1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)
from warnings import warn
import numpy as np
from scipy import linalg, signal, fftpack
from ..io.constants import FIFF
from ..source_estimate import _make_stc
from ..time_frequency.tfr import cwt, morlet
from ..time_frequency.multitaper import (dpss_windows, _psd_from_mt,
_psd_from_mt_adaptive, _mt_spectra)
from ..baseline import rescale
from .inverse import (combine_xyz, prepare_inverse_operator, _assemble_kernel,
_pick_channels_inverse_operator, _check_method,
_check_ori, _subject_from_inverse)
from ..parallel import parallel_func
from ..utils import logger, verbose
from ..externals import six
@verbose
def source_band_induced_power(epochs, inverse_operator, bands, label=None,
lambda2=1.0 / 9.0, method="dSPM", nave=1,
n_cycles=5, df=1, use_fft=False, decim=1,
baseline=None, baseline_mode='logratio',
pca=True, n_jobs=1, verbose=None):
"""Compute source space induced power in given frequency bands
Parameters
----------
epochs : instance of Epochs
The epochs.
inverse_operator : instance of inverse operator
The inverse operator.
bands : dict
Example : bands = dict(alpha=[8, 9]).
label : Label
Restricts the source estimates to a given label.
lambda2 : float
The regularization parameter of the minimum norm.
method : "MNE" | "dSPM" | "sLORETA"
Use mininum norm, dSPM or sLORETA.
nave : int
The number of averages used to scale the noise covariance matrix.
n_cycles : float | array of float
Number of cycles. Fixed number or one per frequency.
df : float
delta frequency within bands.
decim : int
Temporal decimation factor.
use_fft : bool
Do convolutions in time or frequency domain with FFT.
baseline : None (default) or tuple of length 2
The time interval to apply baseline correction.
If None do not apply it. If baseline is (a, b)
the interval is between "a (s)" and "b (s)".
If a is None the beginning of the data is used
and if b is None then b is set to the end of the interval.
If baseline is equal ot (None, None) all the time
interval is used.
baseline_mode : None | 'logratio' | 'zscore'
Do baseline correction with ratio (power is divided by mean
power during baseline) or zscore (power is divided by standard
deviation of power during baseline after subtracting the mean,
power = [power - mean(power_baseline)] / std(power_baseline)).
pca : bool
If True, the true dimension of data is estimated before running
the time frequency transforms. It reduces the computation times
e.g. with a dataset that was maxfiltered (true dim is 64).
n_jobs : int
Number of jobs to run in parallel.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
stcs : dict with a SourceEstimate (or VolSourceEstimate) for each band
The estimated source space induced power estimates.
"""
method = _check_method(method)
frequencies = np.concatenate([np.arange(band[0], band[1] + df / 2.0, df)
for _, band in six.iteritems(bands)])
powers, _, vertno = _source_induced_power(epochs,
inverse_operator, frequencies,
label=label,
lambda2=lambda2, method=method,
nave=nave, n_cycles=n_cycles,
decim=decim, use_fft=use_fft, pca=pca,
n_jobs=n_jobs, with_plv=False)
Fs = epochs.info['sfreq'] # sampling in Hz
stcs = dict()
subject = _subject_from_inverse(inverse_operator)
for name, band in six.iteritems(bands):
idx = [k for k, f in enumerate(frequencies) if band[0] <= f <= band[1]]
# average power in band + mean over epochs
power = np.mean(powers[:, idx, :], axis=1)
# Run baseline correction
power = rescale(power, epochs.times[::decim], baseline, baseline_mode,
copy=False)
tmin = epochs.times[0]
tstep = float(decim) / Fs
stc = _make_stc(power, vertices=vertno, tmin=tmin, tstep=tstep,
subject=subject)
stcs[name] = stc
logger.info('[done]')
return stcs
@verbose
def _compute_pow_plv(data, K, sel, Ws, source_ori, use_fft, Vh, with_plv,
pick_ori, decim, verbose=None):
"""Aux function for source_induced_power"""
n_times = data[:, :, ::decim].shape[2]
n_freqs = len(Ws)
n_sources = K.shape[0]
is_free_ori = False
if (source_ori == FIFF.FIFFV_MNE_FREE_ORI and pick_ori == None):
is_free_ori = True
n_sources //= 3
shape = (n_sources, n_freqs, n_times)
power = np.zeros(shape, dtype=np.float) # power
if with_plv:
shape = (n_sources, n_freqs, n_times)
plv = np.zeros(shape, dtype=np.complex) # phase lock
else:
plv = None
for e in data:
e = e[sel] # keep only selected channels
if Vh is not None:
e = np.dot(Vh, e) # reducing data rank
for f, w in enumerate(Ws):
tfr = cwt(e, [w], use_fft=use_fft, decim=decim)
tfr = np.asfortranarray(tfr.reshape(len(e), -1))
# phase lock and power at freq f
if with_plv:
plv_f = np.zeros((n_sources, n_times), dtype=np.complex)
pow_f = np.zeros((n_sources, n_times), dtype=np.float)
for k, t in enumerate([np.real(tfr), np.imag(tfr)]):
sol = np.dot(K, t)
sol_pick_normal = sol
if is_free_ori:
sol_pick_normal = sol[2::3]
if with_plv:
if k == 0: # real
plv_f += sol_pick_normal
else: # imag
plv_f += 1j * sol_pick_normal
if is_free_ori:
logger.debug('combining the current components...')
sol = combine_xyz(sol, square=True)
else:
np.power(sol, 2, sol)
pow_f += sol
del sol
power[:, f, :] += pow_f
del pow_f
if with_plv:
plv_f /= np.abs(plv_f)
plv[:, f, :] += plv_f
del plv_f
return power, plv
@verbose
def _source_induced_power(epochs, inverse_operator, frequencies, label=None,
lambda2=1.0 / 9.0, method="dSPM", nave=1, n_cycles=5,
decim=1, use_fft=False, pca=True, pick_ori="normal",
n_jobs=1, with_plv=True, zero_mean=False,
verbose=None):
"""Aux function for source_induced_power
"""
parallel, my_compute_pow_plv, n_jobs = parallel_func(_compute_pow_plv,
n_jobs)
#
# Set up the inverse according to the parameters
#
epochs_data = epochs.get_data()
inv = prepare_inverse_operator(inverse_operator, nave, lambda2, method)
#
# Pick the correct channels from the data
#
sel = _pick_channels_inverse_operator(epochs.ch_names, inv)
logger.info('Picked %d channels from the data' % len(sel))
logger.info('Computing inverse...')
#
# Simple matrix multiplication followed by combination of the
# three current components
#
# This does all the data transformations to compute the weights for the
# eigenleads
#
K, noise_norm, vertno = _assemble_kernel(inv, label, method, pick_ori)
if pca:
U, s, Vh = linalg.svd(K, full_matrices=False)
rank = np.sum(s > 1e-8 * s[0])
K = s[:rank] * U[:, :rank]
Vh = Vh[:rank]
logger.info('Reducing data rank to %d' % rank)
else:
Vh = None
Fs = epochs.info['sfreq'] # sampling in Hz
logger.info('Computing source power ...')
Ws = morlet(Fs, frequencies, n_cycles=n_cycles, zero_mean=zero_mean)
n_jobs = min(n_jobs, len(epochs_data))
out = parallel(my_compute_pow_plv(data, K, sel, Ws,
inv['source_ori'], use_fft, Vh,
with_plv, pick_ori, decim)
for data in np.array_split(epochs_data, n_jobs))
power = sum(o[0] for o in out)
power /= len(epochs_data) # average power over epochs
if with_plv:
plv = sum(o[1] for o in out)
plv = np.abs(plv)
plv /= len(epochs_data) # average power over epochs
else:
plv = None
if method != "MNE":
power *= noise_norm.ravel()[:, None, None] ** 2
return power, plv, vertno
@verbose
def source_induced_power(epochs, inverse_operator, frequencies, label=None,
lambda2=1.0 / 9.0, method="dSPM", nave=1, n_cycles=5,
decim=1, use_fft=False, pick_ori=None,
baseline=None, baseline_mode='logratio', pca=True,
n_jobs=1, zero_mean=False, verbose=None,
pick_normal=None):
"""Compute induced power and phase lock
Computation can optionaly be restricted in a label.
Parameters
----------
epochs : instance of Epochs
The epochs.
inverse_operator : instance of InverseOperator
The inverse operator.
label : Label
Restricts the source estimates to a given label.
frequencies : array
Array of frequencies of interest.
lambda2 : float
The regularization parameter of the minimum norm.
method : "MNE" | "dSPM" | "sLORETA"
Use mininum norm, dSPM or sLORETA.
nave : int
The number of averages used to scale the noise covariance matrix.
n_cycles : float | array of float
Number of cycles. Fixed number or one per frequency.
decim : int
Temporal decimation factor.
use_fft : bool
Do convolutions in time or frequency domain with FFT.
pick_ori : None | "normal"
If "normal", rather than pooling the orientations by taking the norm,
only the radial component is kept. This is only implemented
when working with loose orientations.
baseline : None (default) or tuple of length 2
The time interval to apply baseline correction.
If None do not apply it. If baseline is (a, b)
the interval is between "a (s)" and "b (s)".
If a is None the beginning of the data is used
and if b is None then b is set to the end of the interval.
If baseline is equal ot (None, None) all the time
interval is used.
baseline_mode : None | 'logratio' | 'zscore'
Do baseline correction with ratio (power is divided by mean
power during baseline) or zscore (power is divided by standard
deviation of power during baseline after subtracting the mean,
power = [power - mean(power_baseline)] / std(power_baseline)).
pca : bool
If True, the true dimension of data is estimated before running
the time frequency transforms. It reduces the computation times
e.g. with a dataset that was maxfiltered (true dim is 64).
n_jobs : int
Number of jobs to run in parallel.
zero_mean : bool
Make sure the wavelets are zero mean.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
"""
method = _check_method(method)
pick_ori = _check_ori(pick_ori, pick_normal)
power, plv, vertno = _source_induced_power(epochs,
inverse_operator, frequencies,
label=label, lambda2=lambda2, method=method,
nave=nave, n_cycles=n_cycles, decim=decim,
use_fft=use_fft, pick_ori=pick_ori,
pca=pca, n_jobs=n_jobs)
# Run baseline correction
if baseline is not None:
power = rescale(power, epochs.times[::decim], baseline, baseline_mode,
copy=False)
return power, plv
@verbose
def compute_source_psd(raw, inverse_operator, lambda2=1. / 9., method="dSPM",
tmin=None, tmax=None, fmin=0., fmax=200.,
n_fft=2048, overlap=0.5, pick_ori=None, label=None,
nave=1, pca=True, verbose=None, pick_normal=None,
NFFT=None):
"""Compute source power spectrum density (PSD)
Parameters
----------
raw : instance of Raw
The raw data
inverse_operator : instance of InverseOperator
The inverse operator
lambda2: float
The regularization parameter
method: "MNE" | "dSPM" | "sLORETA"
Use mininum norm, dSPM or sLORETA
tmin : float | None
The beginning of the time interval of interest (in seconds). If None
start from the beginning of the file.
tmax : float | None
The end of the time interval of interest (in seconds). If None
stop at the end of the file.
fmin : float
The lower frequency of interest
fmax : float
The upper frequency of interest
n_fft: int
Window size for the FFT. Should be a power of 2.
overlap: float
The overlap fraction between windows. Should be between 0 and 1.
0 means no overlap.
pick_ori : None | "normal"
If "normal", rather than pooling the orientations by taking the norm,
only the radial component is kept. This is only implemented
when working with loose orientations.
label: Label
Restricts the source estimates to a given label
nave : int
The number of averages used to scale the noise covariance matrix.
pca: bool
If True, the true dimension of data is estimated before running
the time frequency transforms. It reduces the computation times
e.g. with a dataset that was maxfiltered (true dim is 64)
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
stc : SourceEstimate | VolSourceEstimate
The PSD (in dB) of each of the sources.
"""
if NFFT is not None:
n_fft = NFFT
warnings.warn("`NFFT` is deprecated and will be removed in v0.9. "
"Use `n_fft` instead")
pick_ori = _check_ori(pick_ori, pick_normal)
logger.info('Considering frequencies %g ... %g Hz' % (fmin, fmax))
inv = prepare_inverse_operator(inverse_operator, nave, lambda2, method)
is_free_ori = inverse_operator['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI
#
# Pick the correct channels from the data
#
sel = _pick_channels_inverse_operator(raw.ch_names, inv)
logger.info('Picked %d channels from the data' % len(sel))
logger.info('Computing inverse...')
#
# Simple matrix multiplication followed by combination of the
# three current components
#
# This does all the data transformations to compute the weights for the
# eigenleads
#
K, noise_norm, vertno = _assemble_kernel(inv, label, method, pick_ori)
if pca:
U, s, Vh = linalg.svd(K, full_matrices=False)
rank = np.sum(s > 1e-8 * s[0])
K = s[:rank] * U[:, :rank]
Vh = Vh[:rank]
logger.info('Reducing data rank to %d' % rank)
else:
Vh = None
start, stop = 0, raw.last_samp + 1 - raw.first_samp
if tmin is not None:
start = raw.time_as_index(tmin)[0]
if tmax is not None:
stop = raw.time_as_index(tmax)[0] + 1
n_fft = int(n_fft)
Fs = raw.info['sfreq']
window = signal.hanning(n_fft)
freqs = fftpack.fftfreq(n_fft, 1. / Fs)
freqs_mask = (freqs >= 0) & (freqs >= fmin) & (freqs <= fmax)
freqs = freqs[freqs_mask]
fstep = np.mean(np.diff(freqs))
psd = np.zeros((K.shape[0], np.sum(freqs_mask)))
n_windows = 0
for this_start in np.arange(start, stop, int(n_fft * (1. - overlap))):
data, _ = raw[sel, this_start:this_start + n_fft]
if data.shape[1] < n_fft:
logger.info("Skipping last buffer")
break
if Vh is not None:
data = np.dot(Vh, data) # reducing data rank
data *= window[None, :]
data_fft = fftpack.fft(data)[:, freqs_mask]
sol = np.dot(K, data_fft)
if is_free_ori and pick_ori == None:
sol = combine_xyz(sol, square=True)
else:
sol = np.abs(sol) ** 2
if method != "MNE":
sol *= noise_norm ** 2
psd += sol
n_windows += 1
psd /= n_windows
psd = 10 * np.log10(psd)
subject = _subject_from_inverse(inverse_operator)
stc = _make_stc(psd, vertices=vertno, tmin=fmin * 1e-3,
tstep=fstep * 1e-3, subject=subject)
return stc
@verbose
def _compute_source_psd_epochs(epochs, inverse_operator, lambda2=1. / 9.,
method="dSPM", fmin=0., fmax=200.,
pick_ori=None, label=None, nave=1,
pca=True, inv_split=None, bandwidth=4.,
adaptive=False, low_bias=True, n_jobs=1,
verbose=None):
""" Generator for compute_source_psd_epochs """
logger.info('Considering frequencies %g ... %g Hz' % (fmin, fmax))
inv = prepare_inverse_operator(inverse_operator, nave, lambda2, method)
is_free_ori = inverse_operator['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI
#
# Pick the correct channels from the data
#
sel = _pick_channels_inverse_operator(epochs.ch_names, inv)
logger.info('Picked %d channels from the data' % len(sel))
logger.info('Computing inverse...')
#
# Simple matrix multiplication followed by combination of the
# three current components
#
# This does all the data transformations to compute the weights for the
# eigenleads
#
K, noise_norm, vertno = _assemble_kernel(inv, label, method, pick_ori)
if pca:
U, s, Vh = linalg.svd(K, full_matrices=False)
rank = np.sum(s > 1e-8 * s[0])
K = s[:rank] * U[:, :rank]
Vh = Vh[:rank]
logger.info('Reducing data rank to %d' % rank)
else:
Vh = None
# split the inverse operator
if inv_split is not None:
K_split = np.array_split(K, inv_split)
else:
K_split = [K]
# compute DPSS windows
n_times = len(epochs.times)
sfreq = epochs.info['sfreq']
# compute standardized half-bandwidth
half_nbw = float(bandwidth) * n_times / (2 * sfreq)
n_tapers_max = int(2 * half_nbw)
dpss, eigvals = dpss_windows(n_times, half_nbw, n_tapers_max,
low_bias=low_bias)
n_tapers = len(dpss)
logger.info('Using %d tapers with bandwidth %0.1fHz'
% (n_tapers, bandwidth))
if adaptive and len(eigvals) < 3:
warn('Not adaptively combining the spectral estimators '
'due to a low number of tapers.')
adaptive = False
if adaptive:
parallel, my_psd_from_mt_adaptive, n_jobs = \
parallel_func(_psd_from_mt_adaptive, n_jobs)
else:
weights = np.sqrt(eigvals)[np.newaxis, :, np.newaxis]
subject = _subject_from_inverse(inverse_operator)
for k, e in enumerate(epochs):
logger.info("Processing epoch : %d" % (k + 1))
data = e[sel]
if Vh is not None:
data = np.dot(Vh, data) # reducing data rank
# compute tapered spectra in sensor space
x_mt, freqs = _mt_spectra(data, dpss, sfreq)
if k == 0:
freq_mask = (freqs >= fmin) & (freqs <= fmax)
fstep = np.mean(np.diff(freqs))
# allocate space for output
psd = np.empty((K.shape[0], np.sum(freq_mask)))
# Optionally, we split the inverse operator into parts to save memory.
# Without splitting the tapered spectra in source space have size
# (n_vertices x n_tapers x n_times / 2)
pos = 0
for K_part in K_split:
# allocate space for tapered spectra in source space
x_mt_src = np.empty((K_part.shape[0], x_mt.shape[1],
x_mt.shape[2]), dtype=x_mt.dtype)
# apply inverse to each taper
for i in range(n_tapers):
x_mt_src[:, i, :] = np.dot(K_part, x_mt[:, i, :])
# compute the psd
if adaptive:
out = parallel(my_psd_from_mt_adaptive(x, eigvals, freq_mask)
for x in np.array_split(x_mt_src,
min(n_jobs, len(x_mt_src))))
this_psd = np.concatenate(out)
else:
x_mt_src = x_mt_src[:, :, freq_mask]
this_psd = _psd_from_mt(x_mt_src, weights)
psd[pos:pos + K_part.shape[0], :] = this_psd
pos += K_part.shape[0]
# combine orientations
if is_free_ori and pick_ori == None:
psd = combine_xyz(psd, square=False)
if method != "MNE":
psd *= noise_norm ** 2
stc = _make_stc(psd, tmin=fmin, tstep=fstep, vertices=vertno,
subject=subject)
# we return a generator object for "stream processing"
yield stc
@verbose
def compute_source_psd_epochs(epochs, inverse_operator, lambda2=1. / 9.,
method="dSPM", fmin=0., fmax=200.,
pick_ori=None, label=None, nave=1,
pca=True, inv_split=None, bandwidth=4.,
adaptive=False, low_bias=True,
return_generator=False, n_jobs=1,
verbose=None, pick_normal=None):
"""Compute source power spectrum density (PSD) from Epochs using
multi-taper method
Parameters
----------
epochs : instance of Epochs
The raw data.
inverse_operator : instance of InverseOperator
The inverse operator.
lambda2 : float
The regularization parameter.
method : "MNE" | "dSPM" | "sLORETA"
Use mininum norm, dSPM or sLORETA.
fmin : float
The lower frequency of interest.
fmax : float
The upper frequency of interest.
pick_ori : None | "normal"
If "normal", rather than pooling the orientations by taking the norm,
only the radial component is kept. This is only implemented
when working with loose orientations.
label : Label
Restricts the source estimates to a given label.
nave : int
The number of averages used to scale the noise covariance matrix.
pca : bool
If True, the true dimension of data is estimated before running
the time frequency transforms. It reduces the computation times
e.g. with a dataset that was maxfiltered (true dim is 64).
inv_split : int or None
Split inverse operator into inv_split parts in order to save memory.
bandwidth : float
The bandwidth of the multi taper windowing function in Hz.
adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD
(slow, use n_jobs >> 1 to speed up computation).
low_bias : bool
Only use tapers with more than 90% spectral concentration within
bandwidth.
return_generator : bool
Return a generator object instead of a list. This allows iterating
over the stcs without having to keep them all in memory.
n_jobs : int
Number of parallel jobs to use (only used if adaptive=True).
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
stcs : list (or generator object) of SourceEstimate | VolSourceEstimate
The source space PSDs for each epoch.
"""
# use an auxiliary function so we can either return a generator or a list
stcs_gen = _compute_source_psd_epochs(epochs, inverse_operator,
lambda2=lambda2, method=method, fmin=fmin,
fmax=fmax, pick_ori=pick_ori, label=label,
nave=nave, pca=pca, inv_split=inv_split,
bandwidth=bandwidth, adaptive=adaptive,
low_bias=low_bias, n_jobs=n_jobs)
if return_generator:
# return generator object
return stcs_gen
else:
# return a list
stcs = list()
for stc in stcs_gen:
stcs.append(stc)
return stcs
|