1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
from __future__ import print_function
import os.path as op
import numpy as np
from numpy.testing import assert_array_almost_equal, assert_equal
from scipy import sparse
from nose.tools import assert_true, assert_raises
import copy
import warnings
from mne.datasets import sample
from mne.label import read_label, label_sign_flip
from mne.event import read_events
from mne.epochs import Epochs
from mne.source_estimate import read_source_estimate, VolSourceEstimate
from mne import read_cov, read_forward_solution, read_evokeds, pick_types
from mne.io import Raw
from mne.minimum_norm.inverse import (apply_inverse, read_inverse_operator,
apply_inverse_raw, apply_inverse_epochs,
make_inverse_operator,
write_inverse_operator,
compute_rank_inverse)
from mne.utils import _TempDir
from ...externals import six
s_path = op.join(sample.data_path(download=False), 'MEG', 'sample')
fname_inv = op.join(s_path, 'sample_audvis-meg-oct-6-meg-inv.fif')
fname_inv_fixed = op.join(s_path, 'sample_audvis-meg-oct-6-meg-fixed-inv.fif')
fname_inv_nodepth = op.join(s_path,
'sample_audvis-meg-oct-6-meg-nodepth'
'-fixed-inv.fif')
fname_inv_diag = op.join(s_path,
'sample_audvis-meg-oct-6-meg-diagnoise-inv.fif')
fname_vol_inv = op.join(s_path, 'sample_audvis-meg-vol-7-meg-inv.fif')
fname_data = op.join(s_path, 'sample_audvis-ave.fif')
fname_cov = op.join(s_path, 'sample_audvis-cov.fif')
fname_fwd = op.join(s_path, 'sample_audvis-meg-oct-6-fwd.fif')
fname_fwd_meeg = op.join(s_path, 'sample_audvis-meg-eeg-oct-6-fwd.fif')
fname_raw = op.join(s_path, 'sample_audvis_filt-0-40_raw.fif')
fname_event = op.join(s_path, 'sample_audvis_filt-0-40_raw-eve.fif')
fname_label = op.join(s_path, 'labels', '%s.label')
snr = 3.0
lambda2 = 1.0 / snr ** 2
tempdir = _TempDir()
last_keys = [None] * 10
def _get_evoked():
evoked = read_evokeds(fname_data, condition=0, baseline=(None, 0))
evoked.crop(0, 0.2)
return evoked
def _compare(a, b):
global last_keys
skip_types = ['whitener', 'proj', 'reginv', 'noisenorm', 'nchan',
'command_line', 'working_dir', 'mri_file', 'mri_id']
try:
if isinstance(a, dict):
assert_true(isinstance(b, dict))
for k, v in six.iteritems(a):
if not k in b and k not in skip_types:
raise ValueError('First one had one second one didn\'t:\n'
'%s not in %s' % (k, b.keys()))
if k not in skip_types:
last_keys.pop()
last_keys = [k] + last_keys
_compare(v, b[k])
for k, v in six.iteritems(b):
if not k in a and k not in skip_types:
raise ValueError('Second one had one first one didn\'t:\n'
'%s not in %s' % (k, a.keys()))
elif isinstance(a, list):
assert_true(len(a) == len(b))
for i, j in zip(a, b):
_compare(i, j)
elif isinstance(a, sparse.csr.csr_matrix):
assert_array_almost_equal(a.data, b.data)
assert_equal(a.indices, b.indices)
assert_equal(a.indptr, b.indptr)
elif isinstance(a, np.ndarray):
assert_array_almost_equal(a, b)
else:
assert_true(a == b)
except Exception as exptn:
print(last_keys)
raise exptn
def _compare_inverses_approx(inv_1, inv_2, evoked, stc_decimals,
check_depth=True):
# depth prior
if check_depth:
if inv_1['depth_prior'] is not None:
assert_array_almost_equal(inv_1['depth_prior']['data'],
inv_2['depth_prior']['data'])
else:
assert_true(inv_2['depth_prior'] is None)
# orient prior
if inv_1['orient_prior'] is not None:
assert_array_almost_equal(inv_1['orient_prior']['data'],
inv_2['orient_prior']['data'])
else:
assert_true(inv_2['orient_prior'] is None)
# source cov
assert_array_almost_equal(inv_1['source_cov']['data'],
inv_2['source_cov']['data'])
# These are not as close as we'd like XXX
assert_array_almost_equal(np.abs(inv_1['eigen_fields']['data']),
np.abs(inv_2['eigen_fields']['data']), 0)
assert_array_almost_equal(np.abs(inv_1['eigen_leads']['data']),
np.abs(inv_2['eigen_leads']['data']), 0)
stc_1 = apply_inverse(evoked, inv_1, lambda2, "dSPM")
stc_2 = apply_inverse(evoked, inv_2, lambda2, "dSPM")
assert_true(stc_1.subject == stc_2.subject)
assert_equal(stc_1.times, stc_2.times)
assert_array_almost_equal(stc_1.data, stc_2.data, stc_decimals)
assert_true(inv_1['units'] == inv_2['units'])
def _compare_io(inv_op, out_file_ext='.fif'):
if out_file_ext == '.fif':
out_file = op.join(tempdir, 'test-inv.fif')
elif out_file_ext == '.gz':
out_file = op.join(tempdir, 'test-inv.fif.gz')
else:
raise ValueError('IO test could not complete')
# Test io operations
inv_init = copy.deepcopy(inv_op)
write_inverse_operator(out_file, inv_op)
read_inv_op = read_inverse_operator(out_file)
_compare(inv_init, read_inv_op)
_compare(inv_init, inv_op)
@sample.requires_sample_data
def test_warn_inverse_operator():
"""Test MNE inverse warning without average EEG projection
"""
bad_info = copy.deepcopy(_get_evoked().info)
bad_info['projs'] = list()
fwd_op = read_forward_solution(fname_fwd_meeg, surf_ori=True)
noise_cov = read_cov(fname_cov)
with warnings.catch_warnings(record=True) as w:
make_inverse_operator(bad_info, fwd_op, noise_cov)
assert_equal(len(w), 1)
@sample.requires_sample_data
def test_apply_inverse_operator():
"""Test MNE inverse computation (precomputed and non-precomputed)
"""
inverse_operator = read_inverse_operator(fname_inv)
evoked = _get_evoked()
noise_cov = read_cov(fname_cov)
# Test old version of inverse computation starting from forward operator
fwd_op = read_forward_solution(fname_fwd, surf_ori=True)
my_inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov,
loose=0.2, depth=0.8,
limit_depth_chs=False)
_compare_io(my_inv_op)
assert_true(inverse_operator['units'] == 'Am')
_compare_inverses_approx(my_inv_op, inverse_operator, evoked, 2,
check_depth=False)
# Inverse has 306 channels - 4 proj = 302
assert_true(compute_rank_inverse(inverse_operator) == 302)
# Test MNE inverse computation starting from forward operator
my_inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov,
loose=0.2, depth=0.8)
_compare_io(my_inv_op)
_compare_inverses_approx(my_inv_op, inverse_operator, evoked, 2)
# Inverse has 306 channels - 4 proj = 302
assert_true(compute_rank_inverse(inverse_operator) == 302)
stc = apply_inverse(evoked, inverse_operator, lambda2, "MNE")
assert_true(stc.subject == 'sample')
assert_true(stc.data.min() > 0)
assert_true(stc.data.max() < 10e-10)
assert_true(stc.data.mean() > 1e-11)
stc = apply_inverse(evoked, inverse_operator, lambda2, "sLORETA")
assert_true(stc.subject == 'sample')
assert_true(stc.data.min() > 0)
assert_true(stc.data.max() < 10.0)
assert_true(stc.data.mean() > 0.1)
stc = apply_inverse(evoked, inverse_operator, lambda2, "dSPM")
assert_true(stc.subject == 'sample')
assert_true(stc.data.min() > 0)
assert_true(stc.data.max() < 35)
assert_true(stc.data.mean() > 0.1)
my_stc = apply_inverse(evoked, my_inv_op, lambda2, "dSPM")
assert_true('dev_head_t' in my_inv_op['info'])
assert_true('mri_head_t' in my_inv_op)
assert_true(my_stc.subject == 'sample')
assert_equal(stc.times, my_stc.times)
assert_array_almost_equal(stc.data, my_stc.data, 2)
@sample.requires_sample_data
def test_make_inverse_operator_fixed():
"""Test MNE inverse computation (fixed orientation)
"""
fwd_op = read_forward_solution(fname_fwd, surf_ori=True)
fwd_1 = read_forward_solution(fname_fwd, surf_ori=False, force_fixed=False)
fwd_2 = read_forward_solution(fname_fwd, surf_ori=False, force_fixed=True)
evoked = _get_evoked()
noise_cov = read_cov(fname_cov)
# can't make depth-weighted fixed inv without surf ori fwd
assert_raises(ValueError, make_inverse_operator, evoked.info, fwd_1,
noise_cov, depth=0.8, loose=None, fixed=True)
# can't make fixed inv with depth weighting without free ori fwd
assert_raises(ValueError, make_inverse_operator, evoked.info, fwd_2,
noise_cov, depth=0.8, loose=None, fixed=True)
# compare to C solution w/fixed
inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov, depth=0.8,
loose=None, fixed=True)
_compare_io(inv_op)
inverse_operator_fixed = read_inverse_operator(fname_inv_fixed)
_compare_inverses_approx(inverse_operator_fixed, inv_op, evoked, 2)
# Inverse has 306 channels - 4 proj = 302
assert_true(compute_rank_inverse(inverse_operator_fixed) == 302)
# now compare to C solution
# note that the forward solution must not be surface-oriented
# to get equivalency (surf_ori=True changes the normals)
inv_op = make_inverse_operator(evoked.info, fwd_2, noise_cov, depth=None,
loose=None, fixed=True)
inverse_operator_nodepth = read_inverse_operator(fname_inv_nodepth)
_compare_inverses_approx(inverse_operator_nodepth, inv_op, evoked, 2)
# Inverse has 306 channels - 4 proj = 302
assert_true(compute_rank_inverse(inverse_operator_fixed) == 302)
@sample.requires_sample_data
def test_make_inverse_operator_free():
"""Test MNE inverse computation (free orientation)
"""
fwd_op = read_forward_solution(fname_fwd, surf_ori=True)
fwd_1 = read_forward_solution(fname_fwd, surf_ori=False, force_fixed=False)
fwd_2 = read_forward_solution(fname_fwd, surf_ori=False, force_fixed=True)
evoked = _get_evoked()
noise_cov = read_cov(fname_cov)
# can't make free inv with fixed fwd
assert_raises(ValueError, make_inverse_operator, evoked.info, fwd_2,
noise_cov, depth=None)
# for free ori inv, loose=None and loose=1 should be equivalent
inv_1 = make_inverse_operator(evoked.info, fwd_op, noise_cov, loose=None)
inv_2 = make_inverse_operator(evoked.info, fwd_op, noise_cov, loose=1)
_compare_inverses_approx(inv_1, inv_2, evoked, 2)
# for depth=None, surf_ori of the fwd should not matter
inv_3 = make_inverse_operator(evoked.info, fwd_op, noise_cov, depth=None,
loose=None)
inv_4 = make_inverse_operator(evoked.info, fwd_1, noise_cov, depth=None,
loose=None)
_compare_inverses_approx(inv_3, inv_4, evoked, 2)
@sample.requires_sample_data
def test_make_inverse_operator_diag():
"""Test MNE inverse computation with diagonal noise cov
"""
evoked = _get_evoked()
noise_cov = read_cov(fname_cov)
fwd_op = read_forward_solution(fname_fwd, surf_ori=True)
inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov.as_diag(),
loose=0.2, depth=0.8)
_compare_io(inv_op)
inverse_operator_diag = read_inverse_operator(fname_inv_diag)
# This one's only good to zero decimal places, roundoff error (?)
_compare_inverses_approx(inverse_operator_diag, inv_op, evoked, 0)
# Inverse has 306 channels - 4 proj = 302
assert_true(compute_rank_inverse(inverse_operator_diag) == 302)
@sample.requires_sample_data
def test_inverse_operator_volume():
"""Test MNE inverse computation on volume source space
"""
evoked = _get_evoked()
inverse_operator_vol = read_inverse_operator(fname_vol_inv)
_compare_io(inverse_operator_vol)
stc = apply_inverse(evoked, inverse_operator_vol, lambda2, "dSPM")
assert_true(isinstance(stc, VolSourceEstimate))
# volume inverses don't have associated subject IDs
assert_true(stc.subject is None)
stc.save(op.join(tempdir, 'tmp-vl.stc'))
stc2 = read_source_estimate(op.join(tempdir, 'tmp-vl.stc'))
assert_true(np.all(stc.data > 0))
assert_true(np.all(stc.data < 35))
assert_array_almost_equal(stc.data, stc2.data)
assert_array_almost_equal(stc.times, stc2.times)
@sample.requires_sample_data
def test_io_inverse_operator():
"""Test IO of inverse_operator with GZip
"""
inverse_operator = read_inverse_operator(fname_inv)
print(inverse_operator)
# just do one example for .gz, as it should generalize
_compare_io(inverse_operator, '.gz')
# test warnings on bad filenames
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
inv_badname = op.join(tempdir, 'test-bad-name.fif.gz')
write_inverse_operator(inv_badname, inverse_operator)
read_inverse_operator(inv_badname)
assert_true(len(w) == 2)
@sample.requires_sample_data
def test_apply_mne_inverse_raw():
"""Test MNE with precomputed inverse operator on Raw
"""
start = 3
stop = 10
raw = Raw(fname_raw)
label_lh = read_label(fname_label % 'Aud-lh')
_, times = raw[0, start:stop]
inverse_operator = read_inverse_operator(fname_inv)
for pick_ori in [None, "normal"]:
stc = apply_inverse_raw(raw, inverse_operator, lambda2, "dSPM",
label=label_lh, start=start, stop=stop, nave=1,
pick_ori=pick_ori, buffer_size=None)
stc2 = apply_inverse_raw(raw, inverse_operator, lambda2, "dSPM",
label=label_lh, start=start, stop=stop,
nave=1, pick_ori=pick_ori,
buffer_size=3)
if pick_ori is None:
assert_true(np.all(stc.data > 0))
assert_true(np.all(stc2.data > 0))
assert_true(stc.subject == 'sample')
assert_true(stc2.subject == 'sample')
assert_array_almost_equal(stc.times, times)
assert_array_almost_equal(stc2.times, times)
assert_array_almost_equal(stc.data, stc2.data)
@sample.requires_sample_data
def test_apply_mne_inverse_fixed_raw():
"""Test MNE with fixed-orientation inverse operator on Raw
"""
raw = Raw(fname_raw)
start = 3
stop = 10
_, times = raw[0, start:stop]
label_lh = read_label(fname_label % 'Aud-lh')
# create a fixed-orientation inverse operator
fwd = read_forward_solution(fname_fwd, force_fixed=False, surf_ori=True)
noise_cov = read_cov(fname_cov)
inv_op = make_inverse_operator(raw.info, fwd, noise_cov,
loose=None, depth=0.8, fixed=True)
stc = apply_inverse_raw(raw, inv_op, lambda2, "dSPM",
label=label_lh, start=start, stop=stop, nave=1,
pick_ori=None, buffer_size=None)
stc2 = apply_inverse_raw(raw, inv_op, lambda2, "dSPM",
label=label_lh, start=start, stop=stop, nave=1,
pick_ori=None, buffer_size=3)
assert_true(stc.subject == 'sample')
assert_true(stc2.subject == 'sample')
assert_array_almost_equal(stc.times, times)
assert_array_almost_equal(stc2.times, times)
assert_array_almost_equal(stc.data, stc2.data)
@sample.requires_sample_data
def test_apply_mne_inverse_epochs():
"""Test MNE with precomputed inverse operator on Epochs
"""
inverse_operator = read_inverse_operator(fname_inv)
label_lh = read_label(fname_label % 'Aud-lh')
label_rh = read_label(fname_label % 'Aud-rh')
event_id, tmin, tmax = 1, -0.2, 0.5
raw = Raw(fname_raw)
picks = pick_types(raw.info, meg=True, eeg=False, stim=True, ecg=True,
eog=True, include=['STI 014'], exclude='bads')
reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)
flat = dict(grad=1e-15, mag=1e-15)
events = read_events(fname_event)[:15]
epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), reject=reject, flat=flat)
stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
label=label_lh, pick_ori="normal")
assert_true(len(stcs) == 4)
assert_true(3 < stcs[0].data.max() < 10)
assert_true(stcs[0].subject == 'sample')
data = sum(stc.data for stc in stcs) / len(stcs)
flip = label_sign_flip(label_lh, inverse_operator['src'])
label_mean = np.mean(data, axis=0)
label_mean_flip = np.mean(flip[:, np.newaxis] * data, axis=0)
assert_true(label_mean.max() < label_mean_flip.max())
# test extracting a BiHemiLabel
stcs_rh = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
label=label_rh, pick_ori="normal")
stcs_bh = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
label=label_lh + label_rh,
pick_ori="normal")
n_lh = len(stcs[0].data)
assert_array_almost_equal(stcs[0].data, stcs_bh[0].data[:n_lh])
assert_array_almost_equal(stcs_rh[0].data, stcs_bh[0].data[n_lh:])
# test without using a label (so delayed computation is used)
stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
pick_ori="normal")
assert_true(stcs[0].subject == 'sample')
label_stc = stcs[0].in_label(label_rh)
assert_true(label_stc.subject == 'sample')
assert_array_almost_equal(stcs_rh[0].data, label_stc.data)
@sample.requires_sample_data
def test_make_inverse_operator_bads():
"""Test MNE inverse computation given a mismatch of bad channels
"""
fwd_op = read_forward_solution(fname_fwd, surf_ori=True)
evoked = _get_evoked()
noise_cov = read_cov(fname_cov)
# test bads
bad = evoked.info['bads'].pop()
inv_ = make_inverse_operator(evoked.info, fwd_op, noise_cov, loose=None)
union_good = set(noise_cov['names']) & set(evoked.ch_names)
union_bads = set(noise_cov['bads']) & set(evoked.info['bads'])
evoked.info['bads'].append(bad)
assert_true(len(set(inv_['info']['ch_names']) - union_good) == 0)
assert_true(len(set(inv_['info']['bads']) - union_bads) == 0)
|