File: time_frequency.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (680 lines) | stat: -rw-r--r-- 25,268 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)

from warnings import warn

import numpy as np
from scipy import linalg, signal, fftpack

from ..io.constants import FIFF
from ..source_estimate import _make_stc
from ..time_frequency.tfr import cwt, morlet
from ..time_frequency.multitaper import (dpss_windows, _psd_from_mt,
                                         _psd_from_mt_adaptive, _mt_spectra)
from ..baseline import rescale
from .inverse import (combine_xyz, prepare_inverse_operator, _assemble_kernel,
                      _pick_channels_inverse_operator, _check_method,
                      _check_ori, _subject_from_inverse)
from ..parallel import parallel_func
from ..utils import logger, verbose
from ..externals import six


@verbose
def source_band_induced_power(epochs, inverse_operator, bands, label=None,
                              lambda2=1.0 / 9.0, method="dSPM", nave=1,
                              n_cycles=5, df=1, use_fft=False, decim=1,
                              baseline=None, baseline_mode='logratio',
                              pca=True, n_jobs=1, verbose=None):
    """Compute source space induced power in given frequency bands

    Parameters
    ----------
    epochs : instance of Epochs
        The epochs.
    inverse_operator : instance of inverse operator
        The inverse operator.
    bands : dict
        Example : bands = dict(alpha=[8, 9]).
    label : Label
        Restricts the source estimates to a given label.
    lambda2 : float
        The regularization parameter of the minimum norm.
    method : "MNE" | "dSPM" | "sLORETA"
        Use mininum norm, dSPM or sLORETA.
    nave : int
        The number of averages used to scale the noise covariance matrix.
    n_cycles : float | array of float
        Number of cycles. Fixed number or one per frequency.
    df : float
        delta frequency within bands.
    decim : int
        Temporal decimation factor.
    use_fft : bool
        Do convolutions in time or frequency domain with FFT.
    baseline : None (default) or tuple of length 2
        The time interval to apply baseline correction.
        If None do not apply it. If baseline is (a, b)
        the interval is between "a (s)" and "b (s)".
        If a is None the beginning of the data is used
        and if b is None then b is set to the end of the interval.
        If baseline is equal ot (None, None) all the time
        interval is used.
    baseline_mode : None | 'logratio' | 'zscore'
        Do baseline correction with ratio (power is divided by mean
        power during baseline) or zscore (power is divided by standard
        deviation of power during baseline after subtracting the mean,
        power = [power - mean(power_baseline)] / std(power_baseline)).
    pca : bool
        If True, the true dimension of data is estimated before running
        the time frequency transforms. It reduces the computation times
        e.g. with a dataset that was maxfiltered (true dim is 64).
    n_jobs : int
        Number of jobs to run in parallel.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    stcs : dict with a SourceEstimate (or VolSourceEstimate) for each band
        The estimated source space induced power estimates.
    """
    method = _check_method(method)

    frequencies = np.concatenate([np.arange(band[0], band[1] + df / 2.0, df)
                                 for _, band in six.iteritems(bands)])

    powers, _, vertno = _source_induced_power(epochs,
                                      inverse_operator, frequencies,
                                      label=label,
                                      lambda2=lambda2, method=method,
                                      nave=nave, n_cycles=n_cycles,
                                      decim=decim, use_fft=use_fft, pca=pca,
                                      n_jobs=n_jobs, with_plv=False)

    Fs = epochs.info['sfreq']  # sampling in Hz
    stcs = dict()

    subject = _subject_from_inverse(inverse_operator)
    for name, band in six.iteritems(bands):
        idx = [k for k, f in enumerate(frequencies) if band[0] <= f <= band[1]]

        # average power in band + mean over epochs
        power = np.mean(powers[:, idx, :], axis=1)

        # Run baseline correction
        power = rescale(power, epochs.times[::decim], baseline, baseline_mode,
                        copy=False)

        tmin = epochs.times[0]
        tstep = float(decim) / Fs
        stc = _make_stc(power, vertices=vertno, tmin=tmin, tstep=tstep,
                        subject=subject)
        stcs[name] = stc

        logger.info('[done]')

    return stcs


@verbose
def _compute_pow_plv(data, K, sel, Ws, source_ori, use_fft, Vh, with_plv,
                     pick_ori, decim, verbose=None):
    """Aux function for source_induced_power"""
    n_times = data[:, :, ::decim].shape[2]
    n_freqs = len(Ws)
    n_sources = K.shape[0]
    is_free_ori = False
    if (source_ori == FIFF.FIFFV_MNE_FREE_ORI and pick_ori == None):
        is_free_ori = True
        n_sources //= 3

    shape = (n_sources, n_freqs, n_times)
    power = np.zeros(shape, dtype=np.float)  # power
    if with_plv:
        shape = (n_sources, n_freqs, n_times)
        plv = np.zeros(shape, dtype=np.complex)  # phase lock
    else:
        plv = None

    for e in data:
        e = e[sel]  # keep only selected channels

        if Vh is not None:
            e = np.dot(Vh, e)  # reducing data rank

        for f, w in enumerate(Ws):
            tfr = cwt(e, [w], use_fft=use_fft, decim=decim)
            tfr = np.asfortranarray(tfr.reshape(len(e), -1))

            # phase lock and power at freq f
            if with_plv:
                plv_f = np.zeros((n_sources, n_times), dtype=np.complex)
            pow_f = np.zeros((n_sources, n_times), dtype=np.float)

            for k, t in enumerate([np.real(tfr), np.imag(tfr)]):
                sol = np.dot(K, t)

                sol_pick_normal = sol
                if is_free_ori:
                    sol_pick_normal = sol[2::3]

                if with_plv:
                    if k == 0:  # real
                        plv_f += sol_pick_normal
                    else:  # imag
                        plv_f += 1j * sol_pick_normal

                if is_free_ori:
                    logger.debug('combining the current components...')
                    sol = combine_xyz(sol, square=True)
                else:
                    np.power(sol, 2, sol)
                pow_f += sol
                del sol

            power[:, f, :] += pow_f
            del pow_f

            if with_plv:
                plv_f /= np.abs(plv_f)
                plv[:, f, :] += plv_f
                del plv_f

    return power, plv


@verbose
def _source_induced_power(epochs, inverse_operator, frequencies, label=None,
                          lambda2=1.0 / 9.0, method="dSPM", nave=1, n_cycles=5,
                          decim=1, use_fft=False, pca=True, pick_ori="normal",
                          n_jobs=1, with_plv=True, zero_mean=False,
                          verbose=None):
    """Aux function for source_induced_power
    """
    parallel, my_compute_pow_plv, n_jobs = parallel_func(_compute_pow_plv,
                                                         n_jobs)
    #
    #   Set up the inverse according to the parameters
    #
    epochs_data = epochs.get_data()

    inv = prepare_inverse_operator(inverse_operator, nave, lambda2, method)
    #
    #   Pick the correct channels from the data
    #
    sel = _pick_channels_inverse_operator(epochs.ch_names, inv)
    logger.info('Picked %d channels from the data' % len(sel))
    logger.info('Computing inverse...')
    #
    #   Simple matrix multiplication followed by combination of the
    #   three current components
    #
    #   This does all the data transformations to compute the weights for the
    #   eigenleads
    #
    K, noise_norm, vertno = _assemble_kernel(inv, label, method, pick_ori)

    if pca:
        U, s, Vh = linalg.svd(K, full_matrices=False)
        rank = np.sum(s > 1e-8 * s[0])
        K = s[:rank] * U[:, :rank]
        Vh = Vh[:rank]
        logger.info('Reducing data rank to %d' % rank)
    else:
        Vh = None

    Fs = epochs.info['sfreq']  # sampling in Hz

    logger.info('Computing source power ...')

    Ws = morlet(Fs, frequencies, n_cycles=n_cycles, zero_mean=zero_mean)

    n_jobs = min(n_jobs, len(epochs_data))
    out = parallel(my_compute_pow_plv(data, K, sel, Ws,
                                      inv['source_ori'], use_fft, Vh,
                                      with_plv, pick_ori, decim)
                        for data in np.array_split(epochs_data, n_jobs))
    power = sum(o[0] for o in out)
    power /= len(epochs_data)  # average power over epochs

    if with_plv:
        plv = sum(o[1] for o in out)
        plv = np.abs(plv)
        plv /= len(epochs_data)  # average power over epochs
    else:
        plv = None

    if method != "MNE":
        power *= noise_norm.ravel()[:, None, None] ** 2

    return power, plv, vertno


@verbose
def source_induced_power(epochs, inverse_operator, frequencies, label=None,
                         lambda2=1.0 / 9.0, method="dSPM", nave=1, n_cycles=5,
                         decim=1, use_fft=False, pick_ori=None,
                         baseline=None, baseline_mode='logratio', pca=True,
                         n_jobs=1, zero_mean=False, verbose=None,
                         pick_normal=None):
    """Compute induced power and phase lock

    Computation can optionaly be restricted in a label.

    Parameters
    ----------
    epochs : instance of Epochs
        The epochs.
    inverse_operator : instance of InverseOperator
        The inverse operator.
    label : Label
        Restricts the source estimates to a given label.
    frequencies : array
        Array of frequencies of interest.
    lambda2 : float
        The regularization parameter of the minimum norm.
    method : "MNE" | "dSPM" | "sLORETA"
        Use mininum norm, dSPM or sLORETA.
    nave : int
        The number of averages used to scale the noise covariance matrix.
    n_cycles : float | array of float
        Number of cycles. Fixed number or one per frequency.
    decim : int
        Temporal decimation factor.
    use_fft : bool
        Do convolutions in time or frequency domain with FFT.
    pick_ori : None | "normal"
        If "normal", rather than pooling the orientations by taking the norm,
        only the radial component is kept. This is only implemented
        when working with loose orientations.
    baseline : None (default) or tuple of length 2
        The time interval to apply baseline correction.
        If None do not apply it. If baseline is (a, b)
        the interval is between "a (s)" and "b (s)".
        If a is None the beginning of the data is used
        and if b is None then b is set to the end of the interval.
        If baseline is equal ot (None, None) all the time
        interval is used.
    baseline_mode : None | 'logratio' | 'zscore'
        Do baseline correction with ratio (power is divided by mean
        power during baseline) or zscore (power is divided by standard
        deviation of power during baseline after subtracting the mean,
        power = [power - mean(power_baseline)] / std(power_baseline)).
    pca : bool
        If True, the true dimension of data is estimated before running
        the time frequency transforms. It reduces the computation times
        e.g. with a dataset that was maxfiltered (true dim is 64).
    n_jobs : int
        Number of jobs to run in parallel.
    zero_mean : bool
        Make sure the wavelets are zero mean.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).
    """
    method = _check_method(method)
    pick_ori = _check_ori(pick_ori, pick_normal)

    power, plv, vertno = _source_induced_power(epochs,
                            inverse_operator, frequencies,
                            label=label, lambda2=lambda2, method=method,
                            nave=nave, n_cycles=n_cycles, decim=decim,
                            use_fft=use_fft, pick_ori=pick_ori,
                            pca=pca, n_jobs=n_jobs)

    # Run baseline correction
    if baseline is not None:
        power = rescale(power, epochs.times[::decim], baseline, baseline_mode,
                        copy=False)

    return power, plv


@verbose
def compute_source_psd(raw, inverse_operator, lambda2=1. / 9., method="dSPM",
                       tmin=None, tmax=None, fmin=0., fmax=200.,
                       n_fft=2048, overlap=0.5, pick_ori=None, label=None,
                       nave=1, pca=True, verbose=None, pick_normal=None,
                       NFFT=None):
    """Compute source power spectrum density (PSD)

    Parameters
    ----------
    raw : instance of Raw
        The raw data
    inverse_operator : instance of InverseOperator
        The inverse operator
    lambda2: float
        The regularization parameter
    method: "MNE" | "dSPM" | "sLORETA"
        Use mininum norm, dSPM or sLORETA
    tmin : float | None
        The beginning of the time interval of interest (in seconds). If None
        start from the beginning of the file.
    tmax : float | None
        The end of the time interval of interest (in seconds). If None
        stop at the end of the file.
    fmin : float
        The lower frequency of interest
    fmax : float
        The upper frequency of interest
    n_fft: int
        Window size for the FFT. Should be a power of 2.
    overlap: float
        The overlap fraction between windows. Should be between 0 and 1.
        0 means no overlap.
    pick_ori : None | "normal"
        If "normal", rather than pooling the orientations by taking the norm,
        only the radial component is kept. This is only implemented
        when working with loose orientations.
    label: Label
        Restricts the source estimates to a given label
    nave : int
        The number of averages used to scale the noise covariance matrix.
    pca: bool
        If True, the true dimension of data is estimated before running
        the time frequency transforms. It reduces the computation times
        e.g. with a dataset that was maxfiltered (true dim is 64)
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    stc : SourceEstimate | VolSourceEstimate
        The PSD (in dB) of each of the sources.
    """
    if NFFT is not None:
        n_fft = NFFT
        warnings.warn("`NFFT` is deprecated and will be removed in v0.9. "
                      "Use `n_fft` instead")

    pick_ori = _check_ori(pick_ori, pick_normal)

    logger.info('Considering frequencies %g ... %g Hz' % (fmin, fmax))

    inv = prepare_inverse_operator(inverse_operator, nave, lambda2, method)
    is_free_ori = inverse_operator['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI

    #
    #   Pick the correct channels from the data
    #
    sel = _pick_channels_inverse_operator(raw.ch_names, inv)
    logger.info('Picked %d channels from the data' % len(sel))
    logger.info('Computing inverse...')
    #
    #   Simple matrix multiplication followed by combination of the
    #   three current components
    #
    #   This does all the data transformations to compute the weights for the
    #   eigenleads
    #
    K, noise_norm, vertno = _assemble_kernel(inv, label, method, pick_ori)

    if pca:
        U, s, Vh = linalg.svd(K, full_matrices=False)
        rank = np.sum(s > 1e-8 * s[0])
        K = s[:rank] * U[:, :rank]
        Vh = Vh[:rank]
        logger.info('Reducing data rank to %d' % rank)
    else:
        Vh = None

    start, stop = 0, raw.last_samp + 1 - raw.first_samp
    if tmin is not None:
        start = raw.time_as_index(tmin)[0]
    if tmax is not None:
        stop = raw.time_as_index(tmax)[0] + 1
    n_fft = int(n_fft)
    Fs = raw.info['sfreq']
    window = signal.hanning(n_fft)
    freqs = fftpack.fftfreq(n_fft, 1. / Fs)
    freqs_mask = (freqs >= 0) & (freqs >= fmin) & (freqs <= fmax)
    freqs = freqs[freqs_mask]
    fstep = np.mean(np.diff(freqs))
    psd = np.zeros((K.shape[0], np.sum(freqs_mask)))
    n_windows = 0

    for this_start in np.arange(start, stop, int(n_fft * (1. - overlap))):
        data, _ = raw[sel, this_start:this_start + n_fft]
        if data.shape[1] < n_fft:
            logger.info("Skipping last buffer")
            break

        if Vh is not None:
            data = np.dot(Vh, data)  # reducing data rank

        data *= window[None, :]

        data_fft = fftpack.fft(data)[:, freqs_mask]
        sol = np.dot(K, data_fft)

        if is_free_ori and pick_ori == None:
            sol = combine_xyz(sol, square=True)
        else:
            sol = np.abs(sol) ** 2

        if method != "MNE":
            sol *= noise_norm ** 2

        psd += sol
        n_windows += 1

    psd /= n_windows

    psd = 10 * np.log10(psd)

    subject = _subject_from_inverse(inverse_operator)
    stc = _make_stc(psd, vertices=vertno, tmin=fmin * 1e-3,
                    tstep=fstep * 1e-3, subject=subject)
    return stc


@verbose
def _compute_source_psd_epochs(epochs, inverse_operator, lambda2=1. / 9.,
                              method="dSPM", fmin=0., fmax=200.,
                              pick_ori=None, label=None, nave=1,
                              pca=True, inv_split=None, bandwidth=4.,
                              adaptive=False, low_bias=True, n_jobs=1,
                              verbose=None):
    """ Generator for compute_source_psd_epochs """

    logger.info('Considering frequencies %g ... %g Hz' % (fmin, fmax))

    inv = prepare_inverse_operator(inverse_operator, nave, lambda2, method)
    is_free_ori = inverse_operator['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI

    #
    #   Pick the correct channels from the data
    #
    sel = _pick_channels_inverse_operator(epochs.ch_names, inv)
    logger.info('Picked %d channels from the data' % len(sel))
    logger.info('Computing inverse...')
    #
    #   Simple matrix multiplication followed by combination of the
    #   three current components
    #
    #   This does all the data transformations to compute the weights for the
    #   eigenleads
    #
    K, noise_norm, vertno = _assemble_kernel(inv, label, method, pick_ori)

    if pca:
        U, s, Vh = linalg.svd(K, full_matrices=False)
        rank = np.sum(s > 1e-8 * s[0])
        K = s[:rank] * U[:, :rank]
        Vh = Vh[:rank]
        logger.info('Reducing data rank to %d' % rank)
    else:
        Vh = None

    # split the inverse operator
    if inv_split is not None:
        K_split = np.array_split(K, inv_split)
    else:
        K_split = [K]

    # compute DPSS windows
    n_times = len(epochs.times)
    sfreq = epochs.info['sfreq']

    # compute standardized half-bandwidth
    half_nbw = float(bandwidth) * n_times / (2 * sfreq)
    n_tapers_max = int(2 * half_nbw)

    dpss, eigvals = dpss_windows(n_times, half_nbw, n_tapers_max,
                                 low_bias=low_bias)
    n_tapers = len(dpss)

    logger.info('Using %d tapers with bandwidth %0.1fHz'
                % (n_tapers, bandwidth))

    if adaptive and len(eigvals) < 3:
        warn('Not adaptively combining the spectral estimators '
             'due to a low number of tapers.')
        adaptive = False

    if adaptive:
        parallel, my_psd_from_mt_adaptive, n_jobs = \
            parallel_func(_psd_from_mt_adaptive, n_jobs)
    else:
        weights = np.sqrt(eigvals)[np.newaxis, :, np.newaxis]

    subject = _subject_from_inverse(inverse_operator)
    for k, e in enumerate(epochs):
        logger.info("Processing epoch : %d" % (k + 1))
        data = e[sel]

        if Vh is not None:
            data = np.dot(Vh, data)  # reducing data rank

        # compute tapered spectra in sensor space
        x_mt, freqs = _mt_spectra(data, dpss, sfreq)

        if k == 0:
            freq_mask = (freqs >= fmin) & (freqs <= fmax)
            fstep = np.mean(np.diff(freqs))

        # allocate space for output
        psd = np.empty((K.shape[0], np.sum(freq_mask)))

        # Optionally, we split the inverse operator into parts to save memory.
        # Without splitting the tapered spectra in source space have size
        # (n_vertices x n_tapers x n_times / 2)
        pos = 0
        for K_part in K_split:
            # allocate space for tapered spectra in source space
            x_mt_src = np.empty((K_part.shape[0], x_mt.shape[1],
                                x_mt.shape[2]), dtype=x_mt.dtype)

            # apply inverse to each taper
            for i in range(n_tapers):
                x_mt_src[:, i, :] = np.dot(K_part, x_mt[:, i, :])

            # compute the psd
            if adaptive:
                out = parallel(my_psd_from_mt_adaptive(x, eigvals, freq_mask)
                       for x in np.array_split(x_mt_src,
                                               min(n_jobs, len(x_mt_src))))
                this_psd = np.concatenate(out)
            else:
                x_mt_src = x_mt_src[:, :, freq_mask]
                this_psd = _psd_from_mt(x_mt_src, weights)

            psd[pos:pos + K_part.shape[0], :] = this_psd
            pos += K_part.shape[0]

        # combine orientations
        if is_free_ori and pick_ori == None:
            psd = combine_xyz(psd, square=False)

        if method != "MNE":
            psd *= noise_norm ** 2

        stc = _make_stc(psd, tmin=fmin, tstep=fstep, vertices=vertno,
                        subject=subject)

        # we return a generator object for "stream processing"
        yield stc


@verbose
def compute_source_psd_epochs(epochs, inverse_operator, lambda2=1. / 9.,
                              method="dSPM", fmin=0., fmax=200.,
                              pick_ori=None, label=None, nave=1,
                              pca=True, inv_split=None, bandwidth=4.,
                              adaptive=False, low_bias=True,
                              return_generator=False, n_jobs=1,
                              verbose=None, pick_normal=None):
    """Compute source power spectrum density (PSD) from Epochs using
       multi-taper method

    Parameters
    ----------
    epochs : instance of Epochs
        The raw data.
    inverse_operator : instance of InverseOperator
        The inverse operator.
    lambda2 : float
        The regularization parameter.
    method : "MNE" | "dSPM" | "sLORETA"
        Use mininum norm, dSPM or sLORETA.
    fmin : float
        The lower frequency of interest.
    fmax : float
        The upper frequency of interest.
    pick_ori : None | "normal"
        If "normal", rather than pooling the orientations by taking the norm,
        only the radial component is kept. This is only implemented
        when working with loose orientations.
    label : Label
        Restricts the source estimates to a given label.
    nave : int
        The number of averages used to scale the noise covariance matrix.
    pca : bool
        If True, the true dimension of data is estimated before running
        the time frequency transforms. It reduces the computation times
        e.g. with a dataset that was maxfiltered (true dim is 64).
    inv_split : int or None
        Split inverse operator into inv_split parts in order to save memory.
    bandwidth : float
        The bandwidth of the multi taper windowing function in Hz.
    adaptive : bool
        Use adaptive weights to combine the tapered spectra into PSD
        (slow, use n_jobs >> 1 to speed up computation).
    low_bias : bool
        Only use tapers with more than 90% spectral concentration within
        bandwidth.
    return_generator : bool
        Return a generator object instead of a list. This allows iterating
        over the stcs without having to keep them all in memory.
    n_jobs : int
        Number of parallel jobs to use (only used if adaptive=True).
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    stcs : list (or generator object) of SourceEstimate | VolSourceEstimate
        The source space PSDs for each epoch.
    """

    # use an auxiliary function so we can either return a generator or a list
    stcs_gen = _compute_source_psd_epochs(epochs, inverse_operator,
                              lambda2=lambda2, method=method, fmin=fmin,
                              fmax=fmax, pick_ori=pick_ori, label=label,
                              nave=nave, pca=pca, inv_split=inv_split,
                              bandwidth=bandwidth, adaptive=adaptive,
                              low_bias=low_bias, n_jobs=n_jobs)

    if return_generator:
        # return generator object
        return stcs_gen
    else:
        # return a list
        stcs = list()
        for stc in stcs_gen:
            stcs.append(stc)

        return stcs