1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)
import os.path as op
from nose.tools import assert_true
import numpy as np
from numpy.testing import assert_allclose
from mne import Epochs, read_evokeds, pick_types
from mne.io.compensator import make_compensator, get_current_comp
from mne.io import Raw
from mne.utils import _TempDir, requires_mne, run_subprocess
base_dir = op.join(op.dirname(__file__), 'data')
ctf_comp_fname = op.join(base_dir, 'test_ctf_comp_raw.fif')
tempdir = _TempDir()
def test_compensation():
"""Test compensation
"""
raw = Raw(ctf_comp_fname, compensation=None)
comp1 = make_compensator(raw.info, 3, 1, exclude_comp_chs=False)
assert_true(comp1.shape == (340, 340))
comp2 = make_compensator(raw.info, 3, 1, exclude_comp_chs=True)
assert_true(comp2.shape == (311, 340))
# make sure that changing the comp doesn't modify the original data
raw2 = Raw(ctf_comp_fname, compensation=2)
assert_true(get_current_comp(raw2.info) == 2)
fname = op.join(tempdir, 'ctf-raw.fif')
raw2.save(fname)
raw2 = Raw(fname, compensation=None)
data, _ = raw[:, :]
data2, _ = raw2[:, :]
assert_allclose(data, data2, rtol=1e-9, atol=1e-20)
for ch1, ch2 in zip(raw.info['chs'], raw2.info['chs']):
assert_true(ch1['coil_type'] == ch2['coil_type'])
@requires_mne
def test_compensation_mne():
"""Test comensation by comparing with MNE
"""
def make_evoked(fname, comp):
raw = Raw(fname, compensation=comp)
picks = pick_types(raw.info, meg=True, ref_meg=True)
events = np.array([[0, 0, 1]], dtype=np.int)
evoked = Epochs(raw, events, 1, 0, 20e-3, picks=picks).average()
return evoked
def compensate_mne(fname, comp):
tmp_fname = '%s-%d-ave.fif' % (fname[:-4], comp)
cmd = ['mne_compensate_data', '--in', fname,
'--out', tmp_fname, '--grad', str(comp)]
run_subprocess(cmd)
return read_evokeds(tmp_fname)[0]
# save evoked response with default compensation
fname_default = op.join(tempdir, 'ctf_default-ave.fif')
make_evoked(ctf_comp_fname, None).save(fname_default)
for comp in [0, 1, 2, 3]:
evoked_py = make_evoked(ctf_comp_fname, comp)
evoked_c = compensate_mne(fname_default, comp)
picks_py = pick_types(evoked_py.info, meg=True, ref_meg=True)
picks_c = pick_types(evoked_c.info, meg=True, ref_meg=True)
assert_allclose(evoked_py.data[picks_py], evoked_c.data[picks_c],
rtol=1e-3, atol=1e-17)
|