File: test_time_frequency.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (161 lines) | stat: -rw-r--r-- 6,362 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os.path as op

import numpy as np
from numpy.testing import assert_array_almost_equal
from nose.tools import assert_true

from mne.datasets import sample
from mne import io, find_events, Epochs, pick_types
from mne.label import read_label
from mne.minimum_norm.inverse import (read_inverse_operator,
                                      apply_inverse_epochs)
from mne.minimum_norm.time_frequency import (source_band_induced_power,
                                             source_induced_power,
                                             compute_source_psd,
                                             compute_source_psd_epochs)


from mne.time_frequency import multitaper_psd

data_path = sample.data_path(download=False)
fname_inv = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis-meg-oct-6-meg-inv.fif')
fname_data = op.join(data_path, 'MEG', 'sample',
                     'sample_audvis_raw.fif')
fname_label = op.join(data_path, 'MEG', 'sample', 'labels', 'Aud-lh.label')


@sample.requires_sample_data
def test_tfr_with_inverse_operator():
    """Test time freq with MNE inverse computation"""

    tmin, tmax, event_id = -0.2, 0.5, 1

    # Setup for reading the raw data
    raw = io.Raw(fname_data)
    events = find_events(raw, stim_channel='STI 014')
    inverse_operator = read_inverse_operator(fname_inv)

    raw.info['bads'] += ['MEG 2443', 'EEG 053']  # bads + 2 more

    # picks MEG gradiometers
    picks = pick_types(raw.info, meg=True, eeg=False, eog=True,
                            stim=False, exclude='bads')

    # Load condition 1
    event_id = 1
    events3 = events[:3]  # take 3 events to keep the computation time low
    epochs = Epochs(raw, events3, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6),
                    preload=True)

    # Compute a source estimate per frequency band
    bands = dict(alpha=[10, 10])
    label = read_label(fname_label)

    stcs = source_band_induced_power(epochs, inverse_operator, bands,
                                     n_cycles=2, use_fft=False, pca=True,
                                     label=label)

    stc = stcs['alpha']
    assert_true(len(stcs) == len(list(bands.keys())))
    assert_true(np.all(stc.data > 0))
    assert_array_almost_equal(stc.times, epochs.times)

    stcs_no_pca = source_band_induced_power(epochs, inverse_operator, bands,
                                            n_cycles=2, use_fft=False,
                                            pca=False, label=label)

    assert_array_almost_equal(stcs['alpha'].data, stcs_no_pca['alpha'].data)

    # Compute a source estimate per frequency band
    epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6),
                    preload=True)

    frequencies = np.arange(7, 30, 2)  # define frequencies of interest
    power, phase_lock = source_induced_power(epochs, inverse_operator,
                            frequencies, label, baseline=(-0.1, 0),
                            baseline_mode='percent', n_cycles=2, n_jobs=1)
    assert_true(np.all(phase_lock > 0))
    assert_true(np.all(phase_lock <= 1))
    assert_true(np.max(power) > 10)


@sample.requires_sample_data
def test_source_psd():
    """Test source PSD computation in label"""
    raw = io.Raw(fname_data)
    inverse_operator = read_inverse_operator(fname_inv)
    label = read_label(fname_label)
    tmin, tmax = 0, 20  # seconds
    fmin, fmax = 55, 65  # Hz
    n_fft = 2048
    stc = compute_source_psd(raw, inverse_operator, lambda2=1. / 9.,
                             method="dSPM", tmin=tmin, tmax=tmax,
                             fmin=fmin, fmax=fmax, pick_ori="normal",
                             n_fft=n_fft, label=label, overlap=0.1)
    assert_true(stc.times[0] >= fmin * 1e-3)
    assert_true(stc.times[-1] <= fmax * 1e-3)
    # Time max at line frequency (60 Hz in US)
    assert_true(59e-3 <= stc.times[np.argmax(np.sum(stc.data, axis=0))]
                      <= 61e-3)


@sample.requires_sample_data
def test_source_psd_epochs():
    """Test multi-taper source PSD computation in label from epochs"""

    raw = io.Raw(fname_data)
    inverse_operator = read_inverse_operator(fname_inv)
    label = read_label(fname_label)

    event_id, tmin, tmax = 1, -0.2, 0.5
    lambda2, method = 1. / 9., 'dSPM'
    bandwidth = 8.
    fmin, fmax = 0, 100

    picks = pick_types(raw.info, meg=True, eeg=False, stim=True,
                            ecg=True, eog=True, include=['STI 014'],
                            exclude='bads')
    reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)

    events = find_events(raw, stim_channel='STI 014')
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=reject)

    # only look at one epoch
    epochs.drop_bad_epochs()
    one_epochs = epochs[:1]

    # return list
    stc_psd = compute_source_psd_epochs(one_epochs, inverse_operator,
                                        lambda2=lambda2, method=method,
                                        pick_ori="normal", label=label,
                                        bandwidth=bandwidth,
                                        fmin=fmin, fmax=fmax)[0]

    # return generator
    stcs = compute_source_psd_epochs(one_epochs, inverse_operator,
                                     lambda2=lambda2, method=method,
                                     pick_ori="normal", label=label,
                                     bandwidth=bandwidth,
                                     fmin=fmin, fmax=fmax,
                                     return_generator=True)

    for stc in stcs:
        stc_psd_gen = stc

    assert_array_almost_equal(stc_psd.data, stc_psd_gen.data)

    # compare with direct computation
    stc = apply_inverse_epochs(one_epochs, inverse_operator,
                               lambda2=lambda2, method=method,
                               pick_ori="normal", label=label)[0]

    sfreq = epochs.info['sfreq']
    psd, freqs = multitaper_psd(stc.data, sfreq=sfreq, bandwidth=bandwidth,
                                fmin=fmin, fmax=fmax)

    assert_array_almost_equal(psd, stc_psd.data)
    assert_array_almost_equal(freqs, stc_psd.times)