File: test_raw.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (1032 lines) | stat: -rw-r--r-- 38,790 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
from __future__ import print_function

# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#         Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)

import os
import os.path as op
import glob
from copy import deepcopy
import warnings

import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
                           assert_allclose)
from nose.tools import (assert_true, assert_raises, assert_equal,
                        assert_not_equal)

from mne import pick_types, pick_channels
from mne.io.constants import FIFF
from mne.io import (Raw, concatenate_raws,
                    get_chpi_positions, set_eeg_reference)
from mne import concatenate_events, find_events, equalize_channels
from mne.utils import (_TempDir, requires_nitime, requires_pandas,
                       requires_mne, run_subprocess)
from mne.externals.six.moves import zip
from mne.externals.six.moves import cPickle as pickle

warnings.simplefilter('always')  # enable b/c these tests throw warnings

base_dir = op.join(op.dirname(__file__), '..', '..', 'tests', 'data')
fif_fname = op.join(base_dir, 'test_raw.fif')
fif_gz_fname = op.join(base_dir, 'test_raw.fif.gz')
ctf_fname = op.join(base_dir, 'test_ctf_raw.fif')
ctf_comp_fname = op.join(base_dir, 'test_ctf_comp_raw.fif')
fif_bad_marked_fname = op.join(base_dir, 'test_withbads_raw.fif')
bad_file_works = op.join(base_dir, 'test_bads.txt')
bad_file_wrong = op.join(base_dir, 'test_wrong_bads.txt')
hp_fname = op.join(base_dir, 'test_chpi_raw_hp.txt')
hp_fif_fname = op.join(base_dir, 'test_chpi_raw_sss.fif')

tempdir = _TempDir()


def test_hash_raw():
    """Test hashing raw objects
    """
    raw = Raw(fif_fname)
    assert_raises(RuntimeError, raw.__hash__)
    raw = Raw(fif_fname, preload=True).crop(0, 0.5)
    raw_2 = Raw(fif_fname, preload=True).crop(0, 0.5)
    assert_equal(hash(raw), hash(raw_2))
    # do NOT use assert_equal here, failing output is terrible
    assert_true(pickle.dumps(raw) == pickle.dumps(raw_2))

    raw_2._data[0, 0] -= 1
    assert_not_equal(hash(raw), hash(raw_2))


def test_subject_info():
    """Test reading subject information
    """
    raw = Raw(fif_fname)
    raw.crop(0, 1, False)
    assert_true(raw.info['subject_info'] is None)
    # fake some subject data
    keys = ['id', 'his_id', 'last_name', 'first_name', 'birthday', 'sex',
            'hand']
    vals = [1, 'foobar', 'bar', 'foo', (1901, 2, 3), 0, 1]
    subject_info = dict()
    for key, val in zip(keys, vals):
        subject_info[key] = val
    raw.info['subject_info'] = subject_info
    out_fname = op.join(tempdir, 'test_subj_info_raw.fif')
    raw.save(out_fname, overwrite=True)
    raw_read = Raw(out_fname)
    for key in keys:
        assert_equal(subject_info[key], raw_read.info['subject_info'][key])
    raw_read.anonymize()
    assert_true(raw_read.info.get('subject_info') is None)
    out_fname_anon = op.join(tempdir, 'test_subj_info_anon_raw.fif')
    raw_read.save(out_fname_anon, overwrite=True)
    raw_read = Raw(out_fname_anon)
    assert_true(raw_read.info.get('subject_info') is None)


def test_get_chpi():
    """Test CHPI position computation
    """
    trans0, rot0, _ = get_chpi_positions(hp_fname)
    raw = Raw(hp_fif_fname)
    out = get_chpi_positions(raw)
    trans1, rot1, t1 = out
    trans1 = trans1[2:]
    rot1 = rot1[2:]
    # these will not be exact because they don't use equiv. time points
    assert_allclose(trans0, trans1, atol=1e-6, rtol=1e-1)
    assert_allclose(rot0, rot1, atol=1e-6, rtol=1e-1)
    # run through input checking
    assert_raises(TypeError, get_chpi_positions, 1)
    assert_raises(ValueError, get_chpi_positions, hp_fname, [1])


def test_copy_append():
    """Test raw copying and appending combinations
    """
    raw = Raw(fif_fname, preload=True).copy()
    raw_full = Raw(fif_fname)
    raw_full.append(raw)
    data = raw_full[:, :][0]
    assert_true(data.shape[1] == 2 * raw._data.shape[1])


def test_rank_estimation():
    """Test raw rank estimation
    """
    raw = Raw(fif_fname)
    picks_meg = pick_types(raw.info, meg=True, eeg=False, exclude='bads')
    n_meg = len(picks_meg)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True, exclude='bads')
    n_eeg = len(picks_eeg)
    raw = Raw(fif_fname, preload=True)
    assert_array_equal(raw.estimate_rank(), n_meg + n_eeg)
    assert_array_equal(raw.estimate_rank(picks=picks_eeg), n_eeg)
    raw = Raw(fif_fname, preload=False)
    raw.apply_proj()
    n_proj = len(raw.info['projs'])
    assert_array_equal(raw.estimate_rank(tstart=10, tstop=20),
                       n_meg + n_eeg - n_proj)


def test_output_formats():
    """Test saving and loading raw data using multiple formats
    """
    formats = ['short', 'int', 'single', 'double']
    tols = [1e-4, 1e-7, 1e-7, 1e-15]

    # let's fake a raw file with different formats
    raw = Raw(fif_fname, preload=True)
    raw.crop(0, 1, copy=False)

    temp_file = op.join(tempdir, 'raw.fif')
    for ii, (format, tol) in enumerate(zip(formats, tols)):
        # Let's test the overwriting error throwing while we're at it
        if ii > 0:
            assert_raises(IOError, raw.save, temp_file, format=format)
        raw.save(temp_file, format=format, overwrite=True)
        raw2 = Raw(temp_file)
        raw2_data = raw2[:, :][0]
        assert_allclose(raw2_data, raw._data, rtol=tol, atol=1e-25)
        assert_true(raw2.orig_format == format)


def _compare_combo(raw, new, times, n_times):
    for ti in times:  # let's do a subset of points for speed
        orig = raw[:, ti % n_times][0]
        # these are almost_equals because of possible dtype differences
        assert_allclose(orig, new[:, ti][0])


def test_multiple_files():
    """Test loading multiple files simultaneously
    """
    # split file
    raw = Raw(fif_fname, preload=True).crop(0, 10)
    split_size = 3.  # in seconds
    sfreq = raw.info['sfreq']
    nsamp = (raw.last_samp - raw.first_samp)
    tmins = np.round(np.arange(0., nsamp, split_size * sfreq))
    tmaxs = np.concatenate((tmins[1:] - 1, [nsamp]))
    tmaxs /= sfreq
    tmins /= sfreq
    assert_equal(raw.n_times, len(raw._times))

    # going in reverse order so the last fname is the first file (need later)
    raws = [None] * len(tmins)
    for ri in range(len(tmins) - 1, -1, -1):
        fname = op.join(tempdir, 'test_raw_split-%d_raw.fif' % ri)
        raw.save(fname, tmin=tmins[ri], tmax=tmaxs[ri])
        raws[ri] = Raw(fname)
    events = [find_events(r, stim_channel='STI 014') for r in raws]
    last_samps = [r.last_samp for r in raws]
    first_samps = [r.first_samp for r in raws]

    # test concatenation of split file
    assert_raises(ValueError, concatenate_raws, raws, True, events[1:])
    all_raw_1, events1 = concatenate_raws(raws, preload=False,
                                          events_list=events)
    assert_true(raw.first_samp == all_raw_1.first_samp)
    assert_true(raw.last_samp == all_raw_1.last_samp)
    assert_allclose(raw[:, :][0], all_raw_1[:, :][0])
    raws[0] = Raw(fname)
    all_raw_2 = concatenate_raws(raws, preload=True)
    assert_allclose(raw[:, :][0], all_raw_2[:, :][0])

    # test proper event treatment for split files
    events2 = concatenate_events(events, first_samps, last_samps)
    events3 = find_events(all_raw_2, stim_channel='STI 014')
    assert_array_equal(events1, events2)
    assert_array_equal(events1, events3)

    # test various methods of combining files
    raw = Raw(fif_fname, preload=True)
    n_times = len(raw._times)
    # make sure that all our data match
    times = list(range(0, 2 * n_times, 999))
    # add potentially problematic points
    times.extend([n_times - 1, n_times, 2 * n_times - 1])

    raw_combo0 = Raw([fif_fname, fif_fname], preload=True)
    _compare_combo(raw, raw_combo0, times, n_times)
    raw_combo = Raw([fif_fname, fif_fname], preload=False)
    _compare_combo(raw, raw_combo, times, n_times)
    raw_combo = Raw([fif_fname, fif_fname], preload='memmap8.dat')
    _compare_combo(raw, raw_combo, times, n_times)
    assert_raises(ValueError, Raw, [fif_fname, ctf_fname])
    assert_raises(ValueError, Raw, [fif_fname, fif_bad_marked_fname])
    assert_true(raw[:, :][0].shape[1] * 2 == raw_combo0[:, :][0].shape[1])
    assert_true(raw_combo0[:, :][0].shape[1] == len(raw_combo0._times))

    # with all data preloaded, result should be preloaded
    raw_combo = Raw(fif_fname, preload=True)
    raw_combo.append(Raw(fif_fname, preload=True))
    assert_true(raw_combo.preload is True)
    assert_true(len(raw_combo._times) == raw_combo._data.shape[1])
    _compare_combo(raw, raw_combo, times, n_times)

    # with any data not preloaded, don't set result as preloaded
    raw_combo = concatenate_raws([Raw(fif_fname, preload=True),
                                  Raw(fif_fname, preload=False)])
    assert_true(raw_combo.preload is False)
    assert_array_equal(find_events(raw_combo, stim_channel='STI 014'),
                       find_events(raw_combo0, stim_channel='STI 014'))
    _compare_combo(raw, raw_combo, times, n_times)

    # user should be able to force data to be preloaded upon concat
    raw_combo = concatenate_raws([Raw(fif_fname, preload=False),
                                  Raw(fif_fname, preload=True)],
                                 preload=True)
    assert_true(raw_combo.preload is True)
    _compare_combo(raw, raw_combo, times, n_times)

    raw_combo = concatenate_raws([Raw(fif_fname, preload=False),
                                  Raw(fif_fname, preload=True)],
                                 preload='memmap3.dat')
    _compare_combo(raw, raw_combo, times, n_times)

    raw_combo = concatenate_raws([Raw(fif_fname, preload=True),
                                  Raw(fif_fname, preload=True)],
                                 preload='memmap4.dat')
    _compare_combo(raw, raw_combo, times, n_times)

    raw_combo = concatenate_raws([Raw(fif_fname, preload=False),
                                  Raw(fif_fname, preload=False)],
                                 preload='memmap5.dat')
    _compare_combo(raw, raw_combo, times, n_times)

    # verify that combining raws with different projectors throws an exception
    raw.add_proj([], remove_existing=True)
    assert_raises(ValueError, raw.append, Raw(fif_fname, preload=True))

    # now test event treatment for concatenated raw files
    events = [find_events(raw, stim_channel='STI 014'),
              find_events(raw, stim_channel='STI 014')]
    last_samps = [raw.last_samp, raw.last_samp]
    first_samps = [raw.first_samp, raw.first_samp]
    events = concatenate_events(events, first_samps, last_samps)
    events2 = find_events(raw_combo0, stim_channel='STI 014')
    assert_array_equal(events, events2)

    # check out the len method
    assert_true(len(raw) == raw.n_times)
    assert_true(len(raw) == raw.last_samp - raw.first_samp + 1)


def test_split_files():
    """Test writing and reading of split raw files
    """
    raw_1 = Raw(fif_fname, preload=True)
    split_fname = op.join(tempdir, 'split_raw.fif')
    raw_1.save(split_fname, buffer_size_sec=1.0, split_size='10MB')

    raw_2 = Raw(split_fname)
    data_1, times_1 = raw_1[:, :]
    data_2, times_2 = raw_2[:, :]
    assert_array_equal(data_1, data_2)
    assert_array_equal(times_1, times_2)

    # test the case where the silly user specifies the split files
    fnames = [split_fname]
    fnames.extend(sorted(glob.glob(op.join(tempdir, 'split_raw-*.fif'))))
    with warnings.catch_warnings(record=True):
        warnings.simplefilter('always')
        raw_2 = Raw(fnames)
    data_2, times_2 = raw_2[:, :]
    assert_array_equal(data_1, data_2)
    assert_array_equal(times_1, times_2)


def test_load_bad_channels():
    """Test reading/writing of bad channels
    """
    # Load correctly marked file (manually done in mne_process_raw)
    raw_marked = Raw(fif_bad_marked_fname)
    correct_bads = raw_marked.info['bads']
    raw = Raw(fif_fname)
    # Make sure it starts clean
    assert_array_equal(raw.info['bads'], [])

    # Test normal case
    raw.load_bad_channels(bad_file_works)
    # Write it out, read it in, and check
    raw.save(op.join(tempdir, 'foo_raw.fif'))
    raw_new = Raw(op.join(tempdir, 'foo_raw.fif'))
    assert_equal(correct_bads, raw_new.info['bads'])
    # Reset it
    raw.info['bads'] = []

    # Test bad case
    assert_raises(ValueError, raw.load_bad_channels, bad_file_wrong)

    # Test forcing the bad case
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        raw.load_bad_channels(bad_file_wrong, force=True)
        n_found = sum(['1 bad channel' in str(ww.message) for ww in w])
        assert_equal(n_found, 1)  # there could be other irrelevant errors
        # write it out, read it in, and check
        raw.save(op.join(tempdir, 'foo_raw.fif'), overwrite=True)
        raw_new = Raw(op.join(tempdir, 'foo_raw.fif'))
        assert_equal(correct_bads, raw_new.info['bads'])

    # Check that bad channels are cleared
    raw.load_bad_channels(None)
    raw.save(op.join(tempdir, 'foo_raw.fif'), overwrite=True)
    raw_new = Raw(op.join(tempdir, 'foo_raw.fif'))
    assert_equal([], raw_new.info['bads'])


def test_io_raw():
    """Test IO for raw data (Neuromag + CTF + gz)
    """
    # test unicode io
    for chars in [b'\xc3\xa4\xc3\xb6\xc3\xa9', b'a']:
        with Raw(fif_fname) as r:
            desc1 = r.info['description'] = chars.decode('utf-8')
            temp_file = op.join(tempdir, 'raw.fif')
            r.save(temp_file, overwrite=True)
            with Raw(temp_file) as r2:
                desc2 = r2.info['description']
            assert_equal(desc1, desc2)

    # Let's construct a simple test for IO first
    raw = Raw(fif_fname, preload=True)
    raw.crop(0, 3.5)
    # put in some data that we know the values of
    data = np.random.randn(raw._data.shape[0], raw._data.shape[1])
    raw._data[:, :] = data
    # save it somewhere
    fname = op.join(tempdir, 'test_copy_raw.fif')
    raw.save(fname, buffer_size_sec=1.0)
    # read it in, make sure the whole thing matches
    raw = Raw(fname)
    assert_true(np.allclose(data, raw[:, :][0], 1e-6, 1e-20))
    # let's read portions across the 1-sec tag boundary, too
    inds = raw.time_as_index([1.75, 2.25])
    sl = slice(inds[0], inds[1])
    assert_true(np.allclose(data[:, sl], raw[:, sl][0], 1e-6, 1e-20))

    # now let's do some real I/O
    fnames_in = [fif_fname, fif_gz_fname, ctf_fname]
    fnames_out = ['raw.fif', 'raw.fif.gz', 'raw.fif']
    for fname_in, fname_out in zip(fnames_in, fnames_out):
        fname_out = op.join(tempdir, fname_out)
        raw = Raw(fname_in)

        nchan = raw.info['nchan']
        ch_names = raw.info['ch_names']
        meg_channels_idx = [k for k in range(nchan)
                            if ch_names[k][0] == 'M']
        n_channels = 100
        meg_channels_idx = meg_channels_idx[:n_channels]
        start, stop = raw.time_as_index([0, 5])
        data, times = raw[meg_channels_idx, start:(stop + 1)]
        meg_ch_names = [ch_names[k] for k in meg_channels_idx]

        # Set up pick list: MEG + STI 014 - bad channels
        include = ['STI 014']
        include += meg_ch_names
        picks = pick_types(raw.info, meg=True, eeg=False, stim=True,
                           misc=True, ref_meg=True, include=include,
                           exclude='bads')

        # Writing with drop_small_buffer True
        raw.save(fname_out, picks, tmin=0, tmax=4, buffer_size_sec=3,
                 drop_small_buffer=True, overwrite=True)
        raw2 = Raw(fname_out, preload=True)

        sel = pick_channels(raw2.ch_names, meg_ch_names)
        data2, times2 = raw2[sel, :]
        assert_true(times2.max() <= 3)

        # Writing
        raw.save(fname_out, picks, tmin=0, tmax=5, overwrite=True)

        if fname_in == fif_fname or fname_in == fif_fname + '.gz':
            assert_true(len(raw.info['dig']) == 146)

        raw2 = Raw(fname_out)

        sel = pick_channels(raw2.ch_names, meg_ch_names)
        data2, times2 = raw2[sel, :]

        assert_true(np.allclose(data, data2, 1e-6, 1e-20))
        assert_allclose(times, times2)
        assert_allclose(raw.info['sfreq'], raw2.info['sfreq'], rtol=1e-5)

        # check transformations
        for trans in ['dev_head_t', 'dev_ctf_t', 'ctf_head_t']:
            if raw.info[trans] is None:
                assert_true(raw2.info[trans] is None)
            else:
                assert_array_equal(raw.info[trans]['trans'],
                                   raw2.info[trans]['trans'])

                # check transformation 'from' and 'to'
                if trans.startswith('dev'):
                    from_id = FIFF.FIFFV_COORD_DEVICE
                else:
                    from_id = FIFF.FIFFV_MNE_COORD_CTF_HEAD
                if trans[4:8] == 'head':
                    to_id = FIFF.FIFFV_COORD_HEAD
                else:
                    to_id = FIFF.FIFFV_MNE_COORD_CTF_HEAD
                for raw_ in [raw, raw2]:
                    assert_true(raw_.info[trans]['from'] == from_id)
                    assert_true(raw_.info[trans]['to'] == to_id)

        if fname_in == fif_fname or fname_in == fif_fname + '.gz':
            assert_allclose(raw.info['dig'][0]['r'], raw2.info['dig'][0]['r'])

    # test warnings on bad filenames
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")
        raw_badname = op.join(tempdir, 'test-bad-name.fif.gz')
        raw.save(raw_badname)
        Raw(raw_badname)
    assert_true(len(w) > 0)  # len(w) should be 2 but Travis sometimes has more


def test_io_complex():
    """Test IO with complex data types
    """
    dtypes = [np.complex64, np.complex128]

    raw = Raw(fif_fname, preload=True)
    picks = np.arange(5)
    start, stop = raw.time_as_index([0, 5])

    data_orig, _ = raw[picks, start:stop]

    for di, dtype in enumerate(dtypes):
        imag_rand = np.array(1j * np.random.randn(data_orig.shape[0],
                             data_orig.shape[1]), dtype)

        raw_cp = raw.copy()
        raw_cp._data = np.array(raw_cp._data, dtype)
        raw_cp._data[picks, start:stop] += imag_rand
        # this should throw an error because it's complex
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter('always')
            raw_cp.save(op.join(tempdir, 'raw.fif'), picks, tmin=0, tmax=5,
                        overwrite=True)
            # warning gets thrown on every instance b/c simplifilter('always')
            assert_equal(len(w), 1)

        raw2 = Raw(op.join(tempdir, 'raw.fif'))
        raw2_data, _ = raw2[picks, :]
        n_samp = raw2_data.shape[1]
        assert_allclose(raw2_data[:, :n_samp], raw_cp._data[picks, :n_samp])
        # with preloading
        raw2 = Raw(op.join(tempdir, 'raw.fif'), preload=True)
        raw2_data, _ = raw2[picks, :]
        n_samp = raw2_data.shape[1]
        assert_allclose(raw2_data[:, :n_samp], raw_cp._data[picks, :n_samp])


def test_getitem():
    """Test getitem/indexing of Raw
    """
    for preload in [False, True, 'memmap.dat']:
        raw = Raw(fif_fname, preload=preload)
        data, times = raw[0, :]
        data1, times1 = raw[0]
        assert_array_equal(data, data1)
        assert_array_equal(times, times1)
        data, times = raw[0:2, :]
        data1, times1 = raw[0:2]
        assert_array_equal(data, data1)
        assert_array_equal(times, times1)
        data1, times1 = raw[[0, 1]]
        assert_array_equal(data, data1)
        assert_array_equal(times, times1)


def test_proj():
    """Test SSP proj operations
    """
    for proj in [True, False]:
        raw = Raw(fif_fname, preload=False, proj=proj)
        assert_true(all(p['active'] == proj for p in raw.info['projs']))

        data, times = raw[0:2, :]
        data1, times1 = raw[0:2]
        assert_array_equal(data, data1)
        assert_array_equal(times, times1)

        # test adding / deleting proj
        if proj:
            assert_raises(ValueError, raw.add_proj, [],
                          {'remove_existing': True})
            assert_raises(ValueError, raw.del_proj, 0)
        else:
            projs = deepcopy(raw.info['projs'])
            n_proj = len(raw.info['projs'])
            raw.del_proj(0)
            assert_true(len(raw.info['projs']) == n_proj - 1)
            raw.add_proj(projs, remove_existing=False)
            assert_true(len(raw.info['projs']) == 2 * n_proj - 1)
            raw.add_proj(projs, remove_existing=True)
            assert_true(len(raw.info['projs']) == n_proj)

    # test apply_proj() with and without preload
    for preload in [True, False]:
        raw = Raw(fif_fname, preload=preload, proj=False)
        data, times = raw[:, 0:2]
        raw.apply_proj()
        data_proj_1 = np.dot(raw._projector, data)

        # load the file again without proj
        raw = Raw(fif_fname, preload=preload, proj=False)

        # write the file with proj. activated, make sure proj has been applied
        raw.save(op.join(tempdir, 'raw.fif'), proj=True, overwrite=True)
        raw2 = Raw(op.join(tempdir, 'raw.fif'), proj=False)
        data_proj_2, _ = raw2[:, 0:2]
        assert_allclose(data_proj_1, data_proj_2)
        assert_true(all(p['active'] for p in raw2.info['projs']))

        # read orig file with proj. active
        raw2 = Raw(fif_fname, preload=preload, proj=True)
        data_proj_2, _ = raw2[:, 0:2]
        assert_allclose(data_proj_1, data_proj_2)
        assert_true(all(p['active'] for p in raw2.info['projs']))

        # test that apply_proj works
        raw.apply_proj()
        data_proj_2, _ = raw[:, 0:2]
        assert_allclose(data_proj_1, data_proj_2)
        assert_allclose(data_proj_2, np.dot(raw._projector, data_proj_2))


def test_preload_modify():
    """Test preloading and modifying data
    """
    for preload in [False, True, 'memmap.dat']:
        raw = Raw(fif_fname, preload=preload)

        nsamp = raw.last_samp - raw.first_samp + 1
        picks = pick_types(raw.info, meg='grad', exclude='bads')

        data = np.random.randn(len(picks), nsamp // 2)

        try:
            raw[picks, :nsamp // 2] = data
        except RuntimeError as err:
            if not preload:
                continue
            else:
                raise err

        tmp_fname = op.join(tempdir, 'raw.fif')
        raw.save(tmp_fname, overwrite=True)

        raw_new = Raw(tmp_fname)
        data_new, _ = raw_new[picks, :nsamp / 2]

        assert_allclose(data, data_new)


def test_filter():
    """Test filtering (FIR and IIR) and Raw.apply_function interface
    """
    raw = Raw(fif_fname, preload=True).crop(0, 7, False)
    sig_dec = 11
    sig_dec_notch = 12
    sig_dec_notch_fit = 12
    picks_meg = pick_types(raw.info, meg=True, exclude='bads')
    picks = picks_meg[:4]

    raw_lp = raw.copy()
    raw_lp.filter(0., 4.0 - 0.25, picks=picks, n_jobs=2)

    raw_hp = raw.copy()
    raw_hp.filter(8.0 + 0.25, None, picks=picks, n_jobs=2)

    raw_bp = raw.copy()
    raw_bp.filter(4.0 + 0.25, 8.0 - 0.25, picks=picks)

    raw_bs = raw.copy()
    raw_bs.filter(8.0 + 0.25, 4.0 - 0.25, picks=picks, n_jobs=2)

    data, _ = raw[picks, :]

    lp_data, _ = raw_lp[picks, :]
    hp_data, _ = raw_hp[picks, :]
    bp_data, _ = raw_bp[picks, :]
    bs_data, _ = raw_bs[picks, :]

    assert_array_almost_equal(data, lp_data + bp_data + hp_data, sig_dec)
    assert_array_almost_equal(data, bp_data + bs_data, sig_dec)

    raw_lp_iir = raw.copy()
    raw_lp_iir.filter(0., 4.0, picks=picks, n_jobs=2, method='iir')
    raw_hp_iir = raw.copy()
    raw_hp_iir.filter(8.0, None, picks=picks, n_jobs=2, method='iir')
    raw_bp_iir = raw.copy()
    raw_bp_iir.filter(4.0, 8.0, picks=picks, method='iir')
    lp_data_iir, _ = raw_lp_iir[picks, :]
    hp_data_iir, _ = raw_hp_iir[picks, :]
    bp_data_iir, _ = raw_bp_iir[picks, :]
    summation = lp_data_iir + hp_data_iir + bp_data_iir
    assert_array_almost_equal(data[:, 100:-100], summation[:, 100:-100],
                              sig_dec)

    # make sure we didn't touch other channels
    data, _ = raw[picks_meg[4:], :]
    bp_data, _ = raw_bp[picks_meg[4:], :]
    assert_array_equal(data, bp_data)
    bp_data_iir, _ = raw_bp_iir[picks_meg[4:], :]
    assert_array_equal(data, bp_data_iir)

    # do a very simple check on line filtering
    raw_bs = raw.copy()
    with warnings.catch_warnings(record=True):
        warnings.simplefilter('always')
        raw_bs.filter(60.0 + 0.5, 60.0 - 0.5, picks=picks, n_jobs=2)
        data_bs, _ = raw_bs[picks, :]
        raw_notch = raw.copy()
        raw_notch.notch_filter(60.0, picks=picks, n_jobs=2, method='fft')
    data_notch, _ = raw_notch[picks, :]
    assert_array_almost_equal(data_bs, data_notch, sig_dec_notch)

    # now use the sinusoidal fitting
    raw_notch = raw.copy()
    raw_notch.notch_filter(None, picks=picks, n_jobs=2, method='spectrum_fit')
    data_notch, _ = raw_notch[picks, :]
    data, _ = raw[picks, :]
    assert_array_almost_equal(data, data_notch, sig_dec_notch_fit)


def test_crop():
    """Test cropping raw files
    """
    # split a concatenated file to test a difficult case
    raw = Raw([fif_fname, fif_fname], preload=False)
    split_size = 10.  # in seconds
    sfreq = raw.info['sfreq']
    nsamp = (raw.last_samp - raw.first_samp + 1)

    # do an annoying case (off-by-one splitting)
    tmins = np.r_[1., np.round(np.arange(0., nsamp - 1, split_size * sfreq))]
    tmins = np.sort(tmins)
    tmaxs = np.concatenate((tmins[1:] - 1, [nsamp - 1]))
    tmaxs /= sfreq
    tmins /= sfreq
    raws = [None] * len(tmins)
    for ri, (tmin, tmax) in enumerate(zip(tmins, tmaxs)):
        raws[ri] = raw.crop(tmin, tmax, True)
    all_raw_2 = concatenate_raws(raws, preload=False)
    assert_true(raw.first_samp == all_raw_2.first_samp)
    assert_true(raw.last_samp == all_raw_2.last_samp)
    assert_array_equal(raw[:, :][0], all_raw_2[:, :][0])

    tmins = np.round(np.arange(0., nsamp - 1, split_size * sfreq))
    tmaxs = np.concatenate((tmins[1:] - 1, [nsamp - 1]))
    tmaxs /= sfreq
    tmins /= sfreq

    # going in revere order so the last fname is the first file (need it later)
    raws = [None] * len(tmins)
    for ri, (tmin, tmax) in enumerate(zip(tmins, tmaxs)):
        raws[ri] = raw.copy()
        raws[ri].crop(tmin, tmax, False)
    # test concatenation of split file
    all_raw_1 = concatenate_raws(raws, preload=False)

    all_raw_2 = raw.crop(0, None, True)
    for ar in [all_raw_1, all_raw_2]:
        assert_true(raw.first_samp == ar.first_samp)
        assert_true(raw.last_samp == ar.last_samp)
        assert_array_equal(raw[:, :][0], ar[:, :][0])


def test_resample():
    """Test resample (with I/O and multiple files)
    """
    raw = Raw(fif_fname, preload=True).crop(0, 3, False)
    raw_resamp = raw.copy()
    sfreq = raw.info['sfreq']
    # test parallel on upsample
    raw_resamp.resample(sfreq * 2, n_jobs=2)
    assert_true(raw_resamp.n_times == len(raw_resamp._times))
    raw_resamp.save(op.join(tempdir, 'raw_resamp-raw.fif'))
    raw_resamp = Raw(op.join(tempdir, 'raw_resamp-raw.fif'), preload=True)
    assert_true(sfreq == raw_resamp.info['sfreq'] / 2)
    assert_true(raw.n_times == raw_resamp.n_times / 2)
    assert_true(raw_resamp._data.shape[1] == raw_resamp.n_times)
    assert_true(raw._data.shape[0] == raw_resamp._data.shape[0])
    # test non-parallel on downsample
    raw_resamp.resample(sfreq, n_jobs=1)
    assert_true(raw_resamp.info['sfreq'] == sfreq)
    assert_true(raw._data.shape == raw_resamp._data.shape)
    assert_true(raw.first_samp == raw_resamp.first_samp)
    assert_true(raw.last_samp == raw.last_samp)
    # upsampling then downsampling doubles resampling error, but this still
    # works (hooray). Note that the stim channels had to be sub-sampled
    # without filtering to be accurately preserved
    # note we have to treat MEG and EEG+STIM channels differently (tols)
    assert_allclose(raw._data[:306, 200:-200],
                    raw_resamp._data[:306, 200:-200],
                    rtol=1e-2, atol=1e-12)
    assert_allclose(raw._data[306:, 200:-200],
                    raw_resamp._data[306:, 200:-200],
                    rtol=1e-2, atol=1e-7)

    # now check multiple file support w/resampling, as order of operations
    # (concat, resample) should not affect our data
    raw1 = raw.copy()
    raw2 = raw.copy()
    raw3 = raw.copy()
    raw4 = raw.copy()
    raw1 = concatenate_raws([raw1, raw2])
    raw1.resample(10)
    raw3.resample(10)
    raw4.resample(10)
    raw3 = concatenate_raws([raw3, raw4])
    assert_array_equal(raw1._data, raw3._data)
    assert_array_equal(raw1._first_samps, raw3._first_samps)
    assert_array_equal(raw1._last_samps, raw3._last_samps)
    assert_array_equal(raw1._raw_lengths, raw3._raw_lengths)
    assert_equal(raw1.first_samp, raw3.first_samp)
    assert_equal(raw1.last_samp, raw3.last_samp)
    assert_equal(raw1.info['sfreq'], raw3.info['sfreq'])


def test_hilbert():
    """Test computation of analytic signal using hilbert
    """
    raw = Raw(fif_fname, preload=True)
    picks_meg = pick_types(raw.info, meg=True, exclude='bads')
    picks = picks_meg[:4]

    raw2 = raw.copy()
    raw.apply_hilbert(picks)
    raw2.apply_hilbert(picks, envelope=True, n_jobs=2)

    env = np.abs(raw._data[picks, :])
    assert_allclose(env, raw2._data[picks, :], rtol=1e-2, atol=1e-13)


def test_raw_copy():
    """Test Raw copy
    """
    raw = Raw(fif_fname, preload=True)
    data, _ = raw[:, :]
    copied = raw.copy()
    copied_data, _ = copied[:, :]
    assert_array_equal(data, copied_data)
    assert_equal(sorted(raw.__dict__.keys()),
                 sorted(copied.__dict__.keys()))

    raw = Raw(fif_fname, preload=False)
    data, _ = raw[:, :]
    copied = raw.copy()
    copied_data, _ = copied[:, :]
    assert_array_equal(data, copied_data)
    assert_equal(sorted(raw.__dict__.keys()),
                 sorted(copied.__dict__.keys()))


@requires_nitime
def test_raw_to_nitime():
    """ Test nitime export """
    raw = Raw(fif_fname, preload=True)
    picks_meg = pick_types(raw.info, meg=True, exclude='bads')
    picks = picks_meg[:4]
    raw_ts = raw.to_nitime(picks=picks)
    assert_true(raw_ts.data.shape[0] == len(picks))

    raw = Raw(fif_fname, preload=False)
    picks_meg = pick_types(raw.info, meg=True, exclude='bads')
    picks = picks_meg[:4]
    raw_ts = raw.to_nitime(picks=picks)
    assert_true(raw_ts.data.shape[0] == len(picks))

    raw = Raw(fif_fname, preload=True)
    picks_meg = pick_types(raw.info, meg=True, exclude='bads')
    picks = picks_meg[:4]
    raw_ts = raw.to_nitime(picks=picks, copy=False)
    assert_true(raw_ts.data.shape[0] == len(picks))

    raw = Raw(fif_fname, preload=False)
    picks_meg = pick_types(raw.info, meg=True, exclude='bads')
    picks = picks_meg[:4]
    raw_ts = raw.to_nitime(picks=picks, copy=False)
    assert_true(raw_ts.data.shape[0] == len(picks))


@requires_pandas
def test_as_data_frame():
    """Test raw Pandas exporter"""
    raw = Raw(fif_fname, preload=True)
    df = raw.as_data_frame()
    assert_true((df.columns == raw.ch_names).all())
    df = raw.as_data_frame(use_time_index=False)
    assert_true('time' in df.columns)
    assert_array_equal(df.values[:, 1], raw._data[0] * 1e13)
    assert_array_equal(df.values[:, 3], raw._data[2] * 1e15)


def test_raw_index_as_time():
    """ Test index as time conversion"""
    raw = Raw(fif_fname, preload=True)
    t0 = raw.index_as_time([0], True)[0]
    t1 = raw.index_as_time([100], False)[0]
    t2 = raw.index_as_time([100], True)[0]
    assert_true((t2 - t1) == t0)
    # ensure we can go back and forth
    t3 = raw.index_as_time(raw.time_as_index([0], True), True)
    assert_array_almost_equal(t3, [0.0], 2)
    t3 = raw.index_as_time(raw.time_as_index(raw.info['sfreq'], True), True)
    assert_array_almost_equal(t3, [raw.info['sfreq']], 2)
    t3 = raw.index_as_time(raw.time_as_index(raw.info['sfreq'], False), False)
    assert_array_almost_equal(t3, [raw.info['sfreq']], 2)
    i0 = raw.time_as_index(raw.index_as_time([0], True), True)
    assert_true(i0[0] == 0)
    i1 = raw.time_as_index(raw.index_as_time([100], True), True)
    assert_true(i1[0] == 100)
    # Have to add small amount of time because we truncate via int casting
    i1 = raw.time_as_index(raw.index_as_time([100.0001], False), False)
    assert_true(i1[0] == 100)


def test_raw_time_as_index():
    """ Test time as index conversion"""
    raw = Raw(fif_fname, preload=True)
    first_samp = raw.time_as_index([0], True)[0]
    assert_true(raw.first_samp == -first_samp)


def test_save():
    """ Test saving raw"""
    raw = Raw(fif_fname, preload=False)
    # can't write over file being read
    assert_raises(ValueError, raw.save, fif_fname)
    raw = Raw(fif_fname, preload=True)
    # can't overwrite file without overwrite=True
    assert_raises(IOError, raw.save, fif_fname)

    # test abspath support
    new_fname = op.join(op.abspath(op.curdir), 'break-raw.fif')
    raw.save(op.join(tempdir, new_fname), overwrite=True)
    new_raw = Raw(op.join(tempdir, new_fname), preload=False)
    assert_raises(ValueError, new_raw.save, new_fname)
    # make sure we can overwrite the file we loaded when preload=True
    new_raw = Raw(op.join(tempdir, new_fname), preload=True)
    new_raw.save(op.join(tempdir, new_fname), overwrite=True)
    os.remove(new_fname)


def test_with_statement():
    """ Test with statement """
    for preload in [True, False]:
        with Raw(fif_fname, preload=preload) as raw_:
            print(raw_)


def test_compensation_raw():
    """Test Raw compensation
    """
    raw1 = Raw(ctf_comp_fname, compensation=None)
    assert_true(raw1.comp is None)
    data1, times1 = raw1[:, :]
    raw2 = Raw(ctf_comp_fname, compensation=3)
    data2, times2 = raw2[:, :]
    assert_true(raw2.comp is None)  # unchanged (data come with grade 3)
    assert_array_equal(times1, times2)
    assert_array_equal(data1, data2)
    raw3 = Raw(ctf_comp_fname, compensation=1)
    data3, times3 = raw3[:, :]
    assert_true(raw3.comp is not None)
    assert_array_equal(times1, times3)
    # make sure it's different with a different compensation:
    assert_true(np.mean(np.abs(data1 - data3)) > 1e-12)
    assert_raises(ValueError, Raw, ctf_comp_fname, compensation=33)

    # Try IO with compensation
    temp_file = op.join(tempdir, 'raw.fif')

    raw1.save(temp_file, overwrite=True)
    raw4 = Raw(temp_file)
    data4, times4 = raw4[:, :]
    assert_array_equal(times1, times4)
    assert_array_equal(data1, data4)

    # Now save the file that has modified compensation
    # and make sure we can the same data as input ie. compensation
    # is undone
    raw3.save(temp_file, overwrite=True)
    raw5 = Raw(temp_file)
    data5, times5 = raw5[:, :]
    assert_array_equal(times1, times5)
    assert_allclose(data1, data5, rtol=1e-12, atol=1e-22)


@requires_mne
def test_compensation_raw_mne():
    """Test Raw compensation by comparing with MNE
    """
    def compensate_mne(fname, grad):
        tmp_fname = op.join(tempdir, 'mne_ctf_test_raw.fif')
        cmd = ['mne_process_raw', '--raw', fname, '--save', tmp_fname,
               '--grad', str(grad), '--projoff', '--filteroff']
        run_subprocess(cmd)
        return Raw(tmp_fname, preload=True)

    for grad in [0, 2, 3]:
        raw_py = Raw(ctf_comp_fname, preload=True, compensation=grad)
        raw_c = compensate_mne(ctf_comp_fname, grad)
        assert_allclose(raw_py._data, raw_c._data, rtol=1e-6, atol=1e-17)


def test_set_eeg_reference():
    """ Test rereference eeg data"""
    raw = Raw(fif_fname, preload=True)

    # Rereference raw data by creating a copy of original data
    reref, ref_data = set_eeg_reference(raw, ['EEG 001', 'EEG 002'], copy=True)

    # Separate EEG channels from other channel types
    picks_eeg = pick_types(raw.info, meg=False, eeg=True, exclude='bads')
    picks_other = pick_types(raw.info, meg=True, eeg=False, eog=True,
                             stim=True, exclude='bads')

    # Get the raw EEG data and other channel data
    raw_eeg_data = raw[picks_eeg][0]
    raw_other_data = raw[picks_other][0]

    # Get the rereferenced EEG data and channel other
    reref_eeg_data = reref[picks_eeg][0]
    unref_eeg_data = reref_eeg_data + ref_data
    # Undo rereferencing of EEG channels
    reref_other_data = reref[picks_other][0]

    # Check that both EEG data and other data is the same
    assert_array_equal(raw_eeg_data, unref_eeg_data)
    assert_array_equal(raw_other_data, reref_other_data)

    # Test that data is modified in place when copy=False
    reref, ref_data = set_eeg_reference(raw, ['EEG 001', 'EEG 002'],
                                        copy=False)
    assert_true(raw is reref)


def test_drop_channels_mixin():
    """Test channels-dropping functionality
    """
    raw = Raw(fif_fname, preload=True)
    drop_ch = raw.ch_names[:3]
    ch_names = raw.ch_names[3:]

    ch_names_orig = raw.ch_names
    dummy = raw.drop_channels(drop_ch, copy=True)
    assert_equal(ch_names, dummy.ch_names)
    assert_equal(ch_names_orig, raw.ch_names)
    assert_equal(len(ch_names_orig), raw._data.shape[0])

    raw.drop_channels(drop_ch)
    assert_equal(ch_names, raw.ch_names)
    assert_equal(len(ch_names), len(raw.cals))
    assert_equal(len(ch_names), raw._data.shape[0])


def test_pick_channels_mixin():
    """Test channel-picking functionality
    """
    # preload is True

    raw = Raw(fif_fname, preload=True)
    ch_names = raw.ch_names[:3]

    ch_names_orig = raw.ch_names
    dummy = raw.pick_channels(ch_names, copy=True)  # copy is True
    assert_equal(ch_names, dummy.ch_names)
    assert_equal(ch_names_orig, raw.ch_names)
    assert_equal(len(ch_names_orig), raw._data.shape[0])

    raw.pick_channels(ch_names, copy=False)  # copy is False
    assert_equal(ch_names, raw.ch_names)
    assert_equal(len(ch_names), len(raw.cals))
    assert_equal(len(ch_names), raw._data.shape[0])

    raw = Raw(fif_fname, preload=False)
    assert_raises(RuntimeError, raw.pick_channels, ch_names)
    assert_raises(RuntimeError, raw.drop_channels, ch_names)


def test_equalize_channels():
    """Test equalization of channels
    """
    raw1 = Raw(fif_fname, preload=True)

    raw2 = raw1.copy()
    ch_names = raw1.ch_names[2:]
    raw1.drop_channels(raw1.ch_names[:1])
    raw2.drop_channels(raw2.ch_names[1:2])
    my_comparison = [raw1, raw2]
    equalize_channels(my_comparison)
    for e in my_comparison:
        assert_equal(ch_names, e.ch_names)