1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
|
"""Conversion tool from SQD to FIF
RawKIT class is adapted from Denis Engemann et al.'s mne_bti2fiff.py
"""
# Author: Teon Brooks <teon@nyu.edu>
#
# License: BSD (3-clause)
import os
from os import SEEK_CUR
from struct import unpack
import time
import numpy as np
from scipy import linalg
from ..pick import pick_types
from ...coreg import (read_elp, fit_matched_points, _decimate_points,
get_ras_to_neuromag_trans)
from ...utils import verbose, logger
from ...transforms import apply_trans, als_ras_trans, als_ras_trans_mm
from ..base import _BaseRaw
from ..constants import FIFF
from ..meas_info import Info
from ..tag import _loc_to_trans
from .constants import KIT, KIT_NY, KIT_AD
from .coreg import read_hsp, read_mrk
from ...externals.six import string_types
class RawKIT(_BaseRaw):
"""Raw object from KIT SQD file adapted from bti/raw.py
Parameters
----------
input_fname : str
Path to the sqd file.
mrk : None | str | array_like, shape = (5, 3) | list of str or array_like
Marker points representing the location of the marker coils with
respect to the MEG Sensors, or path to a marker file.
If list, all of the markers will be averaged together.
elp : None | str | array_like, shape = (8, 3)
Digitizer points representing the location of the fiducials and the
marker coils with respect to the digitized head shape, or path to a
file containing these points.
hsp : None | str | array, shape = (n_points, 3)
Digitizer head shape points, or path to head shape file. If more than
10`000 points are in the head shape, they are automatically decimated.
stim : list of int | '<' | '>'
Channel-value correspondence when converting KIT trigger channels to a
Neuromag-style stim channel. For '<', the largest values are assigned
to the first channel (default). For '>', the largest values are
assigned to the last channel. Can also be specified as a list of
trigger channel indexes.
slope : '+' | '-'
How to interpret values on KIT trigger channels when synthesizing a
Neuromag-style stim channel. With '+', a positive slope (low-to-high)
is interpreted as an event. With '-', a negative slope (high-to-low)
is interpreted as an event.
stimthresh : float
The threshold level for accepting voltage changes in KIT trigger
channels as a trigger event.
preload : bool
If True, all data are loaded at initialization.
If False, data are not read until save.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
See Also
--------
mne.io.Raw : Documentation of attribute and methods.
"""
@verbose
def __init__(self, input_fname, mrk=None, elp=None, hsp=None, stim='>',
slope='-', stimthresh=1, preload=False, verbose=None):
logger.info('Extracting SQD Parameters from %s...' % input_fname)
input_fname = os.path.abspath(input_fname)
self._sqd_params = get_sqd_params(input_fname)
self._sqd_params['stimthresh'] = stimthresh
self._sqd_params['fname'] = input_fname
logger.info('Creating Raw.info structure...')
# Raw attributes
self.verbose = verbose
self.preload = False
self._projector = None
self.first_samp = 0
self.last_samp = self._sqd_params['nsamples'] - 1
self.comp = None # no compensation for KIT
self.proj = False
# Create raw.info dict for raw fif object with SQD data
self.info = Info()
self.info['meas_id'] = None
self.info['file_id'] = None
self.info['meas_date'] = int(time.time())
self.info['projs'] = []
self.info['comps'] = []
self.info['lowpass'] = self._sqd_params['lowpass']
self.info['highpass'] = self._sqd_params['highpass']
self.info['sfreq'] = float(self._sqd_params['sfreq'])
# meg channels plus synthetic channel
self.info['nchan'] = self._sqd_params['nchan'] + 1
self.info['bads'] = []
self.info['acq_pars'], self.info['acq_stim'] = None, None
self.info['filename'] = None
self.info['ctf_head_t'] = None
self.info['dev_ctf_t'] = []
self._filenames = []
self.info['dig'] = None
self.info['dev_head_t'] = None
if isinstance(mrk, list):
mrk = [read_mrk(marker) if isinstance(marker, string_types)
else marker for marker in mrk]
mrk = np.mean(mrk, axis=0)
if (mrk is not None and elp is not None and hsp is not None):
self._set_dig_kit(mrk, elp, hsp)
elif (mrk is not None or elp is not None or hsp is not None):
err = ("mrk, elp and hsp need to be provided as a group (all or "
"none)")
raise ValueError(err)
# Creates a list of dicts of meg channels for raw.info
logger.info('Setting channel info structure...')
ch_names = {}
ch_names['MEG'] = ['MEG %03d' % ch for ch
in range(1, self._sqd_params['n_sens'] + 1)]
ch_names['MISC'] = ['MISC %03d' % ch for ch
in range(1, self._sqd_params['nmiscchan'] + 1)]
ch_names['STIM'] = ['STI 014']
locs = self._sqd_params['sensor_locs']
chan_locs = apply_trans(als_ras_trans, locs[:, :3])
chan_angles = locs[:, 3:]
self.info['chs'] = []
for idx, ch_info in enumerate(zip(ch_names['MEG'], chan_locs,
chan_angles), 1):
ch_name, ch_loc, ch_angles = ch_info
chan_info = {}
chan_info['cal'] = KIT.CALIB_FACTOR
chan_info['logno'] = idx
chan_info['scanno'] = idx
chan_info['range'] = KIT.RANGE
chan_info['unit_mul'] = KIT.UNIT_MUL
chan_info['ch_name'] = ch_name
chan_info['unit'] = FIFF.FIFF_UNIT_T
chan_info['coord_frame'] = FIFF.FIFFV_COORD_DEVICE
if idx <= self._sqd_params['nmegchan']:
chan_info['coil_type'] = FIFF.FIFFV_COIL_KIT_GRAD
chan_info['kind'] = FIFF.FIFFV_MEG_CH
else:
chan_info['coil_type'] = FIFF.FIFFV_COIL_KIT_REF_MAG
chan_info['kind'] = FIFF.FIFFV_REF_MEG_CH
chan_info['eeg_loc'] = None
# create three orthogonal vector
# ch_angles[0]: theta, ch_angles[1]: phi
ch_angles = np.radians(ch_angles)
x = np.sin(ch_angles[0]) * np.cos(ch_angles[1])
y = np.sin(ch_angles[0]) * np.sin(ch_angles[1])
z = np.cos(ch_angles[0])
vec_z = np.array([x, y, z])
length = linalg.norm(vec_z)
vec_z /= length
vec_x = np.zeros(vec_z.size, dtype=np.float)
if vec_z[1] < vec_z[2]:
if vec_z[0] < vec_z[1]:
vec_x[0] = 1.0
else:
vec_x[1] = 1.0
elif vec_z[0] < vec_z[2]:
vec_x[0] = 1.0
else:
vec_x[2] = 1.0
vec_x -= np.sum(vec_x * vec_z) * vec_z
length = linalg.norm(vec_x)
vec_x /= length
vec_y = np.cross(vec_z, vec_x)
# transform to Neuromag like coordinate space
vecs = np.vstack((vec_x, vec_y, vec_z))
vecs = apply_trans(als_ras_trans, vecs)
chan_info['loc'] = np.vstack((ch_loc, vecs)).ravel()
chan_info['coil_trans'] = _loc_to_trans(chan_info['loc'])
self.info['chs'].append(chan_info)
# label trigger and misc channels
for idy, ch_name in enumerate(ch_names['MISC'] + ch_names['STIM'],
self._sqd_params['n_sens']):
chan_info = {}
chan_info['cal'] = KIT.CALIB_FACTOR
chan_info['logno'] = idy
chan_info['scanno'] = idy
chan_info['range'] = 1.0
chan_info['unit'] = FIFF.FIFF_UNIT_V
chan_info['unit_mul'] = 0 # default is 0 mne_manual p.273
chan_info['ch_name'] = ch_name
chan_info['coil_type'] = FIFF.FIFFV_COIL_NONE
chan_info['loc'] = np.zeros(12)
if ch_name.startswith('STI'):
chan_info['unit'] = FIFF.FIFF_UNIT_NONE
chan_info['kind'] = FIFF.FIFFV_STIM_CH
else:
chan_info['kind'] = FIFF.FIFFV_MISC_CH
self.info['chs'].append(chan_info)
self.info['ch_names'] = (ch_names['MEG'] + ch_names['MISC'] +
ch_names['STIM'])
self._set_stimchannels(stim, slope)
if preload:
self.preload = preload
logger.info('Reading raw data from %s...' % input_fname)
self._data, _ = self._read_segment()
assert len(self._data) == self.info['nchan']
# Create a synthetic channel
stim = self._sqd_params['stim']
trig_chs = self._data[stim, :]
if slope == '+':
trig_chs = trig_chs > stimthresh
elif slope == '-':
trig_chs = trig_chs < stimthresh
else:
raise ValueError("slope needs to be '+' or '-'")
trig_vals = np.array(2 ** np.arange(len(stim)), ndmin=2).T
trig_chs = trig_chs * trig_vals
stim_ch = trig_chs.sum(axis=0)
self._data[-1, :] = stim_ch
# Add time info
self.first_samp, self.last_samp = 0, self._data.shape[1] - 1
self._times = np.arange(self.first_samp, self.last_samp + 1,
dtype=np.float64)
self._times /= self.info['sfreq']
logger.info(' Range : %d ... %d = %9.3f ... %9.3f secs'
% (self.first_samp, self.last_samp,
float(self.first_samp) / self.info['sfreq'],
float(self.last_samp) / self.info['sfreq']))
logger.info('Ready.')
def __repr__(self):
s = ('%r' % os.path.basename(self._sqd_params['fname']),
"n_channels x n_times : %s x %s" % (len(self.info['ch_names']),
self.last_samp -
self.first_samp + 1))
return "<RawKIT | %s>" % ', '.join(s)
def read_stim_ch(self, buffer_size=1e5):
"""Read events from data
Parameter
---------
buffer_size : int
The size of chunk to by which the data are scanned.
Returns
-------
events : array, [samples]
The event vector (1 x samples).
"""
buffer_size = int(buffer_size)
start = int(self.first_samp)
stop = int(self.last_samp + 1)
pick = pick_types(self.info, meg=False, ref_meg=False,
stim=True, exclude=[])
stim_ch = np.empty((1, stop), dtype=np.int)
for b_start in range(start, stop, buffer_size):
b_stop = b_start + buffer_size
x, _ = self._read_segment(start=b_start, stop=b_stop, sel=pick)
stim_ch[:, b_start:b_start + x.shape[1]] = x
return stim_ch
def _read_segment(self, start=0, stop=None, sel=None, verbose=None,
projector=None):
"""Read a chunk of raw data
Parameters
----------
start : int, (optional)
first sample to include (first is 0). If omitted, defaults to the
first sample in data.
stop : int, (optional)
First sample to not include.
If omitted, data is included to the end.
sel : array, optional
Indices of channels to select.
projector : array
SSP operator to apply to the data.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
data : array, [channels x samples]
the data matrix (channels x samples).
times : array, [samples]
returns the time values corresponding to the samples.
"""
if sel is None:
sel = list(range(self.info['nchan']))
elif len(sel) == 1 and sel[0] == 0 and start == 0 and stop == 1:
return (666, 666)
if projector is not None:
raise NotImplementedError('Currently does not handle projections.')
if stop is None:
stop = self.last_samp + 1
elif stop > self.last_samp + 1:
stop = self.last_samp + 1
# Initial checks
start = int(start)
stop = int(stop)
if start >= stop:
raise ValueError('No data in this range')
logger.info('Reading %d ... %d = %9.3f ... %9.3f secs...' %
(start, stop - 1, start / float(self.info['sfreq']),
(stop - 1) / float(self.info['sfreq'])))
with open(self._sqd_params['fname'], 'rb', buffering=0) as fid:
# extract data
fid.seek(KIT.DATA_OFFSET)
# data offset info
data_offset = unpack('i', fid.read(KIT.INT))[0]
nchan = self._sqd_params['nchan']
buffer_size = stop - start
count = buffer_size * nchan
pointer = start * nchan * KIT.SHORT
fid.seek(data_offset + pointer)
data = np.fromfile(fid, dtype='h', count=count)
data = data.reshape((buffer_size, nchan))
# amplifier applies only to the sensor channels
n_sens = self._sqd_params['n_sens']
sensor_gain = np.copy(self._sqd_params['sensor_gain'])
sensor_gain[:n_sens] = (sensor_gain[:n_sens] /
self._sqd_params['amp_gain'])
conv_factor = np.array((KIT.VOLTAGE_RANGE /
self._sqd_params['DYNAMIC_RANGE'])
* sensor_gain, ndmin=2)
data = conv_factor * data
data = data.T
# Create a synthetic channel
trig_chs = data[self._sqd_params['stim'], :]
if self._sqd_params['slope'] == '+':
trig_chs = trig_chs > self._sqd_params['stimthresh']
elif self._sqd_params['slope'] == '-':
trig_chs = trig_chs < self._sqd_params['stimthresh']
else:
raise ValueError("slope needs to be '+' or '-'")
trig_vals = np.array(2 ** np.arange(len(self._sqd_params['stim'])),
ndmin=2).T
trig_chs = trig_chs * trig_vals
stim_ch = np.array(trig_chs.sum(axis=0), ndmin=2)
data = np.vstack((data, stim_ch))
data = data[sel]
logger.info('[done]')
times = np.arange(start, stop) / self.info['sfreq']
return data, times
def _set_dig_kit(self, mrk, elp, hsp, auto_decimate=True):
"""Add landmark points and head shape data to the RawKIT instance
Digitizer data (elp and hsp) are represented in [mm] in the Polhemus
ALS coordinate system.
Parameters
----------
mrk : None | str | array_like, shape = (5, 3)
Marker points representing the location of the marker coils with
respect to the MEG Sensors, or path to a marker file.
elp : None | str | array_like, shape = (8, 3)
Digitizer points representing the location of the fiducials and the
marker coils with respect to the digitized head shape, or path to a
file containing these points.
hsp : None | str | array, shape = (n_points, 3)
Digitizer head shape points, or path to head shape file. If more
than 10`000 points are in the head shape, they are automatically
decimated.
auto_decimate : bool
Decimate hsp points for head shape files with more than 10'000
points.
"""
if isinstance(hsp, string_types):
hsp = read_hsp(hsp)
n_pts = len(hsp)
if n_pts > KIT.DIG_POINTS:
hsp = _decimate_points(hsp, 5)
n_new = len(hsp)
msg = ("The selected head shape contained {n_in} points, which is "
"more than recommended ({n_rec}), and was automatically "
"downsampled to {n_new} points. The preferred way to "
"downsample is using FastScan.")
msg = msg.format(n_in=n_pts, n_rec=KIT.DIG_POINTS, n_new=n_new)
logger.warning(msg)
if isinstance(elp, string_types):
elp_points = read_elp(elp)[:8]
if len(elp) < 8:
err = ("File %r contains fewer than 8 points; got shape "
"%s." % (elp, elp_points.shape))
raise ValueError(err)
elp = elp_points
if isinstance(mrk, string_types):
mrk = read_mrk(mrk)
hsp = apply_trans(als_ras_trans_mm, hsp)
elp = apply_trans(als_ras_trans_mm, elp)
mrk = apply_trans(als_ras_trans, mrk)
nasion, lpa, rpa = elp[:3]
nmtrans = get_ras_to_neuromag_trans(nasion, lpa, rpa)
elp = apply_trans(nmtrans, elp)
hsp = apply_trans(nmtrans, hsp)
# device head transform
trans = fit_matched_points(tgt_pts=elp[3:], src_pts=mrk, out='trans')
self._set_dig_neuromag(elp[:3], elp[3:], hsp, trans)
def _set_dig_neuromag(self, fid, elp, hsp, trans):
"""Fill in the digitizer data using points in neuromag space
Parameters
----------
fid : array, shape = (3, 3)
Digitizer fiducials.
elp : array, shape = (5, 3)
Digitizer ELP points.
hsp : array, shape = (n_points, 3)
Head shape points.
trans : None | array, shape = (4, 4)
Device head transformation.
"""
trans = np.asarray(trans)
if fid.shape != (3, 3):
raise ValueError("fid needs to be a 3 by 3 array")
if elp.shape != (5, 3):
raise ValueError("elp needs to be a 5 by 3 array")
if trans.shape != (4, 4):
raise ValueError("trans needs to be 4 by 4 array")
nasion, lpa, rpa = fid
dig = [{'r': nasion, 'ident': FIFF.FIFFV_POINT_NASION,
'kind': FIFF.FIFFV_POINT_CARDINAL,
'coord_frame': FIFF.FIFFV_COORD_HEAD},
{'r': lpa, 'ident': FIFF.FIFFV_POINT_LPA,
'kind': FIFF.FIFFV_POINT_CARDINAL,
'coord_frame': FIFF.FIFFV_COORD_HEAD},
{'r': rpa, 'ident': FIFF.FIFFV_POINT_RPA,
'kind': FIFF.FIFFV_POINT_CARDINAL,
'coord_frame': FIFF.FIFFV_COORD_HEAD}]
for idx, point in enumerate(elp):
dig.append({'r': point, 'ident': idx, 'kind': FIFF.FIFFV_POINT_HPI,
'coord_frame': FIFF.FIFFV_COORD_HEAD})
for idx, point in enumerate(hsp):
dig.append({'r': point, 'ident': idx,
'kind': FIFF.FIFFV_POINT_EXTRA,
'coord_frame': FIFF.FIFFV_COORD_HEAD})
dev_head_t = {'from': FIFF.FIFFV_COORD_DEVICE,
'to': FIFF.FIFFV_COORD_HEAD, 'trans': trans}
self.info['dig'] = dig
self.info['dev_head_t'] = dev_head_t
def _set_stimchannels(self, stim='<', slope='-'):
"""Specify how the trigger channel is synthesized form analog channels.
Has to be done before loading data. For a RawKIT instance that has been
created with preload=True, this method will raise a
NotImplementedError.
Parameters
----------
stim : list of int | '<' | '>'
Can be submitted as list of trigger channels.
If a list is not specified, the default triggers extracted from
misc channels will be used with specified directionality.
'<' means that largest values assigned to the first channel
in sequence.
'>' means the largest trigger assigned to the last channel
in sequence.
slope : '+' | '-'
'+' means a positive slope (low-to-high) on the event channel(s)
is used to trigger an event.
'-' means a negative slope (high-to-low) on the event channel(s)
is used to trigger an event.
"""
if self.preload:
err = "Can't change stim channel after preloading data"
raise NotImplementedError(err)
self._sqd_params['slope'] = slope
if isinstance(stim, str):
picks = pick_types(self.info, meg=False, ref_meg=False,
misc=True, exclude=[])[:8]
if stim == '<':
stim = picks[::-1]
elif stim == '>':
stim = picks
else:
raise ValueError("stim needs to be list of int, '>' or "
"'<', not %r" % str(stim))
elif np.max(stim) >= self._sqd_params['nchan']:
msg = ("Tried to set stim channel %i, but squid file only has %i"
" channels" % (np.max(stim), self._sqd_params['nchan']))
raise ValueError(msg)
self._sqd_params['stim'] = stim
def get_sqd_params(rawfile):
"""Extracts all the information from the sqd file.
Parameters
----------
rawfile : str
Raw sqd file to be read.
Returns
-------
sqd : dict
A dict containing all the sqd parameter settings.
"""
sqd = dict()
sqd['rawfile'] = rawfile
with open(rawfile, 'rb', buffering=0) as fid: # buffering=0 for np bug
fid.seek(KIT.BASIC_INFO)
basic_offset = unpack('i', fid.read(KIT.INT))[0]
fid.seek(basic_offset)
# skips version, revision, sysid
fid.seek(KIT.INT * 3, SEEK_CUR)
# basic info
sysname = unpack('128s', fid.read(KIT.STRING))
sysname = sysname[0].decode().split('\n')[0]
fid.seek(KIT.STRING, SEEK_CUR) # skips modelname
sqd['nchan'] = unpack('i', fid.read(KIT.INT))[0]
if sysname == 'New York University Abu Dhabi':
KIT_SYS = KIT_AD
elif sysname == 'NYU 160ch System since Jan24 2009':
KIT_SYS = KIT_NY
else:
raise NotImplementedError
# channel locations
fid.seek(KIT_SYS.CHAN_LOC_OFFSET)
chan_offset = unpack('i', fid.read(KIT.INT))[0]
chan_size = unpack('i', fid.read(KIT.INT))[0]
fid.seek(chan_offset)
sensors = []
for i in range(KIT_SYS.N_SENS):
fid.seek(chan_offset + chan_size * i)
sens_type = unpack('i', fid.read(KIT.INT))[0]
if sens_type == 1:
# magnetometer
# x,y,z,theta,phi,coilsize
sensors.append(np.fromfile(fid, dtype='d', count=6))
elif sens_type == 2:
# axialgradiometer
# x,y,z,theta,phi,baseline,coilsize
sensors.append(np.fromfile(fid, dtype='d', count=7))
elif sens_type == 3:
# planargradiometer
# x,y,z,theta,phi,btheta,bphi,baseline,coilsize
sensors.append(np.fromfile(fid, dtype='d', count=9))
elif sens_type == 257:
# reference channels
sensors.append(np.zeros(7))
sqd['i'] = sens_type
sqd['sensor_locs'] = np.array(sensors)
# amplifier gain
fid.seek(KIT_SYS.AMPLIFIER_INFO)
amp_offset = unpack('i', fid.read(KIT_SYS.INT))[0]
fid.seek(amp_offset)
amp_data = unpack('i', fid.read(KIT_SYS.INT))[0]
gain1 = KIT_SYS.GAINS[(KIT_SYS.GAIN1_MASK & amp_data)
>> KIT_SYS.GAIN1_BIT]
gain2 = KIT_SYS.GAINS[(KIT_SYS.GAIN2_MASK & amp_data)
>> KIT_SYS.GAIN2_BIT]
if KIT_SYS.GAIN3_BIT:
gain3 = KIT_SYS.GAINS[(KIT_SYS.GAIN3_MASK & amp_data)
>> KIT_SYS.GAIN3_BIT]
sqd['amp_gain'] = gain1 * gain2 * gain3
else:
sqd['amp_gain'] = gain1 * gain2
# filter settings
sqd['lowpass'] = KIT_SYS.LPFS[(KIT_SYS.LPF_MASK & amp_data)
>> KIT_SYS.LPF_BIT]
sqd['highpass'] = KIT_SYS.HPFS[(KIT_SYS.HPF_MASK & amp_data)
>> KIT_SYS.HPF_BIT]
sqd['notch'] = KIT_SYS.BEFS[(KIT_SYS.BEF_MASK & amp_data)
>> KIT_SYS.BEF_BIT]
# only sensor channels requires gain. the additional misc channels
# (trigger channels, audio and voice channels) are passed
# through unaffected
fid.seek(KIT_SYS.CHAN_SENS)
sens_offset = unpack('i', fid.read(KIT_SYS.INT))[0]
fid.seek(sens_offset)
sens = np.fromfile(fid, dtype='d', count=sqd['nchan'] * 2)
sensitivities = (np.reshape(sens, (sqd['nchan'], 2))
[:KIT_SYS.N_SENS, 1])
sqd['sensor_gain'] = np.ones(KIT_SYS.NCHAN)
sqd['sensor_gain'][:KIT_SYS.N_SENS] = sensitivities
fid.seek(KIT_SYS.SAMPLE_INFO)
acqcond_offset = unpack('i', fid.read(KIT_SYS.INT))[0]
fid.seek(acqcond_offset)
acq_type = unpack('i', fid.read(KIT_SYS.INT))[0]
if acq_type == 1:
sqd['sfreq'] = unpack('d', fid.read(KIT_SYS.DOUBLE))[0]
_ = fid.read(KIT_SYS.INT) # initialized estimate of samples
sqd['nsamples'] = unpack('i', fid.read(KIT_SYS.INT))[0]
else:
err = ("You are probably trying to load a file that is not a "
"continuous recording sqd file.")
raise ValueError(err)
sqd['n_sens'] = KIT_SYS.N_SENS
sqd['nmegchan'] = KIT_SYS.NMEGCHAN
sqd['nmiscchan'] = KIT_SYS.NMISCCHAN
sqd['DYNAMIC_RANGE'] = KIT_SYS.DYNAMIC_RANGE
return sqd
def read_raw_kit(input_fname, mrk=None, elp=None, hsp=None, stim='>',
slope='-', stimthresh=1, preload=False, verbose=None):
"""Reader function for KIT conversion to FIF
Parameters
----------
input_fname : str
Path to the sqd file.
mrk : None | str | array_like, shape = (5, 3) | list of str or array_like
Marker points representing the location of the marker coils with
respect to the MEG Sensors, or path to a marker file.
If list, all of the markers will be averaged together.
elp : None | str | array_like, shape = (8, 3)
Digitizer points representing the location of the fiducials and the
marker coils with respect to the digitized head shape, or path to a
file containing these points.
hsp : None | str | array, shape = (n_points, 3)
Digitizer head shape points, or path to head shape file. If more than
10`000 points are in the head shape, they are automatically decimated.
stim : list of int | '<' | '>'
Channel-value correspondence when converting KIT trigger channels to a
Neuromag-style stim channel. For '<', the largest values are assigned
to the first channel (default). For '>', the largest values are
assigned to the last channel. Can also be specified as a list of
trigger channel indexes.
slope : '+' | '-'
How to interpret values on KIT trigger channels when synthesizing a
Neuromag-style stim channel. With '+', a positive slope (low-to-high)
is interpreted as an event. With '-', a negative slope (high-to-low)
is interpreted as an event.
stimthresh : float
The threshold level for accepting voltage changes in KIT trigger
channels as a trigger event.
preload : bool
If True, all data are loaded at initialization.
If False, data are not read until save.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
"""
return RawKIT(input_fname=input_fname, mrk=mrk, elp=elp, hsp=hsp,
stim=stim, slope=slope, stimthresh=stimthresh,
preload=preload, verbose=verbose)
|