1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)
import struct
import os
import gzip
import numpy as np
from scipy import linalg
from .constants import FIFF
from ..externals.six import text_type
from ..externals.jdcal import jd2jcal
class Tag(object):
"""Tag in FIF tree structure
Parameters
----------
kind : int
Kind of Tag.
type_ : int
Type of Tag.
size : int
Size in bytes.
int : next
Position of next Tag.
pos : int
Position of Tag is the original file.
"""
def __init__(self, kind, type_, size, next, pos=None):
self.kind = int(kind)
self.type = int(type_)
self.size = int(size)
self.next = int(next)
self.pos = pos if pos is not None else next
self.pos = int(self.pos)
self.data = None
def __repr__(self):
out = ("kind: %s - type: %s - size: %s - next: %s - pos: %s"
% (self.kind, self.type, self.size, self.next, self.pos))
if hasattr(self, 'data'):
out += " - data: %s" % self.data
out += "\n"
return out
def __cmp__(self, tag):
is_equal = (self.kind == tag.kind and
self.type == tag.type and
self.size == tag.size and
self.next == tag.next and
self.pos == tag.pos and
self.data == tag.data)
if is_equal:
return 0
else:
return 1
def read_big(fid, size=None):
"""Function to read large chunks of data (>16MB) Windows-friendly
Parameters
----------
fid : file
Open file to read from.
size : int or None
Number of bytes to read. If None, the whole file is read.
Returns
-------
buf : bytes
The data.
Notes
-----
Windows (argh) can't handle reading large chunks of data, so we
have to do it piece-wise, possibly related to:
http://stackoverflow.com/questions/4226941
Examples
--------
This code should work for normal files and .gz files:
>>> import numpy as np
>>> import gzip, os, tempfile, shutil
>>> fname = tempfile.mkdtemp()
>>> fname_gz = os.path.join(fname, 'temp.gz')
>>> fname = os.path.join(fname, 'temp.bin')
>>> randgen = np.random.RandomState(9)
>>> x = randgen.randn(3000000) # > 16MB data
>>> with open(fname, 'wb') as fid: x.tofile(fid)
>>> with open(fname, 'rb') as fid: y = np.fromstring(read_big(fid))
>>> assert np.all(x == y)
>>> fid_gz = gzip.open(fname_gz, 'wb')
>>> _ = fid_gz.write(x.tostring())
>>> fid_gz.close()
>>> fid_gz = gzip.open(fname_gz, 'rb')
>>> y = np.fromstring(read_big(fid_gz))
>>> assert np.all(x == y)
>>> shutil.rmtree(os.path.dirname(fname))
>>> fid_gz.close()
"""
# buf_size is chosen as a largest working power of 2 (16 MB):
buf_size = 16777216
if size is None:
# it's not possible to get .gz uncompressed file size
if not isinstance(fid, gzip.GzipFile):
size = os.fstat(fid.fileno()).st_size - fid.tell()
if size is not None:
# Use pre-buffering method
segments = np.r_[np.arange(0, size, buf_size), size]
buf = bytearray(b' ' * size)
for start, end in zip(segments[:-1], segments[1:]):
data = fid.read(int(end - start))
if len(data) != end - start:
raise ValueError('Read error')
buf[start:end] = data
buf = bytes(buf)
else:
# Use presumably less efficient concatenating method
buf = [b'']
new = fid.read(buf_size)
while len(new) > 0:
buf.append(new)
new = fid.read(buf_size)
buf = b''.join(buf)
return buf
def read_tag_info(fid):
"""Read Tag info (or header)
"""
s = fid.read(4 * 4)
if len(s) == 0:
return None
tag = Tag(*struct.unpack(">iiii", s))
if tag.next == 0:
fid.seek(tag.size, 1)
elif tag.next > 0:
fid.seek(tag.next, 0)
return tag
def _fromstring_rows(fid, tag_size, dtype=None, shape=None, rlims=None):
"""Helper for getting a range of rows from a large tag"""
if shape is not None:
item_size = np.dtype(dtype).itemsize
if not len(shape) == 2:
raise ValueError('Only implemented for 2D matrices')
if not np.prod(shape) == tag_size / item_size:
raise ValueError('Wrong shape specified')
if not len(rlims) == 2:
raise ValueError('rlims must have two elements')
n_row_out = rlims[1] - rlims[0]
if n_row_out <= 0:
raise ValueError('rlims must yield at least one output')
row_size = item_size * shape[1]
# # of bytes to skip at the beginning, # to read, where to end
start_skip = int(rlims[0] * row_size)
read_size = int(n_row_out * row_size)
end_pos = int(fid.tell() + tag_size)
# Move the pointer ahead to the read point
fid.seek(start_skip, 1)
# Do the reading
out = np.fromstring(fid.read(read_size), dtype=dtype)
# Move the pointer ahead to the end of the tag
fid.seek(end_pos)
else:
out = np.fromstring(fid.read(tag_size), dtype=dtype)
return out
def _loc_to_trans(loc):
"""Helper to convert loc vector to coil_trans"""
# deal with nasty OSX Anaconda bug by casting to float64
loc = loc.astype(np.float64)
coil_trans = np.concatenate([loc.reshape(4, 3).T[:, [1, 2, 3, 0]],
np.array([0, 0, 0, 1]).reshape(1, 4)])
return coil_trans
def read_tag(fid, pos=None, shape=None, rlims=None):
"""Read a Tag from a file at a given position
Parameters
----------
fid : file
The open FIF file descriptor.
pos : int
The position of the Tag in the file.
shape : tuple | None
If tuple, the shape of the stored matrix. Only to be used with
data stored as a vector (not implemented for matrices yet).
rlims : tuple | None
If tuple, the first and last rows to retrieve. Note that data are
assumed to be stored row-major in the file. Only to be used with
data stored as a vector (not implemented for matrices yet).
Returns
-------
tag : Tag
The Tag read.
"""
if pos is not None:
fid.seek(pos, 0)
s = fid.read(4 * 4)
tag = Tag(*struct.unpack(">iIii", s))
#
# The magic hexadecimal values
#
is_matrix = 4294901760 # ffff0000
matrix_coding_dense = 16384 # 4000
matrix_coding_CCS = 16400 # 4010
matrix_coding_RCS = 16416 # 4020
data_type = 65535 # ffff
#
if tag.size > 0:
matrix_coding = is_matrix & tag.type
if matrix_coding != 0:
matrix_coding = matrix_coding >> 16
# This should be easy to implement (see _fromstring_rows)
# if we need it, but for now, it's not...
if shape is not None:
raise ValueError('Row reading not implemented for matrices '
'yet')
# Matrices
if matrix_coding == matrix_coding_dense:
# Find dimensions and return to the beginning of tag data
pos = fid.tell()
fid.seek(tag.size - 4, 1)
ndim = int(np.fromstring(fid.read(4), dtype='>i4'))
fid.seek(-(ndim + 1) * 4, 1)
dims = np.fromstring(fid.read(4 * ndim), dtype='>i4')[::-1]
#
# Back to where the data start
#
fid.seek(pos, 0)
if ndim > 3:
raise Exception('Only 2 or 3-dimensional matrices are '
'supported at this time')
matrix_type = data_type & tag.type
if matrix_type == FIFF.FIFFT_INT:
tag.data = np.fromstring(read_big(fid, 4 * dims.prod()),
dtype='>i4').reshape(dims)
elif matrix_type == FIFF.FIFFT_JULIAN:
tag.data = np.fromstring(read_big(fid, 4 * dims.prod()),
dtype='>i4').reshape(dims)
elif matrix_type == FIFF.FIFFT_FLOAT:
tag.data = np.fromstring(read_big(fid, 4 * dims.prod()),
dtype='>f4').reshape(dims)
elif matrix_type == FIFF.FIFFT_DOUBLE:
tag.data = np.fromstring(read_big(fid, 8 * dims.prod()),
dtype='>f8').reshape(dims)
elif matrix_type == FIFF.FIFFT_COMPLEX_FLOAT:
data = np.fromstring(read_big(fid, 4 * 2 * dims.prod()),
dtype='>f4')
# Note: we need the non-conjugate transpose here
tag.data = (data[::2] + 1j * data[1::2]).reshape(dims)
elif matrix_type == FIFF.FIFFT_COMPLEX_DOUBLE:
data = np.fromstring(read_big(fid, 8 * 2 * dims.prod()),
dtype='>f8')
# Note: we need the non-conjugate transpose here
tag.data = (data[::2] + 1j * data[1::2]).reshape(dims)
else:
raise Exception('Cannot handle matrix of type %d yet'
% matrix_type)
elif matrix_coding in (matrix_coding_CCS, matrix_coding_RCS):
from scipy import sparse
# Find dimensions and return to the beginning of tag data
pos = fid.tell()
fid.seek(tag.size - 4, 1)
ndim = int(np.fromstring(fid.read(4), dtype='>i4'))
fid.seek(-(ndim + 2) * 4, 1)
dims = np.fromstring(fid.read(4 * (ndim + 1)), dtype='>i4')
if ndim != 2:
raise Exception('Only two-dimensional matrices are '
'supported at this time')
# Back to where the data start
fid.seek(pos, 0)
nnz = int(dims[0])
nrow = int(dims[1])
ncol = int(dims[2])
sparse_data = np.fromstring(fid.read(4 * nnz), dtype='>f4')
shape = (dims[1], dims[2])
if matrix_coding == matrix_coding_CCS:
# CCS
sparse.csc_matrix()
sparse_indices = np.fromstring(fid.read(4 * nnz),
dtype='>i4')
sparse_ptrs = np.fromstring(fid.read(4 * (ncol + 1)),
dtype='>i4')
tag.data = sparse.csc_matrix((sparse_data, sparse_indices,
sparse_ptrs), shape=shape)
else:
# RCS
sparse_indices = np.fromstring(fid.read(4 * nnz),
dtype='>i4')
sparse_ptrs = np.fromstring(fid.read(4 * (nrow + 1)),
dtype='>i4')
tag.data = sparse.csr_matrix((sparse_data, sparse_indices,
sparse_ptrs), shape=shape)
else:
raise Exception('Cannot handle other than dense or sparse '
'matrices yet')
else:
# All other data types
# Simple types
if tag.type == FIFF.FIFFT_BYTE:
tag.data = _fromstring_rows(fid, tag.size, dtype=">B1",
shape=shape, rlims=rlims)
elif tag.type == FIFF.FIFFT_SHORT:
tag.data = _fromstring_rows(fid, tag.size, dtype=">i2",
shape=shape, rlims=rlims)
elif tag.type == FIFF.FIFFT_INT:
tag.data = _fromstring_rows(fid, tag.size, dtype=">i4",
shape=shape, rlims=rlims)
elif tag.type == FIFF.FIFFT_USHORT:
tag.data = _fromstring_rows(fid, tag.size, dtype=">u2",
shape=shape, rlims=rlims)
elif tag.type == FIFF.FIFFT_UINT:
tag.data = _fromstring_rows(fid, tag.size, dtype=">u4",
shape=shape, rlims=rlims)
elif tag.type == FIFF.FIFFT_FLOAT:
tag.data = _fromstring_rows(fid, tag.size, dtype=">f4",
shape=shape, rlims=rlims)
elif tag.type == FIFF.FIFFT_DOUBLE:
tag.data = _fromstring_rows(fid, tag.size, dtype=">f8",
shape=shape, rlims=rlims)
elif tag.type == FIFF.FIFFT_STRING:
tag.data = _fromstring_rows(fid, tag.size, dtype=">c",
shape=shape, rlims=rlims)
# Always decode to unicode.
td = tag.data.tostring().decode('utf-8', 'ignore')
tag.data = text_type(td)
elif tag.type == FIFF.FIFFT_DAU_PACK16:
tag.data = _fromstring_rows(fid, tag.size, dtype=">i2",
shape=shape, rlims=rlims)
elif tag.type == FIFF.FIFFT_COMPLEX_FLOAT:
# data gets stored twice as large
if shape is not None:
shape = (shape[0], shape[1] * 2)
tag.data = _fromstring_rows(fid, tag.size, dtype=">f4",
shape=shape, rlims=rlims)
tag.data = tag.data[::2] + 1j * tag.data[1::2]
elif tag.type == FIFF.FIFFT_COMPLEX_DOUBLE:
# data gets stored twice as large
if shape is not None:
shape = (shape[0], shape[1] * 2)
tag.data = _fromstring_rows(fid, tag.size, dtype=">f8",
shape=shape, rlims=rlims)
tag.data = tag.data[::2] + 1j * tag.data[1::2]
#
# Structures
#
elif tag.type == FIFF.FIFFT_ID_STRUCT:
tag.data = dict()
tag.data['version'] = int(np.fromstring(fid.read(4),
dtype=">i4"))
tag.data['version'] = int(np.fromstring(fid.read(4),
dtype=">i4"))
tag.data['machid'] = np.fromstring(fid.read(8), dtype=">i4")
tag.data['secs'] = int(np.fromstring(fid.read(4), dtype=">i4"))
tag.data['usecs'] = int(np.fromstring(fid.read(4),
dtype=">i4"))
elif tag.type == FIFF.FIFFT_DIG_POINT_STRUCT:
tag.data = dict()
tag.data['kind'] = int(np.fromstring(fid.read(4), dtype=">i4"))
tag.data['ident'] = int(np.fromstring(fid.read(4),
dtype=">i4"))
tag.data['r'] = np.fromstring(fid.read(12), dtype=">f4")
tag.data['coord_frame'] = FIFF.FIFFV_COORD_UNKNOWN
elif tag.type == FIFF.FIFFT_COORD_TRANS_STRUCT:
tag.data = dict()
tag.data['from'] = int(np.fromstring(fid.read(4), dtype=">i4"))
tag.data['to'] = int(np.fromstring(fid.read(4), dtype=">i4"))
rot = np.fromstring(fid.read(36), dtype=">f4").reshape(3, 3)
move = np.fromstring(fid.read(12), dtype=">f4")
tag.data['trans'] = np.r_[np.c_[rot, move],
np.array([[0], [0], [0], [1]]).T]
#
# Skip over the inverse transformation
# It is easier to just use inverse of trans in Matlab
#
fid.seek(12 * 4, 1)
elif tag.type == FIFF.FIFFT_CH_INFO_STRUCT:
d = dict()
d['scanno'] = int(np.fromstring(fid.read(4), dtype=">i4"))
d['logno'] = int(np.fromstring(fid.read(4), dtype=">i4"))
d['kind'] = int(np.fromstring(fid.read(4), dtype=">i4"))
d['range'] = float(np.fromstring(fid.read(4), dtype=">f4"))
d['cal'] = float(np.fromstring(fid.read(4), dtype=">f4"))
d['coil_type'] = int(np.fromstring(fid.read(4), dtype=">i4"))
#
# Read the coil coordinate system definition
#
d['loc'] = np.fromstring(fid.read(48), dtype=">f4")
d['coil_trans'] = None
d['eeg_loc'] = None
d['coord_frame'] = FIFF.FIFFV_COORD_UNKNOWN
tag.data = d
#
# Convert loc into a more useful format
#
loc = tag.data['loc']
kind = tag.data['kind']
if kind in [FIFF.FIFFV_MEG_CH, FIFF.FIFFV_REF_MEG_CH]:
tag.data['coil_trans'] = _loc_to_trans(loc)
tag.data['coord_frame'] = FIFF.FIFFV_COORD_DEVICE
elif tag.data['kind'] == FIFF.FIFFV_EEG_CH:
# deal with nasty OSX Anaconda bug by casting to float64
loc = loc.astype(np.float64)
if linalg.norm(loc[3:6]) > 0.:
tag.data['eeg_loc'] = np.c_[loc[0:3], loc[3:6]]
else:
tag.data['eeg_loc'] = loc[0:3][:, np.newaxis].copy()
tag.data['coord_frame'] = FIFF.FIFFV_COORD_HEAD
#
# Unit and exponent
#
tag.data['unit'] = int(np.fromstring(fid.read(4), dtype=">i4"))
tag.data['unit_mul'] = int(np.fromstring(fid.read(4),
dtype=">i4"))
#
# Handle the channel name
#
ch_name = np.fromstring(fid.read(16), dtype=">c")
ch_name = ch_name[:np.argmax(ch_name == b'')].tostring()
# Use unicode or bytes depending on Py2/3
tag.data['ch_name'] = str(ch_name.decode())
elif tag.type == FIFF.FIFFT_OLD_PACK:
offset = float(np.fromstring(fid.read(4), dtype=">f4"))
scale = float(np.fromstring(fid.read(4), dtype=">f4"))
tag.data = np.fromstring(fid.read(tag.size - 8), dtype=">h2")
tag.data = scale * tag.data + offset
elif tag.type == FIFF.FIFFT_DIR_ENTRY_STRUCT:
tag.data = list()
for _ in range(tag.size // 16 - 1):
s = fid.read(4 * 4)
tag.data.append(Tag(*struct.unpack(">iIii", s)))
elif tag.type == FIFF.FIFFT_JULIAN:
tag.data = int(np.fromstring(fid.read(4), dtype=">i4"))
tag.data = jd2jcal(tag.data)
else:
raise Exception('Unimplemented tag data type %s' % tag.type)
if tag.next != FIFF.FIFFV_NEXT_SEQ:
# f.seek(tag.next,0)
fid.seek(tag.next, 1) # XXX : fix? pb when tag.next < 0
return tag
def find_tag(fid, node, findkind):
"""Find Tag in an open FIF file descriptor
"""
for p in range(node['nent']):
if node['directory'][p].kind == findkind:
return read_tag(fid, node['directory'][p].pos)
tag = None
return tag
def has_tag(node, kind):
"""Does the node contains a Tag of a given kind?
"""
for d in node['directory']:
if d.kind == kind:
return True
return False
|