File: inverse.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (1428 lines) | stat: -rw-r--r-- 52,251 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)

import warnings
from copy import deepcopy
from math import sqrt
import numpy as np
from scipy import linalg

from ..io.constants import FIFF
from ..io.open import fiff_open
from ..io.tag import find_tag
from ..io.matrix import (_read_named_matrix, _transpose_named_matrix,
                         write_named_matrix)
from ..io.proj import _read_proj, make_projector, _write_proj
from ..io.tree import dir_tree_find
from ..io.write import (write_int, write_float_matrix, start_file,
                        start_block, end_block, end_file, write_float,
                        write_coord_trans, write_string)

from ..io.pick import channel_type, pick_info, pick_types
from ..cov import prepare_noise_cov, _read_cov, _write_cov
from ..forward import (compute_depth_prior, read_forward_meas_info,
                       write_forward_meas_info, is_fixed_orient,
                       compute_orient_prior, _to_fixed_ori)
from ..source_space import (read_source_spaces_from_tree,
                            find_source_space_hemi, _get_vertno,
                            _write_source_spaces_to_fid, label_src_vertno_sel)
from ..transforms import invert_transform, transform_surface_to
from ..source_estimate import _make_stc
from ..utils import check_fname, logger, verbose
from functools import reduce


class InverseOperator(dict):
    """InverseOperator class to represent info from inverse operator
    """

    def __repr__(self):
        """Summarize inverse info instead of printing all"""

        entr = '<InverseOperator'

        nchan = len(pick_types(self['info'], meg=True, eeg=False))
        entr += ' | ' + 'MEG channels: %d' % nchan
        nchan = len(pick_types(self['info'], meg=False, eeg=True))
        entr += ' | ' + 'EEG channels: %d' % nchan

        # XXX TODO: This and the __repr__ in SourceSpaces should call a
        # function _get_name_str() in source_space.py
        if self['src'][0]['type'] == 'surf':
            entr += (' | Source space: Surface with %d vertices'
                     % self['nsource'])
        elif self['src'][0]['type'] == 'vol':
            entr += (' | Source space: Volume with %d grid points'
                     % self['nsource'])
        elif self['src'][0]['type'] == 'discrete':
            entr += (' | Source space: Discrete with %d dipoles'
                     % self['nsource'])

        source_ori = {FIFF.FIFFV_MNE_UNKNOWN_ORI: 'Unknown',
                      FIFF.FIFFV_MNE_FIXED_ORI: 'Fixed',
                      FIFF.FIFFV_MNE_FREE_ORI: 'Free'}
        entr += ' | Source orientation: %s' % source_ori[self['source_ori']]
        entr += '>'

        return entr


def _pick_channels_inverse_operator(ch_names, inv):
    """Gives the indices of the data channel to be used knowing
    an inverse operator
    """
    sel = []
    for name in inv['noise_cov']['names']:
        if name in ch_names:
            sel.append(ch_names.index(name))
        else:
            raise ValueError('The inverse operator was computed with '
                             'channel %s which is not present in '
                             'the data. You should compute a new inverse '
                             'operator restricted to the good data '
                             'channels.' % name)
    return sel


@verbose
def read_inverse_operator(fname, verbose=None):
    """Read the inverse operator decomposition from a FIF file

    Parameters
    ----------
    fname : string
        The name of the FIF file, which ends with -inv.fif or -inv.fif.gz.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    inv : instance of InverseOperator
        The inverse operator.
    """
    check_fname(fname, 'inverse operator', ('-inv.fif', '-inv.fif.gz'))

    #
    #   Open the file, create directory
    #
    logger.info('Reading inverse operator decomposition from %s...'
                % fname)
    fid, tree, _ = fiff_open(fname, preload=True)
    #
    #   Find all inverse operators
    #
    invs = dir_tree_find(tree, FIFF.FIFFB_MNE_INVERSE_SOLUTION)
    if invs is None or len(invs) < 1:
        fid.close()
        raise Exception('No inverse solutions in %s' % fname)

    invs = invs[0]
    #
    #   Parent MRI data
    #
    parent_mri = dir_tree_find(tree, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
    if len(parent_mri) == 0:
        fid.close()
        raise Exception('No parent MRI information in %s' % fname)
    parent_mri = parent_mri[0]  # take only first one

    logger.info('    Reading inverse operator info...')
    #
    #   Methods and source orientations
    #
    tag = find_tag(fid, invs, FIFF.FIFF_MNE_INCLUDED_METHODS)
    if tag is None:
        fid.close()
        raise Exception('Modalities not found')

    inv = dict()
    inv['methods'] = int(tag.data)

    tag = find_tag(fid, invs, FIFF.FIFF_MNE_SOURCE_ORIENTATION)
    if tag is None:
        fid.close()
        raise Exception('Source orientation constraints not found')

    inv['source_ori'] = int(tag.data)

    tag = find_tag(fid, invs, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS)
    if tag is None:
        fid.close()
        raise Exception('Number of sources not found')

    inv['nsource'] = int(tag.data)
    inv['nchan'] = 0
    #
    #   Coordinate frame
    #
    tag = find_tag(fid, invs, FIFF.FIFF_MNE_COORD_FRAME)
    if tag is None:
        fid.close()
        raise Exception('Coordinate frame tag not found')

    inv['coord_frame'] = tag.data

    #
    #   Units
    #
    tag = find_tag(fid, invs, FIFF.FIFF_MNE_INVERSE_SOURCE_UNIT)
    if tag is not None:
        if tag.data == FIFF.FIFF_UNIT_AM:
            inv['units'] = 'Am'
        elif tag.data == FIFF.FIFF_UNIT_AM_M2:
            inv['units'] = 'Am/m^2'
        elif tag.data == FIFF.FIFF_UNIT_AM_M3:
            inv['units'] = 'Am/m^3'
        else:
            inv['units'] = None
    else:
        inv['units'] = None
    #
    #   The actual source orientation vectors
    #
    tag = find_tag(fid, invs, FIFF.FIFF_MNE_INVERSE_SOURCE_ORIENTATIONS)
    if tag is None:
        fid.close()
        raise Exception('Source orientation information not found')

    inv['source_nn'] = tag.data
    logger.info('    [done]')
    #
    #   The SVD decomposition...
    #
    logger.info('    Reading inverse operator decomposition...')
    tag = find_tag(fid, invs, FIFF.FIFF_MNE_INVERSE_SING)
    if tag is None:
        fid.close()
        raise Exception('Singular values not found')

    inv['sing'] = tag.data
    inv['nchan'] = len(inv['sing'])
    #
    #   The eigenleads and eigenfields
    #
    inv['eigen_leads_weighted'] = False
    eigen_leads = _read_named_matrix(fid, invs, FIFF.FIFF_MNE_INVERSE_LEADS)
    if eigen_leads is None:
        inv['eigen_leads_weighted'] = True
        eigen_leads = _read_named_matrix(fid, invs,
                                         FIFF.FIFF_MNE_INVERSE_LEADS_WEIGHTED)
    if eigen_leads is None:
        raise ValueError('Eigen leads not found in inverse operator.')
    #
    #   Having the eigenleads as columns is better for the inverse calculations
    #
    inv['eigen_leads'] = _transpose_named_matrix(eigen_leads, copy=False)
    inv['eigen_fields'] = _read_named_matrix(fid, invs,
                                             FIFF.FIFF_MNE_INVERSE_FIELDS)
    logger.info('    [done]')
    #
    #   Read the covariance matrices
    #
    inv['noise_cov'] = _read_cov(fid, invs, FIFF.FIFFV_MNE_NOISE_COV)
    logger.info('    Noise covariance matrix read.')

    inv['source_cov'] = _read_cov(fid, invs, FIFF.FIFFV_MNE_SOURCE_COV)
    logger.info('    Source covariance matrix read.')
    #
    #   Read the various priors
    #
    inv['orient_prior'] = _read_cov(fid, invs, FIFF.FIFFV_MNE_ORIENT_PRIOR_COV)
    if inv['orient_prior'] is not None:
        logger.info('    Orientation priors read.')

    inv['depth_prior'] = _read_cov(fid, invs, FIFF.FIFFV_MNE_DEPTH_PRIOR_COV)
    if inv['depth_prior'] is not None:
        logger.info('    Depth priors read.')

    inv['fmri_prior'] = _read_cov(fid, invs, FIFF.FIFFV_MNE_FMRI_PRIOR_COV)
    if inv['fmri_prior'] is not None:
        logger.info('    fMRI priors read.')

    #
    #   Read the source spaces
    #
    inv['src'] = read_source_spaces_from_tree(fid, tree, add_geom=False)

    for s in inv['src']:
        s['id'] = find_source_space_hemi(s)

    #
    #   Get the MRI <-> head coordinate transformation
    #
    tag = find_tag(fid, parent_mri, FIFF.FIFF_COORD_TRANS)
    if tag is None:
        fid.close()
        raise Exception('MRI/head coordinate transformation not found')
    else:
        mri_head_t = tag.data
        if mri_head_t['from'] != FIFF.FIFFV_COORD_MRI or \
                        mri_head_t['to'] != FIFF.FIFFV_COORD_HEAD:
            mri_head_t = invert_transform(mri_head_t)
            if mri_head_t['from'] != FIFF.FIFFV_COORD_MRI or \
                        mri_head_t['to'] != FIFF.FIFFV_COORD_HEAD:
                fid.close()
                raise Exception('MRI/head coordinate transformation '
                                'not found')

    inv['mri_head_t'] = mri_head_t

    #
    # get parent MEG info
    #
    inv['info'] = read_forward_meas_info(tree, fid)

    #
    #   Transform the source spaces to the correct coordinate frame
    #   if necessary
    #
    if inv['coord_frame'] != FIFF.FIFFV_COORD_MRI and \
            inv['coord_frame'] != FIFF.FIFFV_COORD_HEAD:
        fid.close()
        raise Exception('Only inverse solutions computed in MRI or '
                        'head coordinates are acceptable')

    #
    #  Number of averages is initially one
    #
    inv['nave'] = 1
    #
    #  We also need the SSP operator
    #
    inv['projs'] = _read_proj(fid, tree)

    #
    #  Some empty fields to be filled in later
    #
    inv['proj'] = []       # This is the projector to apply to the data
    inv['whitener'] = []   # This whitens the data
    inv['reginv'] = []     # This the diagonal matrix implementing
                           # regularization and the inverse
    inv['noisenorm'] = []  # These are the noise-normalization factors
    #
    nuse = 0
    for k in range(len(inv['src'])):
        try:
            inv['src'][k] = transform_surface_to(inv['src'][k],
                                                 inv['coord_frame'],
                                                 mri_head_t)
        except Exception as inst:
            fid.close()
            raise Exception('Could not transform source space (%s)' % inst)

        nuse += inv['src'][k]['nuse']

    logger.info('    Source spaces transformed to the inverse solution '
                'coordinate frame')
    #
    #   Done!
    #
    fid.close()

    return InverseOperator(inv)


@verbose
def write_inverse_operator(fname, inv, verbose=None):
    """Write an inverse operator to a FIF file

    Parameters
    ----------
    fname : string
        The name of the FIF file, which ends with -inv.fif or -inv.fif.gz.
    inv : dict
        The inverse operator.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).
    """
    check_fname(fname, 'inverse operator', ('-inv.fif', '-inv.fif.gz'))

    #
    #   Open the file, create directory
    #
    logger.info('Write inverse operator decomposition in %s...' % fname)

    # Create the file and save the essentials
    fid = start_file(fname)
    start_block(fid, FIFF.FIFFB_MNE)

    #
    #   Parent MEG measurement info
    #
    write_forward_meas_info(fid, inv['info'])

    #
    #   Parent MRI data
    #
    start_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
    write_string(fid, FIFF.FIFF_MNE_FILE_NAME, inv['info']['mri_file'])
    write_coord_trans(fid, inv['mri_head_t'])
    end_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)

    #
    #   Write SSP operator
    #
    _write_proj(fid, inv['projs'])

    #
    #   Write the source spaces
    #
    if 'src' in inv:
        _write_source_spaces_to_fid(fid, inv['src'])

    start_block(fid, FIFF.FIFFB_MNE_INVERSE_SOLUTION)

    logger.info('    Writing inverse operator info...')

    write_int(fid, FIFF.FIFF_MNE_INCLUDED_METHODS, inv['methods'])
    write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, inv['coord_frame'])

    if 'units' in inv:
        if inv['units'] == 'Am':
            write_int(fid, FIFF.FIFF_MNE_INVERSE_SOURCE_UNIT,
                      FIFF.FIFF_UNIT_AM)
        elif inv['units'] == 'Am/m^2':
            write_int(fid, FIFF.FIFF_MNE_INVERSE_SOURCE_UNIT,
                      FIFF.FIFF_UNIT_AM_M2)
        elif inv['units'] == 'Am/m^3':
            write_int(fid, FIFF.FIFF_MNE_INVERSE_SOURCE_UNIT,
                      FIFF.FIFF_UNIT_AM_M3)

    write_int(fid, FIFF.FIFF_MNE_SOURCE_ORIENTATION, inv['source_ori'])
    write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS, inv['nsource'])
    if 'nchan' in inv:
        write_int(fid, FIFF.FIFF_NCHAN, inv['nchan'])
    elif 'nchan' in inv['info']:
        write_int(fid, FIFF.FIFF_NCHAN, inv['info']['nchan'])
    write_float_matrix(fid, FIFF.FIFF_MNE_INVERSE_SOURCE_ORIENTATIONS,
                       inv['source_nn'])
    write_float(fid, FIFF.FIFF_MNE_INVERSE_SING, inv['sing'])

    #
    #   write the covariance matrices
    #
    logger.info('    Writing noise covariance matrix.')
    _write_cov(fid, inv['noise_cov'])

    logger.info('    Writing source covariance matrix.')
    _write_cov(fid, inv['source_cov'])

    #
    #   write the various priors
    #
    logger.info('    Writing orientation priors.')
    if inv['depth_prior'] is not None:
        _write_cov(fid, inv['depth_prior'])
    if inv['orient_prior'] is not None:
        _write_cov(fid, inv['orient_prior'])
    if inv['fmri_prior'] is not None:
        _write_cov(fid, inv['fmri_prior'])

    write_named_matrix(fid, FIFF.FIFF_MNE_INVERSE_FIELDS, inv['eigen_fields'])

    #
    #   The eigenleads and eigenfields
    #
    if inv['eigen_leads_weighted']:
        write_named_matrix(fid, FIFF.FIFF_MNE_INVERSE_LEADS_WEIGHTED,
                           _transpose_named_matrix(inv['eigen_leads']))
    else:
        write_named_matrix(fid, FIFF.FIFF_MNE_INVERSE_LEADS,
                           _transpose_named_matrix(inv['eigen_leads']))

    #
    #   Done!
    #
    logger.info('    [done]')

    end_block(fid, FIFF.FIFFB_MNE_INVERSE_SOLUTION)
    end_block(fid, FIFF.FIFFB_MNE)
    end_file(fid)

    fid.close()

###############################################################################
# Compute inverse solution


def combine_xyz(vec, square=False):
    """Compute the three Cartesian components of a vector or matrix together

    Parameters
    ----------
    vec : 2d array of shape [3 n x p]
        Input [ x1 y1 z1 ... x_n y_n z_n ] where x1 ... z_n
        can be vectors

    Returns
    -------
    comb : array
        Output vector [sqrt(x1^2+y1^2+z1^2), ..., sqrt(x_n^2+y_n^2+z_n^2)]
    """
    if vec.ndim != 2:
        raise ValueError('Input must be 2D')
    if (vec.shape[0] % 3) != 0:
        raise ValueError('Input must have 3N rows')

    n, p = vec.shape
    if np.iscomplexobj(vec):
        vec = np.abs(vec)
    comb = vec[0::3] ** 2
    comb += vec[1::3] ** 2
    comb += vec[2::3] ** 2
    if not square:
        comb = np.sqrt(comb)
    return comb


def _check_ch_names(inv, info):
    """Check that channels in inverse operator are measurements"""

    inv_ch_names = inv['eigen_fields']['col_names']

    if inv['noise_cov']['names'] != inv_ch_names:
        raise ValueError('Channels in inverse operator eigen fields do not '
                         'match noise covariance channels.')
    data_ch_names = info['ch_names']

    missing_ch_names = list()
    for ch_name in inv_ch_names:
        if ch_name not in data_ch_names:
            missing_ch_names.append(ch_name)
    n_missing = len(missing_ch_names)
    if n_missing > 0:
        raise ValueError('%d channels in inverse operator ' % n_missing +
                         'are not present in the data (%s)' % missing_ch_names)


@verbose
def prepare_inverse_operator(orig, nave, lambda2, method, verbose=None):
    """Prepare an inverse operator for actually computing the inverse

    Parameters
    ----------
    orig : dict
        The inverse operator structure read from a file.
    nave : int
        Number of averages (scales the noise covariance).
    lambda2 : float
        The regularization factor. Recommended to be 1 / SNR**2.
    method : "MNE" | "dSPM" | "sLORETA"
        Use mininum norm, dSPM or sLORETA.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    inv : instance of InverseOperator
        Prepared inverse operator.
    """
    if nave <= 0:
        raise ValueError('The number of averages should be positive')

    logger.info('Preparing the inverse operator for use...')
    inv = deepcopy(orig)
    #
    #   Scale some of the stuff
    #
    scale = float(inv['nave']) / nave
    inv['noise_cov']['data'] = scale * inv['noise_cov']['data']
    # deal with diagonal case
    if inv['noise_cov']['data'].ndim == 1:
        logger.info('    Diagonal noise covariance found')
        inv['noise_cov']['eig'] = inv['noise_cov']['data']
        inv['noise_cov']['eigvec'] = np.eye(len(inv['noise_cov']['data']))

    inv['noise_cov']['eig'] = scale * inv['noise_cov']['eig']
    inv['source_cov']['data'] = scale * inv['source_cov']['data']
    #
    if inv['eigen_leads_weighted']:
        inv['eigen_leads']['data'] = sqrt(scale) * inv['eigen_leads']['data']

    logger.info('    Scaled noise and source covariance from nave = %d to'
                ' nave = %d' % (inv['nave'], nave))
    inv['nave'] = nave
    #
    #   Create the diagonal matrix for computing the regularized inverse
    #
    sing = np.array(inv['sing'], dtype=np.float64)
    inv['reginv'] = sing / (sing ** 2 + lambda2)
    logger.info('    Created the regularized inverter')
    #
    #   Create the projection operator
    #
    inv['proj'], ncomp, _ = make_projector(inv['projs'],
                                           inv['noise_cov']['names'])
    if ncomp > 0:
        logger.info('    Created an SSP operator (subspace dimension = %d)'
                    % ncomp)
    else:
        logger.info('    The projection vectors do not apply to these '
                    'channels.')

    #
    #   Create the whitener
    #
    if not inv['noise_cov']['diag']:
        inv['whitener'] = np.zeros((inv['noise_cov']['dim'],
                                    inv['noise_cov']['dim']))
        #
        #   Omit the zeroes due to projection
        #
        eig = inv['noise_cov']['eig']
        nzero = (eig > 0)
        inv['whitener'][nzero, nzero] = 1.0 / np.sqrt(eig[nzero])
        #
        #   Rows of eigvec are the eigenvectors
        #
        inv['whitener'] = np.dot(inv['whitener'], inv['noise_cov']['eigvec'])
        logger.info('    Created the whitener using a full noise '
                    'covariance matrix (%d small eigenvalues omitted)'
                    % (inv['noise_cov']['dim'] - np.sum(nzero)))
    else:
        #
        #   No need to omit the zeroes due to projection
        #
        inv['whitener'] = np.diag(1.0 /
                                  np.sqrt(inv['noise_cov']['data'].ravel()))
        logger.info('    Created the whitener using a diagonal noise '
                    'covariance matrix (%d small eigenvalues discarded)'
                    % ncomp)

    #
    #   Finally, compute the noise-normalization factors
    #
    if method in ["dSPM", 'sLORETA']:
        if method == "dSPM":
            logger.info('    Computing noise-normalization factors '
                        '(dSPM)...')
            noise_weight = inv['reginv']
        else:
            logger.info('    Computing noise-normalization factors '
                        '(sLORETA)...')
            noise_weight = (inv['reginv'] *
                            np.sqrt((1. + inv['sing'] ** 2 / lambda2)))
        noise_norm = np.zeros(inv['eigen_leads']['nrow'])
        nrm2, = linalg.get_blas_funcs(('nrm2',), (noise_norm,))
        if inv['eigen_leads_weighted']:
            for k in range(inv['eigen_leads']['nrow']):
                one = inv['eigen_leads']['data'][k, :] * noise_weight
                noise_norm[k] = nrm2(one)
        else:
            for k in range(inv['eigen_leads']['nrow']):
                one = (sqrt(inv['source_cov']['data'][k]) *
                       inv['eigen_leads']['data'][k, :] * noise_weight)
                noise_norm[k] = nrm2(one)

        #
        #   Compute the final result
        #
        if inv['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI:
            #
            #   The three-component case is a little bit more involved
            #   The variances at three consequtive entries must be squared and
            #   added together
            #
            #   Even in this case return only one noise-normalization factor
            #   per source location
            #
            noise_norm = combine_xyz(noise_norm[:, None]).ravel()

        inv['noisenorm'] = 1.0 / np.abs(noise_norm)
        logger.info('[done]')
    else:
        inv['noisenorm'] = []

    return InverseOperator(inv)


@verbose
def _assemble_kernel(inv, label, method, pick_ori, verbose=None):
    #
    #   Simple matrix multiplication followed by combination of the
    #   current components
    #
    #   This does all the data transformations to compute the weights for the
    #   eigenleads
    #
    eigen_leads = inv['eigen_leads']['data']
    source_cov = inv['source_cov']['data'][:, None]
    if method != "MNE":
        noise_norm = inv['noisenorm'][:, None]

    src = inv['src']
    vertno = _get_vertno(src)

    if label is not None:
        vertno, src_sel = label_src_vertno_sel(label, inv['src'])

        if method != "MNE":
            noise_norm = noise_norm[src_sel]

        if inv['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI:
            src_sel = 3 * src_sel
            src_sel = np.c_[src_sel, src_sel + 1, src_sel + 2]
            src_sel = src_sel.ravel()

        eigen_leads = eigen_leads[src_sel]
        source_cov = source_cov[src_sel]

    if pick_ori == "normal":
        if not inv['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI:
            raise ValueError('Picking normal orientation can only be done '
                             'with a free orientation inverse operator.')

        is_loose = 0 < inv['orient_prior']['data'][0] < 1
        if not is_loose:
            raise ValueError('Picking normal orientation can only be done '
                             'when working with loose orientations.')

        # keep only the normal components
        eigen_leads = eigen_leads[2::3]
        source_cov = source_cov[2::3]

    trans = inv['reginv'][:, None] * reduce(np.dot,
                                            [inv['eigen_fields']['data'],
                                             inv['whitener'],
                                             inv['proj']])
    #
    #   Transformation into current distributions by weighting the eigenleads
    #   with the weights computed above
    #
    if inv['eigen_leads_weighted']:
        #
        #     R^0.5 has been already factored in
        #
        logger.info('(eigenleads already weighted)...')
        K = np.dot(eigen_leads, trans)
    else:
        #
        #     R^0.5 has to be factored in
        #
        logger.info('(eigenleads need to be weighted)...')
        K = np.sqrt(source_cov) * np.dot(eigen_leads, trans)

    if method == "MNE":
        noise_norm = None

    return K, noise_norm, vertno


def _check_method(method):
    if method not in ["MNE", "dSPM", "sLORETA"]:
        raise ValueError('method parameter should be "MNE" or "dSPM" '
                         'or "sLORETA".')
    return method


def _check_ori(pick_ori, pick_normal):
    if pick_normal is not None:
        warnings.warn('DEPRECATION: The pick_normal parameter has been '
                      'changed to pick_ori. Please update your code.')
        pick_ori = pick_normal
    if pick_ori is True:
        warnings.warn('DEPRECATION: The pick_ori parameter should now be None '
                      'or "normal".')
        pick_ori = "normal"
    elif pick_ori is False:
        warnings.warn('DEPRECATION: The pick_ori parameter should now be None '
                      'or "normal".')
        pick_ori = None

    if pick_ori not in [None, "normal"]:
        raise ValueError('The pick_ori parameter should now be None or '
                         '"normal".')
    return pick_ori


def _subject_from_inverse(inverse_operator):
    """Get subject id from inverse operator"""
    return inverse_operator['src'][0].get('subject_his_id', None)


@verbose
def apply_inverse(evoked, inverse_operator, lambda2, method="dSPM",
                  pick_ori=None, verbose=None, pick_normal=None):
    """Apply inverse operator to evoked data

    Computes a L2-norm inverse solution
    Actual code using these principles might be different because
    the inverse operator is often reused across data sets.

    Parameters
    ----------
    evoked : Evoked object
        Evoked data.
    inverse_operator: dict
        Inverse operator read with mne.read_inverse_operator.
    lambda2 : float
        The regularization parameter.
    method : "MNE" | "dSPM" | "sLORETA"
        Use mininum norm, dSPM or sLORETA.
    pick_ori : None | "normal"
        If "normal", rather than pooling the orientations by taking the norm,
        only the radial component is kept. This is only implemented
        when working with loose orientations.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    stc : SourceEstimate | VolSourceEstimate
        The source estimates
    """
    method = _check_method(method)
    pick_ori = _check_ori(pick_ori, pick_normal)
    #
    #   Set up the inverse according to the parameters
    #
    nave = evoked.nave

    _check_ch_names(inverse_operator, evoked.info)

    inv = prepare_inverse_operator(inverse_operator, nave, lambda2, method)
    #
    #   Pick the correct channels from the data
    #
    sel = _pick_channels_inverse_operator(evoked.ch_names, inv)
    logger.info('Picked %d channels from the data' % len(sel))
    logger.info('Computing inverse...')
    K, noise_norm, _ = _assemble_kernel(inv, None, method, pick_ori)
    sol = np.dot(K, evoked.data[sel])  # apply imaging kernel

    is_free_ori = (inverse_operator['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI
                   and pick_ori is None)

    if is_free_ori:
        logger.info('combining the current components...')
        sol = combine_xyz(sol)

    if noise_norm is not None:
        logger.info('(dSPM)...')
        sol *= noise_norm

    tstep = 1.0 / evoked.info['sfreq']
    tmin = float(evoked.times[0])
    vertno = _get_vertno(inv['src'])
    subject = _subject_from_inverse(inverse_operator)

    stc = _make_stc(sol, vertices=vertno, tmin=tmin, tstep=tstep,
                    subject=subject)
    logger.info('[done]')

    return stc


@verbose
def apply_inverse_raw(raw, inverse_operator, lambda2, method="dSPM",
                      label=None, start=None, stop=None, nave=1,
                      time_func=None, pick_ori=None,
                      buffer_size=None, verbose=None,
                      pick_normal=None):
    """Apply inverse operator to Raw data

    Computes a L2-norm inverse solution
    Actual code using these principles might be different because
    the inverse operator is often reused across data sets.

    Parameters
    ----------
    raw : Raw object
        Raw data.
    inverse_operator : dict
        Inverse operator read with mne.read_inverse_operator.
    lambda2 : float
        The regularization parameter.
    method : "MNE" | "dSPM" | "sLORETA"
        Use mininum norm, dSPM or sLORETA.
    label : Label | None
        Restricts the source estimates to a given label. If None,
        source estimates will be computed for the entire source space.
    start : int
        Index of first time sample (index not time is seconds).
    stop : int
        Index of first time sample not to include (index not time is seconds).
    nave : int
        Number of averages used to regularize the solution.
        Set to 1 on raw data.
    time_func : callable
        Linear function applied to sensor space time series.
    pick_ori : None | "normal"
        If "normal", rather than pooling the orientations by taking the norm,
        only the radial component is kept. This is only implemented
        when working with loose orientations.
    buffer_size : int (or None)
        If not None, the computation of the inverse and the combination of the
        current components is performed in segments of length buffer_size
        samples. While slightly slower, this is useful for long datasets as it
        reduces the memory requirements by approx. a factor of 3 (assuming
        buffer_size << data length).
        Note that this setting has no effect for fixed-orientation inverse
        operators.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    stc : SourceEstimate | VolSourceEstimate
        The source estimates.
    """
    method = _check_method(method)
    pick_ori = _check_ori(pick_ori, pick_normal)

    _check_ch_names(inverse_operator, raw.info)

    #
    #   Set up the inverse according to the parameters
    #
    inv = prepare_inverse_operator(inverse_operator, nave, lambda2, method)
    #
    #   Pick the correct channels from the data
    #
    sel = _pick_channels_inverse_operator(raw.ch_names, inv)
    logger.info('Picked %d channels from the data' % len(sel))
    logger.info('Computing inverse...')

    data, times = raw[sel, start:stop]

    if time_func is not None:
        data = time_func(data)

    K, noise_norm, vertno = _assemble_kernel(inv, label, method, pick_ori)

    is_free_ori = (inverse_operator['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI
                   and pick_ori is None)

    if buffer_size is not None and is_free_ori:
        # Process the data in segments to conserve memory
        n_seg = int(np.ceil(data.shape[1] / float(buffer_size)))
        logger.info('computing inverse and combining the current '
                    'components (using %d segments)...' % (n_seg))

        # Allocate space for inverse solution
        n_times = data.shape[1]
        sol = np.empty((K.shape[0] // 3, n_times),
                       dtype=(K[0, 0] * data[0, 0]).dtype)

        for pos in range(0, n_times, buffer_size):
            sol[:, pos:pos + buffer_size] = \
                combine_xyz(np.dot(K, data[:, pos:pos + buffer_size]))

            logger.info('segment %d / %d done..'
                        % (pos / buffer_size + 1, n_seg))
    else:
        sol = np.dot(K, data)
        if is_free_ori:
            logger.info('combining the current components...')
            sol = combine_xyz(sol)

    if noise_norm is not None:
        sol *= noise_norm

    tmin = float(times[0])
    tstep = 1.0 / raw.info['sfreq']
    subject = _subject_from_inverse(inverse_operator)
    stc = _make_stc(sol, vertices=vertno, tmin=tmin, tstep=tstep,
                    subject=subject)
    logger.info('[done]')

    return stc


def _apply_inverse_epochs_gen(epochs, inverse_operator, lambda2, method='dSPM',
                              label=None, nave=1, pick_ori=None,
                              verbose=None, pick_normal=None):
    """ see apply_inverse_epochs """
    method = _check_method(method)
    pick_ori = _check_ori(pick_ori, pick_normal)

    _check_ch_names(inverse_operator, epochs.info)

    #
    #   Set up the inverse according to the parameters
    #
    inv = prepare_inverse_operator(inverse_operator, nave, lambda2, method)
    #
    #   Pick the correct channels from the data
    #
    sel = _pick_channels_inverse_operator(epochs.ch_names, inv)
    logger.info('Picked %d channels from the data' % len(sel))
    logger.info('Computing inverse...')
    K, noise_norm, vertno = _assemble_kernel(inv, label, method, pick_ori)

    tstep = 1.0 / epochs.info['sfreq']
    tmin = epochs.times[0]

    is_free_ori = (inverse_operator['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI
                   and pick_ori is None)

    if not is_free_ori and noise_norm is not None:
        # premultiply kernel with noise normalization
        K *= noise_norm

    subject = _subject_from_inverse(inverse_operator)
    for k, e in enumerate(epochs):
        logger.info('Processing epoch : %d' % (k + 1))
        if is_free_ori:
            # Compute solution and combine current components (non-linear)
            sol = np.dot(K, e[sel])  # apply imaging kernel
            if is_free_ori:
                logger.info('combining the current components...')
                sol = combine_xyz(sol)

                if noise_norm is not None:
                    sol *= noise_norm
        else:
            # Linear inverse: do computation here or delayed
            if len(sel) < K.shape[0]:
                sol = (K, e[sel])
            else:
                sol = np.dot(K, e[sel])

        stc = _make_stc(sol, vertices=vertno, tmin=tmin, tstep=tstep,
                        subject=subject)

        yield stc

    logger.info('[done]')


@verbose
def apply_inverse_epochs(epochs, inverse_operator, lambda2, method="dSPM",
                         label=None, nave=1, pick_ori=None,
                         return_generator=False, verbose=None,
                         pick_normal=None):
    """Apply inverse operator to Epochs

    Computes a L2-norm inverse solution on each epochs and returns
    single trial source estimates.

    Parameters
    ----------
    epochs : Epochs object
        Single trial epochs.
    inverse_operator : dict
        Inverse operator read with mne.read_inverse_operator.
    lambda2 : float
        The regularization parameter.
    method : "MNE" | "dSPM" | "sLORETA"
        Use mininum norm, dSPM or sLORETA.
    label : Label | None
        Restricts the source estimates to a given label. If None,
        source estimates will be computed for the entire source space.
    nave : int
        Number of averages used to regularize the solution.
        Set to 1 on single Epoch by default.
    pick_ori : None | "normal"
        If "normal", rather than pooling the orientations by taking the norm,
        only the radial component is kept. This is only implemented
        when working with loose orientations.
    return_generator : bool
        Return a generator object instead of a list. This allows iterating
        over the stcs without having to keep them all in memory.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    stc : list of SourceEstimate or VolSourceEstimate
        The source estimates for all epochs.
    """
    stcs = _apply_inverse_epochs_gen(epochs, inverse_operator, lambda2,
                                     method=method, label=label, nave=nave,
                                     pick_ori=pick_ori, verbose=verbose,
                                     pick_normal=pick_normal)

    if not return_generator:
        # return a list
        stcs = [stc for stc in stcs]

    return stcs


def _xyz2lf(Lf_xyz, normals):
    """Reorient leadfield to one component matching the normal to the cortex

    This program takes a leadfield matix computed for dipole components
    pointing in the x, y, and z directions, and outputs a new lead field
    matrix for dipole components pointing in the normal direction of the
    cortical surfaces and in the two tangential directions to the cortex
    (that is on the tangent cortical space). These two tangential dipole
    components are uniquely determined by the SVD (reduction of variance).

    Parameters
    ----------
    Lf_xyz: array of shape [n_sensors, n_positions x 3]
        Leadfield
    normals : array of shape [n_positions, 3]
        Normals to the cortex

    Returns
    -------
    Lf_cortex : array of shape [n_sensors, n_positions x 3]
        Lf_cortex is a leadfield matrix for dipoles in rotated orientations, so
        that the first column is the gain vector for the cortical normal dipole
        and the following two column vectors are the gain vectors for the
        tangential orientations (tangent space of cortical surface).
    """
    n_sensors, n_dipoles = Lf_xyz.shape
    n_positions = n_dipoles // 3
    Lf_xyz = Lf_xyz.reshape(n_sensors, n_positions, 3)
    n_sensors, n_positions, _ = Lf_xyz.shape
    Lf_cortex = np.zeros_like(Lf_xyz)

    for k in range(n_positions):
        lf_normal = np.dot(Lf_xyz[:, k, :], normals[k])
        lf_normal_n = lf_normal[:, None] / linalg.norm(lf_normal)
        P = np.eye(n_sensors, n_sensors) - np.dot(lf_normal_n, lf_normal_n.T)
        lf_p = np.dot(P, Lf_xyz[:, k, :])
        U, s, Vh = linalg.svd(lf_p)
        Lf_cortex[:, k, 0] = lf_normal
        Lf_cortex[:, k, 1:] = np.c_[U[:, 0] * s[0], U[:, 1] * s[1]]

    Lf_cortex = Lf_cortex.reshape(n_sensors, n_dipoles)
    return Lf_cortex


###############################################################################
# Assemble the inverse operator

@verbose
def _prepare_forward(forward, info, noise_cov, pca=False, verbose=None):
    """Util function to prepare forward solution for inverse solvers
    """
    fwd_ch_names = [c['ch_name'] for c in forward['info']['chs']]
    ch_names = [c['ch_name'] for c in info['chs']
                if (c['ch_name'] not in info['bads']
                    and c['ch_name'] not in noise_cov['bads'])
                and (c['ch_name'] in fwd_ch_names
                     and c['ch_name'] in noise_cov.ch_names)]

    if not len(info['bads']) == len(noise_cov['bads']) or \
            not all([b in noise_cov['bads'] for b in info['bads']]):
        logger.info('info["bads"] and noise_cov["bads"] do not match, '
                    'excluding bad channels from both')

    n_chan = len(ch_names)
    logger.info("Computing inverse operator with %d channels." % n_chan)

    #
    #   Handle noise cov
    #
    noise_cov = prepare_noise_cov(noise_cov, info, ch_names)

    #   Omit the zeroes due to projection
    eig = noise_cov['eig']
    nzero = (eig > 0)
    n_nzero = sum(nzero)

    if pca:
        #   Rows of eigvec are the eigenvectors
        whitener = noise_cov['eigvec'][nzero] / np.sqrt(eig[nzero])[:, None]
        logger.info('Reducing data rank to %d' % n_nzero)
    else:
        whitener = np.zeros((n_chan, n_chan), dtype=np.float)
        whitener[nzero, nzero] = 1.0 / np.sqrt(eig[nzero])
        #   Rows of eigvec are the eigenvectors
        whitener = np.dot(whitener, noise_cov['eigvec'])

    gain = forward['sol']['data']

    fwd_idx = [fwd_ch_names.index(name) for name in ch_names]
    gain = gain[fwd_idx]
    info_idx = [info['ch_names'].index(name) for name in ch_names]
    fwd_info = pick_info(info, info_idx)

    logger.info('Total rank is %d' % n_nzero)

    return fwd_info, gain, noise_cov, whitener, n_nzero


@verbose
def make_inverse_operator(info, forward, noise_cov, loose=0.2, depth=0.8,
                          fixed=False, limit_depth_chs=True, verbose=None):
    """Assemble inverse operator

    Parameters
    ----------
    info : dict
        The measurement info to specify the channels to include.
        Bad channels in info['bads'] are not used.
    forward : dict
        Forward operator.
    noise_cov : Covariance
        The noise covariance matrix.
    loose : None | float in [0, 1]
        Value that weights the source variances of the dipole components
        defining the tangent space of the cortical surfaces. Requires surface-
        based, free orientation forward solutions.
    depth : None | float in [0, 1]
        Depth weighting coefficients. If None, no depth weighting is performed.
    fixed : bool
        Use fixed source orientations normal to the cortical mantle. If True,
        the loose parameter is ignored.
    limit_depth_chs : bool
        If True, use only grad channels in depth weighting (equivalent to MNE
        C code). If grad chanels aren't present, only mag channels will be
        used (if no mag, then eeg). If False, use all channels.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    inv : instance of InverseOperator
        Inverse operator.

    Notes
    -----
    For different sets of options (**loose**, **depth**, **fixed**) to work,
    the forward operator must have been loaded using a certain configuration
    (i.e., with **force_fixed** and **surf_ori** set appropriately). For
    example, given the desired inverse type (with representative choices
    of **loose** = 0.2 and **depth** = 0.8 shown in the table in various
    places, as these are the defaults for those parameters):

        +---------------------+-----------+-----------+-----------+-----------------+--------------+
        | Inverse desired                             | Forward parameters allowed                 |
        +=====================+===========+===========+===========+=================+==============+
        |                     | **loose** | **depth** | **fixed** | **force_fixed** | **surf_ori** |
        +---------------------+-----------+-----------+-----------+-----------------+--------------+
        | | Loose constraint, | 0.2       | 0.8       | False     | False           | True         |
        | | Depth weighted    |           |           |           |                 |              |
        +---------------------+-----------+-----------+-----------+-----------------+--------------+
        | | Loose constraint  | 0.2       | None      | False     | False           | True         |
        +---------------------+-----------+-----------+-----------+-----------------+--------------+
        | | Free orientation, | None      | 0.8       | False     | False           | True         |
        | | Depth weighted    |           |           |           |                 |              |
        +---------------------+-----------+-----------+-----------+-----------------+--------------+
        | | Free orientation  | None      | None      | False     | False           | True | False |
        +---------------------+-----------+-----------+-----------+-----------------+--------------+
        | | Fixed constraint, | None      | 0.8       | True      | False           | True         |
        | | Depth weighted    |           |           |           |                 |              |
        +---------------------+-----------+-----------+-----------+-----------------+--------------+
        | | Fixed constraint  | None      | None      | True      | True            | True         |
        +---------------------+-----------+-----------+-----------+-----------------+--------------+

    Also note that, if the source space (as stored in the forward solution)
    has patch statistics computed, these are used to improve the depth
    weighting. Thus slightly different results are to be expected with
    and without this information.
    """
    is_fixed_ori = is_fixed_orient(forward)

    if fixed and loose is not None:
        warnings.warn("When invoking make_inverse_operator with fixed=True, "
                      "the loose parameter is ignored.")
        loose = None

    if is_fixed_ori and not fixed:
        raise ValueError('Forward operator has fixed orientation and can only '
                         'be used to make a fixed-orientation inverse '
                         'operator.')
    if fixed:
        if depth is not None:
            if is_fixed_ori or not forward['surf_ori']:
                raise ValueError('For a fixed orientation inverse solution '
                                 'with depth weighting, the forward solution '
                                 'must be free-orientation and in surface '
                                 'orientation')
        elif forward['surf_ori'] is False:
            raise ValueError('For a fixed orientation inverse solution '
                             'without depth weighting, the forward solution '
                             'must be in surface orientation')

    # depth=None can use fixed fwd, depth=0<x<1 must use free ori
    if depth is not None:
        if not (0 < depth <= 1):
            raise ValueError('depth should be a scalar between 0 and 1')
        if is_fixed_ori or not forward['surf_ori']:
            raise ValueError('You need a free-orientation, surface-oriented '
                             'forward solution to do depth weighting even '
                             'when calculating a fixed-orientation inverse.')

    if loose is not None:
        if not (0 <= loose <= 1):
            raise ValueError('loose value should be smaller than 1 and bigger '
                             'than 0, or None for not loose orientations.')
        if loose < 1 and not forward['surf_ori']:
            raise ValueError('Forward operator is not oriented in surface '
                             'coordinates. A loose inverse operator requires '
                             'a surface-based, free orientation forward '
                             'operator.')

    #
    # 1. Read the bad channels
    # 2. Read the necessary data from the forward solution matrix file
    # 3. Load the projection data
    # 4. Load the sensor noise covariance matrix and attach it to the forward
    #

    gain_info, gain, noise_cov, whitener, n_nzero = \
        _prepare_forward(forward, info, noise_cov)

    #
    # 5. Compose the depth-weighting matrix
    #

    if depth is not None:
        patch_areas = forward.get('patch_areas', None)
        depth_prior = compute_depth_prior(gain, gain_info, is_fixed_ori,
                                          exp=depth, patch_areas=patch_areas,
                                          limit_depth_chs=limit_depth_chs)
    else:
        depth_prior = np.ones(gain.shape[1], dtype=gain.dtype)

    # Deal with fixed orientation forward / inverse
    if fixed:
        if depth is not None:
            # Convert the depth prior into a fixed-orientation one
            logger.info('    Picked elements from a free-orientation '
                        'depth-weighting prior into the fixed-orientation one')
        if not is_fixed_ori:
            # Convert to the fixed orientation forward solution now
            depth_prior = depth_prior[2::3]
            forward = deepcopy(forward)
            _to_fixed_ori(forward)
            is_fixed_ori = is_fixed_orient(forward)
            gain_info, gain, noise_cov, whitener, n_nzero = \
                _prepare_forward(forward, info, noise_cov, verbose=False)

    logger.info("Computing inverse operator with %d channels."
                % len(gain_info['ch_names']))

    #
    # 6. Compose the source covariance matrix
    #

    logger.info('Creating the source covariance matrix')
    source_cov = depth_prior.copy()
    depth_prior = dict(data=depth_prior, kind=FIFF.FIFFV_MNE_DEPTH_PRIOR_COV,
                       bads=[], diag=True, names=[], eig=None,
                       eigvec=None, dim=depth_prior.size, nfree=1,
                       projs=[])

    # apply loose orientations
    if not is_fixed_ori:
        orient_prior = compute_orient_prior(forward, loose=loose)
        source_cov *= orient_prior
        orient_prior = dict(data=orient_prior,
                            kind=FIFF.FIFFV_MNE_ORIENT_PRIOR_COV,
                            bads=[], diag=True, names=[], eig=None,
                            eigvec=None, dim=orient_prior.size, nfree=1,
                            projs=[])
    else:
        orient_prior = None

    # 7. Apply fMRI weighting (not done)

    #
    # 8. Apply the linear projection to the forward solution
    # 9. Apply whitening to the forward computation matrix
    #
    logger.info('Whitening the forward solution.')
    gain = np.dot(whitener, gain)

    # 10. Exclude the source space points within the labels (not done)

    #
    # 11. Do appropriate source weighting to the forward computation matrix
    #

    # Adjusting Source Covariance matrix to make trace of G*R*G' equal
    # to number of sensors.
    logger.info('Adjusting source covariance matrix.')
    source_std = np.sqrt(source_cov)
    gain *= source_std[None, :]
    trace_GRGT = linalg.norm(gain, ord='fro') ** 2
    scaling_source_cov = n_nzero / trace_GRGT
    source_cov *= scaling_source_cov
    gain *= sqrt(scaling_source_cov)

    source_cov = dict(data=source_cov, dim=source_cov.size,
                      kind=FIFF.FIFFV_MNE_SOURCE_COV, diag=True,
                      names=[], projs=[], eig=None, eigvec=None,
                      nfree=1, bads=[])

    # now np.trace(np.dot(gain, gain.T)) == n_nzero
    # logger.info(np.trace(np.dot(gain, gain.T)), n_nzero)

    #
    # 12. Decompose the combined matrix
    #

    logger.info('Computing SVD of whitened and weighted lead field '
                'matrix.')
    eigen_fields, sing, eigen_leads = linalg.svd(gain, full_matrices=False)
    logger.info('    largest singular value = %g' % np.max(sing))
    logger.info('    scaling factor to adjust the trace = %g' % trace_GRGT)

    eigen_fields = dict(data=eigen_fields.T, col_names=gain_info['ch_names'],
                        row_names=[], nrow=eigen_fields.shape[1],
                        ncol=eigen_fields.shape[0])
    eigen_leads = dict(data=eigen_leads.T, nrow=eigen_leads.shape[1],
                       ncol=eigen_leads.shape[0], row_names=[],
                       col_names=[])
    nave = 1.0

    # Handle methods
    has_meg = False
    has_eeg = False
    ch_idx = [k for k, c in enumerate(info['chs'])
              if c['ch_name'] in gain_info['ch_names']]
    for idx in ch_idx:
        ch_type = channel_type(info, idx)
        if ch_type == 'eeg':
            has_eeg = True
        if (ch_type == 'mag') or (ch_type == 'grad'):
            has_meg = True
    if has_eeg and has_meg:
        methods = FIFF.FIFFV_MNE_MEG_EEG
    elif has_meg:
        methods = FIFF.FIFFV_MNE_MEG
    else:
        methods = FIFF.FIFFV_MNE_EEG

    # We set this for consistency with mne C code written inverses
    if depth is None:
        depth_prior = None
    inv_op = dict(eigen_fields=eigen_fields, eigen_leads=eigen_leads,
                  sing=sing, nave=nave, depth_prior=depth_prior,
                  source_cov=source_cov, noise_cov=noise_cov,
                  orient_prior=orient_prior, projs=deepcopy(info['projs']),
                  eigen_leads_weighted=False, source_ori=forward['source_ori'],
                  mri_head_t=deepcopy(forward['mri_head_t']),
                  methods=methods, nsource=forward['nsource'],
                  coord_frame=forward['coord_frame'],
                  source_nn=forward['source_nn'].copy(),
                  src=deepcopy(forward['src']), fmri_prior=None)
    inv_info = deepcopy(forward['info'])
    inv_info['bads'] = deepcopy(info['bads'])
    inv_op['units'] = 'Am'
    inv_op['info'] = inv_info

    return InverseOperator(inv_op)


def compute_rank_inverse(inv):
    """Compute the rank of a linear inverse operator (MNE, dSPM, etc.)

    Parameters
    ----------
    inv : dict
        The inverse operator.

    Returns
    -------
    rank : int
        The rank of the inverse operator.
    """
    # this code shortened from prepare_inverse_operator
    eig = inv['noise_cov']['eig']
    if not inv['noise_cov']['diag']:
        rank = np.sum(eig > 0)
    else:
        ncomp = make_projector(inv['projs'], inv['noise_cov']['names'])[1]
        rank = inv['noise_cov']['dim'] - ncomp
    return rank