = raw_bp[picks_meg[4:], :]
assert_array_equal(data, bp_data)
bp_data_iir, _ = raw_bp_iir[picks_meg[4:], :]
assert_array_equal(data, bp_data_iir)
# do a very simple check on line filtering
raw_bs = raw.copy()
with warnings.catch_warnings(record=True):
warnings.simplefilter('always')
raw_bs.filter(60.0 + 0.5, 60.0 - 0.5, picks=picks, n_jobs=2)
data_bs, _ = raw_bs[picks, :]
raw_notch = raw.copy()
raw_notch.notch_filter(60.0, picks=picks, n_jobs=2, method='fft')
data_notch, _ = raw_notch[picks, :]
assert_array_almost_equal(data_bs, data_notch, sig_dec_notch)
# now use the sinusoidal fitting
raw_notch = raw.copy()
raw_notch.notch_filter(None, picks=picks, n_jobs=2, method='spectrum_fit')
data_notch, _ = raw_notch[picks, :]
data, _ = raw[picks, :]
assert_array_almost_equal(data, data_notch, sig_dec_notch_fit)
def test_crop():
"""Test cropping raw files
"""
# split a concatenated file to test a difficult case
raw = Raw([fif_fname, fif_fname], preload=False)
split_size = 10. # in seconds
sfreq = raw.info['sfreq']
nsamp = (raw.last_samp - raw.first_samp + 1)
# do an annoying case (off-by-one splitting)
tmins = np.r_[1., np.round(np.arange(0., nsamp - 1, split_size * sfreq))]
tmins = np.sort(tmins)
tmaxs = np.concatenate((tmins[1:] - 1, [nsamp - 1]))
tmaxs /= sfreq
tmins /= sfreq
raws = [None] * len(tmins)
for ri, (tmin, tmax) in enumerate(zip(tmins, tmaxs)):
raws[ri] = raw.crop(tmin, tmax, True)
all_raw_2 = concatenate_raws(raws, preload=False)
assert_true(raw.first_samp == all_raw_2.first_samp)
assert_true(raw.last_samp == all_raw_2.last_samp)
assert_array_equal(raw[:, :][0], all_raw_2[:, :][0])
tmins = np.round(np.arange(0., nsamp - 1, split_size * sfreq))
tmaxs = np.concatenate((tmins[1:] - 1, [nsamp - 1]))
tmaxs /= sfreq
tmins /= sfreq
# going in revere order so the last fname is the first file (need it later)
raws = [None] * len(tmins)
for ri, (tmin, tmax) in enumerate(zip(tmins, tmaxs)):
raws[ri] = raw.copy()
raws[ri].crop(tmin, tmax, False)
# test concatenation of split file
all_raw_1 = concatenate_raws(raws, preload=False)
all_raw_2 = raw.crop(0, None, True)
for ar in [all_raw_1, all_raw_2]:
assert_true(raw.first_samp == ar.first_samp)
assert_true(raw.last_samp == ar.last_samp)
assert_array_equal(raw[:, :][0], ar[:, :][0])
def test_resample():
"""Test resample (with I/O and multiple files)
"""
raw = Raw(fif_fname, preload=True).crop(0, 3, False)
raw_resamp = raw.copy()
sfreq = raw.info['sfreq']
# test parallel on upsample
raw_resamp.resample(sfreq * 2, n_jobs=2)
assert_true(raw_resamp.n_times == len(raw_resamp._times))
raw_resamp.save(op.join(tempdir, 'raw_resamp-raw.fif'))
raw_resamp = Raw(op.join(tempdir, 'raw_resamp-raw.fif'), preload=True)
assert_true(sfreq == raw_resamp.info['sfreq'] / 2)
assert_true(raw.n_times == raw_resamp.n_times / 2)
assert_true(raw_resamp._data.shape[1] == raw_resamp.n_times)
assert_true(raw._data.shape[0] == raw_resamp._data.shape[0])
# test non-parallel on downsample
raw_resamp.resample(sfreq, n_jobs=1)
assert_true(raw_resamp.info['sfreq'] == sfreq)
assert_true(raw._data.shape == raw_resamp._data.shape)
assert_true(raw.first_samp == raw_resamp.first_samp)
assert_true(raw.last_samp == raw.last_samp)
# upsampling then downsampling doubles resampling error, but this still
# works (hooray). Note that the stim channels had to be sub-sampled
# without filtering to be accurately preserved
# note we have to treat MEG and EEG+STIM channels differently (tols)
assert_allclose(raw._data[:306, 200:-200],
raw_resamp._data[:306, 200:-200],
rtol=1e-2, atol=1e-12)
assert_allclose(raw._data[306:, 200:-200],
raw_resamp._data[306:, 200:-200],
rtol=1e-2, atol=1e-7)
# now check multiple file support w/resampling, as order of operations
# (concat, resample) should not affect our data
raw1 = raw.copy()
raw2 = raw.copy()
raw3 = raw.copy()
raw4 = raw.copy()
raw1 = concatenate_raws([raw1, raw2])
raw1.resample(10)
raw3.resample(10)
raw4.resample(10)
raw3 = concatenate_raws([raw3, raw4])
assert_array_equal(raw1._data, raw3._data)
assert_array_equal(raw1._first_samps, raw3._first_samps)
assert_array_equal(raw1._last_samps, raw3._last_samps)
assert_array_equal(raw1._raw_lengths, raw3._raw_lengths)
assert_equal(raw1.first_samp, raw3.first_samp)
assert_equal(raw1.last_samp, raw3.last_samp)
assert_equal(raw1.info['sfreq'], raw3.info['sfreq'])
def test_hilbert():
"""Test computation of analytic signal using hilbert
"""
raw = Raw(fif_fname, preload=True)
picks_meg = pick_types(raw.info, meg=True, exclude='bads')
picks = picks_meg[:4]
raw2 = raw.copy()
raw.apply_hilbert(picks)
raw2.apply_hilbert(picks, envelope=True, n_jobs=2)
env = np.abs(raw._data[picks, :])
assert_allclose(env, raw2._data[picks, :], rtol=1e-2, atol=1e-13)
def test_raw_copy():
"""Test Raw copy
"""
raw = Raw(fif_fname, preload=True)
data, _ = raw[:, :]
copied = raw.copy()
copied_data, _ = copied[:, :]
assert_array_equal(data, copied_data)
assert_equal(sorted(raw.__dict__.keys()),
sorted(copied.__dict__.keys()))
raw = Raw(fif_fname, preload=False)
data, _ = raw[:, :]
copied = raw.copy()
copied_data, _ = copied[:, :]
assert_array_equal(data, copied_data)
assert_equal(sorted(raw.__dict__.keys()),
sorted(copied.__dict__.keys()))
@requires_nitime
def test_raw_to_nitime():
""" Test nitime export """
raw = Raw(fif_fname, preload=True)
picks_meg = pick_types(raw.info, meg=True, exclude='bads')
picks = picks_meg[:4]
raw_ts = raw.to_nitime(picks=picks)
assert_true(raw_ts.data.shape[0] == len(picks))
raw = Raw(fif_fname, preload=False)
picks_meg = pick_types(raw.info, meg=True, exclude='bads')
picks = picks_meg[:4]
raw_ts = raw.to_nitime(picks=picks)
assert_true(raw_ts.data.shape[0] == len(picks))
raw = Raw(fif_fname, preload=True)
picks_meg = pick_types(raw.info, meg=True, exclude='bads')
picks = picks_meg[:4]
raw_ts = raw.to_nitime(picks=picks, copy=False)
assert_true(raw_ts.data.shape[0] == len(picks))
raw = Raw(fif_fname, preload=False)
picks_meg = pick_types(raw.info, meg=True, exclude='bads')
picks = picks_meg[:4]
raw_ts = raw.to_nitime(picks=picks, copy=False)
assert_true(raw_ts.data.shape[0] == len(picks))
@requires_pandas
def test_as_data_frame():
"""Test raw Pandas exporter"""
raw = Raw(fif_fname, preload=True)
df = raw.as_data_frame()
assert_true((df.columns == raw.ch_names).all())
df = raw.as_data_frame(use_time_index=False)
assert_true('time' in df.columns)
assert_array_equal(df.values[:, 1], raw._data[0] * 1e13)
assert_array_equal(df.values[:, 3], raw._data[2] * 1e15)
def test_raw_index_as_time():
""" Test index as time conversion"""
raw = Raw(fif_fname, preload=True)
t0 = raw.index_as_time([0], True)[0]
t1 = raw.index_as_time([100], False)[0]
t2 = raw.index_as_time([100], True)[0]
assert_true((t2 - t1) == t0)
# ensure we can go back and forth
t3 = raw.index_as_time(raw.time_as_index([0], True), True)
assert_array_almost_equal(t3, [0.0], 2)
t3 = raw.index_as_time(raw.time_as_index(raw.info['sfreq'], True), True)
assert_array_almost_equal(t3, [raw.info['sfreq']], 2)
t3 = raw.index_as_time(raw.time_as_index(raw.info['sfreq'], False), False)
assert_array_almost_equal(t3, [raw.info['sfreq']], 2)
i0 = raw.time_as_index(raw.index_as_time([0], True), True)
assert_true(i0[0] == 0)
i1 = raw.time_as_index(raw.index_as_time([100], True), True)
assert_true(i1[0] == 100)
# Have to add small amount of time because we truncate via int casting
i1 = raw.time_as_index(raw.index_as_time([100.0001], False), False)
assert_true(i1[0] == 100)
def test_raw_time_as_index():
""" Test time as index conversion"""
raw = Raw(fif_fname, preload=True)
first_samp = raw.time_as_index([0], True)[0]
assert_true(raw.first_samp == -first_samp)
def test_save():
""" Test saving raw"""
raw = Raw(fif_fname, preload=False)
# can't write over file being read
assert_raises(ValueError, raw.save, fif_fname)
raw = Raw(fif_fname, preload=True)
# can't overwrite file without overwrite=True
assert_raises(IOError, raw.save, fif_fname)
# test abspath support
new_fname = op.join(op.abspath(op.curdir), 'break-raw.fif')
raw.save(op.join(tempdir, new_fname), overwrite=True)
new_raw = Raw(op.join(tempdir, new_fname), preload=False)
assert_raises(ValueError, new_raw.save, new_fname)
# make sure we can overwrite the file we loaded when preload=True
new_raw = Raw(op.join(tempdir, new_fname), preload=True)
new_raw.save(op.join(tempdir, new_fname), overwrite=True)
os.remove(new_fname)
def test_with_statement():
""" Test with statement """
for preload in [True, False]:
with Raw(fif_fname, preload=preload) as raw_:
print(raw_)
def test_compensation_raw():
"""Test Raw compensation
"""
raw1 = Raw(ctf_comp_fname, compensation=None)
assert_true(raw1.comp is None)
data1, times1 = raw1[:, :]
raw2 = Raw(ctf_comp_fname, compensation=3)
data2, times2 = raw2[:, :]
assert_true(raw2.comp is None) # unchanged (data come with grade 3)
assert_array_equal(times1, times2)
assert_array_equal(data1, data2)
raw3 = Raw(ctf_comp_fname, compensation=1)
data3, times3 = raw3[:, :]
assert_true(raw3.comp is not None)
assert_array_equal(times1, times3)
# make sure it's different with a different compensation:
assert_true(np.mean(np.abs(data1 - data3)) > 1e-12)
assert_raises(ValueError, Raw, ctf_comp_fname, compensation=33)
# Try IO with compensation
temp_file = op.join(tempdir, 'raw.fif')
raw1.save(temp_file, overwrite=True)
raw4 = Raw(temp_file)
data4, times4 = raw4[:, :]
assert_array_equal(times1, times4)
assert_array_equal(data1, data4)
# Now save the file that has modified compensation
# and make sure we can the same data as input ie. compensation
# is undone
raw3.save(temp_file, overwrite=True)
raw5 = Raw(temp_file)
data5, times5 = raw5[:, :]
assert_array_equal(times1, times5)
assert_allclose(data1, data5, rtol=1e-12, atol=1e-22)
@requires_mne
def test_compensation_raw_mne():
"""Test Raw compensation by comparing with MNE
"""
def compensate_mne(fname, grad):
tmp_fname = op.join(tempdir, 'mne_ctf_test_raw.fif')
cmd = ['mne_process_raw', '--raw', fname, '--save', tmp_fname,
'--grad', str(grad), '--projoff', '--filteroff']
run_subprocess(cmd)
return Raw(tmp_fname, preload=True)
for grad in [0, 2, 3]:
raw_py = Raw(ctf_comp_fname, preload=True, compensation=grad)
raw_c = compensate_mne(ctf_comp_fname, grad)
assert_allclose(raw_py._data, raw_c._data, rtol=1e-6, atol=1e-17)
def test_set_eeg_reference():
""" Test rereference eeg data"""
raw = Raw(fif_fname, preload=True)
# Rereference raw data by creating a copy of original data
reref, ref_data = set_eeg_reference(raw, ['EEG 001', 'EEG 002'], copy=True)
# Separate EEG channels from other channel types
picks_eeg = pick_types(raw.info, meg=False, eeg=True, exclude='bads')
picks_other = pick_types(raw.info, meg=True, eeg=False, eog=True,
stim=True, exclude='bads')
# Get the raw EEG data and other channel data
raw_eeg_data = raw[picks_eeg][0]
raw_other_data = raw[picks_other][0]
# Get the rereferenced EEG data and channel other
reref_eeg_data = reref[picks_eeg][0]
unref_eeg_data = reref_eeg_data + ref_data
# Undo rereferencing of EEG channels
reref_other_data = reref[picks_other][0]
# Check that both EEG data and other data is the same
assert_array_equal(raw_eeg_data, unref_eeg_data)
assert_array_equal(raw_other_data, reref_other_data)
# Test that data is modified in place when copy=False
reref, ref_data = set_eeg_reference(raw, ['EEG 001', 'EEG 002'],
copy=False)
assert_true(raw is reref)
def test_drop_channels_mixin():
"""Test channels-dropping functionality
"""
raw = Raw(fif_fname, preload=True)
drop_ch = raw.ch_names[:3]
ch_names = raw.ch_names[3:]
ch_names_orig = raw.ch_names
dummy = raw.drop_channels(drop_ch, copy=True)
assert_equal(ch_names, dummy.ch_names)
assert_equal(ch_names_orig, raw.ch_names)
assert_equal(len(ch_names_orig), raw._data.shape[0])
raw.drop_channels(drop_ch)
assert_equal(ch_names, raw.ch_names)
assert_equal(len(ch_names), len(raw.cals))
assert_equal(len(ch_names), raw._data.shape[0])
def test_pick_channels_mixin():
"""Test channel-picking functionality
"""
# preload is True
raw = Raw(fif_fname, preload=True)
ch_names = raw.ch_names[:3]
ch_names_orig = raw.ch_names
dummy = raw.pick_channels(ch_names, copy=True) # copy is True
assert_equal(ch_names, dummy.ch_names)
assert_equal(ch_names_orig, raw.ch_names)
assert_equal(len(ch_names_orig), raw._data.shape[0])
raw.pick_channels(ch_names, copy=False) # copy is False
assert_equal(ch_names, raw.ch_names)
assert_equal(len(ch_names), len(raw.cals))
assert_equal(len(ch_names), raw._data.shape[0])
raw = Raw(fif_fname, preload=False)
assert_raises(RuntimeError, raw.pick_channels, ch_names)
assert_raises(RuntimeError, raw.drop_channels, ch_names)
def test_equalize_channels():
"""Test equalization of channels
"""
raw1 = Raw(fif_fname, preload=True)
raw2 = raw1.copy()
ch_names = raw1.ch_names[2:]
raw1.drop_channels(raw1.ch_names[:1])
raw2.drop_channels(raw2.ch_names[1:2])
my_comparison = [raw1, raw2]
equalize_channels(my_comparison)
for e in my_comparison:
assert_equal(ch_names, e.ch_names)
|