File: pick.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (545 lines) | stat: -rw-r--r-- 17,877 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)

from copy import deepcopy
import re

import numpy as np

from .constants import FIFF
from ..utils import logger, verbose
from ..externals.six import string_types


def channel_type(info, idx):
    """Get channel type

    Parameters
    ----------
    info : dict
        Measurement info
    idx : int
        Index of channel

    Returns
    -------
    type : 'grad' | 'mag' | 'eeg' | 'stim' | 'eog' | 'emg' | 'ecg'
           'ref_meg' | 'resp' | 'exci' | 'ias' | 'syst'
        Type of channel
    """
    kind = info['chs'][idx]['kind']
    if kind == FIFF.FIFFV_MEG_CH:
        if info['chs'][idx]['unit'] == FIFF.FIFF_UNIT_T_M:
            return 'grad'
        elif info['chs'][idx]['unit'] == FIFF.FIFF_UNIT_T:
            return 'mag'
    elif kind == FIFF.FIFFV_REF_MEG_CH:
        return 'ref_meg'
    elif kind == FIFF.FIFFV_EEG_CH:
        return 'eeg'
    elif kind == FIFF.FIFFV_STIM_CH:
        return 'stim'
    elif kind == FIFF.FIFFV_EOG_CH:
        return 'eog'
    elif kind == FIFF.FIFFV_EMG_CH:
        return 'emg'
    elif kind == FIFF.FIFFV_ECG_CH:
        return 'ecg'
    elif kind == FIFF.FIFFV_RESP_CH:
        return 'resp'
    elif kind == FIFF.FIFFV_MISC_CH:
        return 'misc'
    elif kind == FIFF.FIFFV_EXCI_CH:
        return 'exci'
    elif kind == FIFF.FIFFV_IAS_CH:
        return 'ias'
    elif kind == FIFF.FIFFV_SYST_CH:
        return 'syst'
    elif kind in [FIFF.FIFFV_QUAT_0, FIFF.FIFFV_QUAT_1, FIFF.FIFFV_QUAT_2,
                  FIFF.FIFFV_QUAT_3, FIFF.FIFFV_QUAT_4, FIFF.FIFFV_QUAT_5,
                  FIFF.FIFFV_QUAT_6, FIFF.FIFFV_HPI_G, FIFF.FIFFV_HPI_ERR,
                  FIFF.FIFFV_HPI_MOV]:
        return 'chpi'  # channels relative to head position monitoring
    raise Exception('Unknown channel type')


def pick_channels(ch_names, include, exclude=[]):
    """Pick channels by names

    Returns the indices of the good channels in ch_names.

    Parameters
    ----------
    ch_names : list of string
        List of channels.
    include : list of string
        List of channels to include (if empty include all available).
    exclude : list of string
        List of channels to exclude (if empty do not exclude any channel).

    Returns
    -------
    sel : array of int
        Indices of good channels.
    """
    if len(np.unique(ch_names)) != len(ch_names):
        raise RuntimeError('ch_names is not a unique list, picking is unsafe')
    sel = []
    for k, name in enumerate(ch_names):
        if (len(include) == 0 or name in include) and name not in exclude:
            sel.append(k)
    sel = np.unique(sel)
    np.sort(sel)
    return sel


def pick_channels_regexp(ch_names, regexp):
    """Pick channels using regular expression

    Returns the indices of the good channels in ch_names.

    Parameters
    ----------
    ch_names : list of string
        List of channels

    regexp : string
        The regular expression. See python standard module for regular
        expressions.

    Returns
    -------
    sel : array of int
        Indices of good channels.

    Examples
    --------
    >>> pick_channels_regexp(['MEG 2331', 'MEG 2332', 'MEG 2333'], 'MEG ...1')
    [0]
    >>> pick_channels_regexp(['MEG 2331', 'MEG 2332', 'MEG 2333'], 'MEG *')
    [0, 1, 2]
    """
    r = re.compile(regexp)
    return [k for k, name in enumerate(ch_names) if r.match(name)]


def pick_types(info, meg=True, eeg=False, stim=False, eog=False, ecg=False,
               emg=False, ref_meg='auto', misc=False, resp=False, chpi=False,
               exci=False, ias=False, syst=False,
               include=[], exclude='bads', selection=None):
    """Pick channels by type and names

    Parameters
    ----------
    info : dict
        The measurement info.
    meg : bool or string
        If True include all MEG channels. If False include None
        If string it can be 'mag', 'grad', 'planar1' or 'planar2' to select
        only magnetometers, all gradiometers, or a specific type of
        gradiometer.
    eeg : bool
        If True include EEG channels.
    eog : bool
        If True include EOG channels.
    ecg : bool
        If True include ECG channels.
    emg : bool
        If True include EMG channels.
    stim : bool
        If True include stimulus channels.
    ref_meg: bool | str
        If True include CTF / 4D reference channels. If 'auto', the reference
        channels are only included if compensations are present.
    misc : bool
        If True include miscellaneous analog channels.
    resp : bool
        If True include response-trigger channel. For some MEG systems this
        is separate from the stim channel.
    chpi : bool
        If True include continuous HPI coil channels.
    exci : bool
        Flux excitation channel used to be a stimulus channel.
    ias : bool
        Internal Active Shielding data (maybe on Triux only).
    syst : bool
        System status channel information (on Triux systems only).
    include : list of string
        List of additional channels to include. If empty do not include any.
    exclude : list of string | str
        List of channels to exclude. If empty do not exclude any (default).
        If 'bads', exclude channels in info['bads'].
    selection : list of string
        Restrict sensor channels (MEG, EEG) to this list of channel names.

    Returns
    -------
    sel : array of int
        Indices of good channels.
    """
    nchan = info['nchan']
    pick = np.zeros(nchan, dtype=np.bool)

    if exclude is None:
        raise ValueError('exclude must be a list of strings or "bads"')
    elif exclude == 'bads':
        exclude = info.get('bads', [])
    elif not isinstance(exclude, list):
        raise ValueError('exclude must either be "bads" or a list of strings.'
                         ' If only one channel is to be excluded, use '
                         '[ch_name] instead of passing ch_name.')

    if isinstance(ref_meg, string_types):
        if ref_meg != 'auto':
            raise ValueError('ref_meg has to be either a bool or \'auto\'')

        ref_meg = ('comps' in info and info['comps'] is not None and
                   len(info['comps']) > 0)

    for k in range(nchan):
        kind = info['chs'][k]['kind']
        if kind == FIFF.FIFFV_MEG_CH:
            if meg is True:
                pick[k] = True
            elif info['chs'][k]['unit'] == FIFF.FIFF_UNIT_T_M:
                if meg == 'grad':
                    pick[k] = True
                elif meg == 'planar1' and info['ch_names'][k].endswith('2'):
                    pick[k] = True
                elif meg == 'planar2' and info['ch_names'][k].endswith('3'):
                    pick[k] = True
            elif (meg == 'mag'
                    and info['chs'][k]['unit'] == FIFF.FIFF_UNIT_T):
                pick[k] = True
        elif kind == FIFF.FIFFV_EEG_CH and eeg:
            pick[k] = True
        elif kind == FIFF.FIFFV_STIM_CH and stim:
            pick[k] = True
        elif kind == FIFF.FIFFV_EOG_CH and eog:
            pick[k] = True
        elif kind == FIFF.FIFFV_ECG_CH and ecg:
            pick[k] = True
        elif kind == FIFF.FIFFV_EMG_CH and emg:
            pick[k] = True
        elif kind == FIFF.FIFFV_MISC_CH and misc:
            pick[k] = True
        elif kind == FIFF.FIFFV_REF_MEG_CH and ref_meg:
            pick[k] = True
        elif kind == FIFF.FIFFV_RESP_CH and resp:
            pick[k] = True
        elif kind == FIFF.FIFFV_SYST_CH and syst:
            pick[k] = True
        elif kind == FIFF.FIFFV_IAS_CH and ias:
            pick[k] = True
        elif kind == FIFF.FIFFV_EXCI_CH and exci:
            pick[k] = True
        elif kind in [FIFF.FIFFV_QUAT_0, FIFF.FIFFV_QUAT_1, FIFF.FIFFV_QUAT_2,
                      FIFF.FIFFV_QUAT_3, FIFF.FIFFV_QUAT_4, FIFF.FIFFV_QUAT_5,
                      FIFF.FIFFV_QUAT_6, FIFF.FIFFV_HPI_G, FIFF.FIFFV_HPI_ERR,
                      FIFF.FIFFV_HPI_MOV] and chpi:
            pick[k] = True

    # restrict channels to selection if provided
    if selection is not None:
        # the selection only restricts these types of channels
        sel_kind = [FIFF.FIFFV_MEG_CH, FIFF.FIFFV_REF_MEG_CH,
                    FIFF.FIFFV_EEG_CH]
        for k in np.where(pick == True)[0]:
            if (info['chs'][k]['kind'] in sel_kind
                and info['ch_names'][k] not in selection):
                pick[k] = False

    myinclude = [info['ch_names'][k] for k in range(nchan) if pick[k]]
    myinclude += include

    if len(myinclude) == 0:
        sel = []
    else:
        sel = pick_channels(info['ch_names'], myinclude, exclude)

    return sel


def pick_info(info, sel=[], copy=True):
    """Restrict an info structure to a selection of channels

    Parameters
    ----------
    info : dict
        Info structure from evoked or raw data.
    sel : list of int
        Indices of channels to include.
    copy : bool
        If copy is False, info is modified inplace.

    Returns
    -------
    res : dict
        Info structure restricted to a selection of channels.
    """
    if copy:
        info = deepcopy(info)

    if len(sel) == 0:
        raise ValueError('Warning : No channels match the selection.')

    info['chs'] = [info['chs'][k] for k in sel]
    info['ch_names'] = [info['ch_names'][k] for k in sel]
    info['nchan'] = len(sel)
    return info


def _has_kit_refs(info, picks):
    """Helper to determine if KIT ref channels are chosen

    This is currently only used by make_forward_solution, which cannot
    run when KIT reference channels are included.
    """
    for p in picks:
        if info['chs'][p]['coil_type'] == FIFF.FIFFV_COIL_KIT_REF_MAG:
            return True
    return False


def pick_channels_evoked(orig, include=[], exclude='bads'):
    """Pick channels from evoked data

    Parameters
    ----------
    orig : Evoked object
        One evoked dataset.
    include : list of string, (optional)
        List of channels to include (if empty, include all available).
    exclude : list of string, (optional) | 'bads'
        Channels to exclude (if empty, do not exclude any).
         Defaults to 'bads'.

    Returns
    -------
    res : instance of Evoked
        Evoked data restricted to selected channels. If include and
        exclude are empty it returns orig without copy.
    """

    if len(include) == 0 and len(exclude) == 0:
        return orig

    sel = pick_channels(orig.info['ch_names'], include=include,
                        exclude=exclude)

    if len(sel) == 0:
        raise ValueError('Warning : No channels match the selection.')

    res = deepcopy(orig)
    #
    #   Modify the measurement info
    #
    res.info = pick_info(res.info, sel)
    #
    #   Create the reduced data set
    #
    res.data = res.data[sel, :]

    return res


def pick_types_evoked(orig, meg=True, eeg=False, stim=False, eog=False,
                      ecg=False, emg=False, ref_meg=False, misc=False,
                      resp=False, chpi=False, exci=False, ias=False,
                      syst=False, include=[], exclude='bads'):
    """Pick by channel type and names from evoked data

    Parameters
    ----------
    info : dict
        The measurement info
    meg : bool or string
        If True include all MEG channels. If False include None
        If string it can be 'mag' or 'grad' to select only gradiometers
        or magnetometers.
    eeg : bool
        If True include EEG channels
    eog : bool
        If True include EOG channels
    ecg : bool
        If True include ECG channels
    emg : bool
        If True include EMG channels
    stim : bool
        If True include stimulus channels
    ref_meg : bool
        If True include CTF / 4D reference channels
    misc : bool
        If True include miscellaneous analog channels
    resp : bool
        If True include response-trigger channel. For some MEG systems this
        is separate from the stim channel.
    chpi : bool
        If True include continuous HPI coil channels.
    exci : bool
        Flux excitation channel used to be a stimulus channel.
    ias : bool
        Internal Active Shielding data (maybe on Triux only).
    syst : bool
        System status channel information (on Triux systems only).
    include : list of string
        List of additional channels to include. If empty do not include any.
    exclude : list of string | str
        List of channels to exclude. If empty do not exclude any (default).
        If 'bads', exclude channels in info['bads'].

    Returns
    -------
    res : instance of Evoked
        Evoked data restricted to selected channels. If include and
        exclude are None it returns orig without copy.
    """
    sel = pick_types(info=orig.info, meg=meg, eeg=eeg, stim=stim, eog=eog,
                     ecg=ecg, emg=emg, ref_meg=ref_meg, misc=misc,
                     resp=resp, chpi=chpi, exci=exci, ias=ias, syst=syst,
                     include=include, exclude=exclude)

    include_ch_names = [orig.ch_names[k] for k in sel]
    return pick_channels_evoked(orig, include_ch_names)


@verbose
def pick_channels_forward(orig, include=[], exclude=[], verbose=None):
    """Pick channels from forward operator

    Parameters
    ----------
    orig : dict
        A forward solution.
    include : list of string (optional) | None
        List of channels to include (if empty, include all available). Defaults
        auto None.
    exclude : list of string (optional) | None
        Channels to exclude (if empty, do not exclude any). Defaults to None.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    res : dict
        Forward solution restricted to selected channels. If include and
        exclude are empty it returns orig without copy.
    """

    if len(include) == 0 and len(exclude) == 0:
        return orig

    sel = pick_channels(orig['sol']['row_names'], include=include,
                        exclude=exclude)

    fwd = deepcopy(orig)

    #   Do we have something?
    nuse = len(sel)
    if nuse == 0:
        raise ValueError('Nothing remains after picking')

    logger.info('    %d out of %d channels remain after picking'
                % (nuse, fwd['nchan']))

    #   Pick the correct rows of the forward operator
    fwd['sol']['data'] = fwd['sol']['data'][sel, :]
    fwd['_orig_sol'] = fwd['_orig_sol'][sel, :]
    fwd['sol']['nrow'] = nuse

    ch_names = [fwd['sol']['row_names'][k] for k in sel]
    fwd['nchan'] = nuse
    fwd['sol']['row_names'] = ch_names

    fwd['info']['ch_names'] = [fwd['info']['ch_names'][k] for k in sel]
    fwd['info']['chs'] = [fwd['info']['chs'][k] for k in sel]
    fwd['info']['nchan'] = nuse
    fwd['info']['bads'] = [b for b in fwd['info']['bads'] if b in ch_names]

    if fwd['sol_grad'] is not None:
        fwd['sol_grad']['data'] = fwd['sol_grad']['data'][sel, :]
        fwd['_orig_sol_grad'] = fwd['_orig_sol_grad'][sel, :]
        fwd['sol_grad']['nrow'] = nuse
        fwd['sol_grad']['row_names'] = [fwd['sol_grad']['row_names'][k]
                                        for k in sel]

    return fwd


def pick_types_forward(orig, meg=True, eeg=False, ref_meg=True, include=[],
                       exclude=[]):
    """Pick by channel type and names from a forward operator

    Parameters
    ----------
    orig : dict
        A forward solution
    meg : bool or string
        If True include all MEG channels. If False include None
        If string it can be 'mag' or 'grad' to select only gradiometers
        or magnetometers.
    eeg : bool
        If True include EEG channels
    ref_meg : bool
        If True include CTF / 4D reference channels
    include : list of string
        List of additional channels to include. If empty do not include any.
    exclude : list of string | str
        List of channels to exclude. If empty do not exclude any (default).
        If 'bads', exclude channels in orig['info']['bads'].

    Returns
    -------
    res : dict
        Forward solution restricted to selected channel types.
    """
    info = orig['info']
    sel = pick_types(info, meg, eeg, ref_meg=ref_meg, include=include,
                     exclude=exclude)
    if len(sel) == 0:
        raise ValueError('No valid channels found')
    include_ch_names = [info['ch_names'][k] for k in sel]
    return pick_channels_forward(orig, include_ch_names)


def channel_indices_by_type(info):
    """Get indices of channels by type
    """
    idx = dict(grad=[], mag=[], eeg=[], eog=[], ecg=[])
    for k, ch in enumerate(info['chs']):
        for key in idx.keys():
            if channel_type(info, k) == key:
                idx[key].append(k)

    return idx


def pick_channels_cov(orig, include=[], exclude='bads'):
    """Pick channels from covariance matrix

    Parameters
    ----------
    orig : Covariance
        A covariance.
    include : list of string, (optional)
        List of channels to include (if empty, include all available).
    exclude : list of string, (optional) | 'bads'
        Channels to exclude (if empty, do not exclude any). Defaults to 'bads'.

    Returns
    -------
    res : dict
        Covariance solution restricted to selected channels.
    """
    sel = pick_channels(orig['names'], include=include, exclude=exclude)
    res = deepcopy(orig)
    res['dim'] = len(sel)
    res['data'] = orig['data'][sel][:, sel]
    res['names'] = [orig['names'][k] for k in sel]
    res['bads'] = [name for name in orig['bads'] if name in res['names']]
    res['eig'] = None
    res['eigvec'] = None
    return res