1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
from ..externals.six import string_types
import numpy as np
from .. import pick_types, pick_channels
from ..utils import logger, verbose, sum_squared
from ..filter import band_pass_filter
from ..epochs import Epochs, _BaseEpochs
from ..io.base import _BaseRaw
from ..evoked import Evoked
def qrs_detector(sfreq, ecg, thresh_value=0.6, levels=2.5, n_thresh=3,
l_freq=5, h_freq=35, tstart=0, filter_length='10s'):
"""Detect QRS component in ECG channels.
QRS is the main wave on the heart beat.
Parameters
----------
sfreq : float
Sampling rate
ecg : array
ECG signal
thresh_value : float | str
qrs detection threshold. Can also be "auto" for automatic
selection of threshold.
levels : float
number of std from mean to include for detection
n_thresh : int
max number of crossings
l_freq : float
Low pass frequency
h_freq : float
High pass frequency
tstart : float
Start detection after tstart seconds.
filter_length : str | int | None
Number of taps to use for filtering.
Returns
-------
events : array
Indices of ECG peaks
"""
win_size = int(round((60.0 * sfreq) / 120.0))
filtecg = band_pass_filter(ecg, sfreq, l_freq, h_freq,
filter_length=filter_length)
ecg_abs = np.abs(filtecg)
init = int(sfreq)
n_samples_start = int(sfreq * tstart)
ecg_abs = ecg_abs[n_samples_start:]
n_points = len(ecg_abs)
maxpt = np.empty(3)
maxpt[0] = np.max(ecg_abs[:init])
maxpt[1] = np.max(ecg_abs[init:init * 2])
maxpt[2] = np.max(ecg_abs[init * 2:init * 3])
init_max = np.mean(maxpt)
if thresh_value == 'auto':
thresh_runs = np.arange(0.3, 1.1, 0.05)
elif isinstance(thresh_value, string_types):
raise ValueError('threshold value must be "auto" or a float')
else:
thresh_runs = [thresh_value]
# Try a few thresholds (or just one)
clean_events = list()
for thresh_value in thresh_runs:
thresh1 = init_max * thresh_value
numcross = list()
time = list()
rms = list()
ii = 0
while ii < (n_points - win_size):
window = ecg_abs[ii:ii + win_size]
if window[0] > thresh1:
max_time = np.argmax(window)
time.append(ii + max_time)
nx = np.sum(np.diff(((window > thresh1).astype(np.int)
== 1).astype(int)))
numcross.append(nx)
rms.append(np.sqrt(sum_squared(window) / window.size))
ii += win_size
else:
ii += 1
if len(rms) == 0:
rms.append(0.0)
time.append(0.0)
time = np.array(time)
rms_mean = np.mean(rms)
rms_std = np.std(rms)
rms_thresh = rms_mean + (rms_std * levels)
b = np.where(rms < rms_thresh)[0]
a = np.array(numcross)[b]
ce = time[b[a < n_thresh]]
ce += n_samples_start
clean_events.append(ce)
# pick the best threshold; first get effective heart rates
rates = np.array([60. * len(ce) / (len(ecg) / float(sfreq))
for ce in clean_events])
# now find heart rates that seem reasonable (infant thru adult athlete)
idx = np.where(np.logical_and(rates <= 160., rates >= 40.))[0]
if len(idx) > 0:
ideal_rate = np.median(rates[idx]) # get close to the median
else:
ideal_rate = 80. # get close to a reasonable default
idx = np.argmin(np.abs(rates - ideal_rate))
clean_events = clean_events[idx]
return clean_events
@verbose
def find_ecg_events(raw, event_id=999, ch_name=None, tstart=0.0,
l_freq=5, h_freq=35, qrs_threshold='auto',
filter_length='10s', verbose=None):
"""Find ECG peaks
Parameters
----------
raw : instance of Raw
The raw data
event_id : int
The index to assign to found events
ch_name : str
The name of the channel to use for ECG peak detection.
The argument is mandatory if the dataset contains no ECG
channels.
tstart : float
Start detection after tstart seconds. Useful when beginning
of run is noisy.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
qrs_threshold : float | str
Between 0 and 1. qrs detection threshold. Can also be "auto" to
automatically choose the threshold that generates a reasonable
number of heartbeats (40-160 beats / min).
filter_length : str | int | None
Number of taps to use for filtering.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
ecg_events : array
Events.
ch_ecg : string
Name of channel used.
average_pulse : float
Estimated average pulse.
"""
try:
idx_ecg = _get_ecg_channel_index(ch_name, raw)
assert len(idx_ecg) == 1
logger.info('Using channel %s to identify heart beats'
% raw.ch_names[idx_ecg[0]])
ecg, times = raw[idx_ecg, :]
except RuntimeError:
ecg, times = _make_ecg(raw, None, None, verbose)
idx_ecg = None
# detecting QRS and generating event file
ecg_events = qrs_detector(raw.info['sfreq'], ecg.ravel(), tstart=tstart,
thresh_value=qrs_threshold, l_freq=l_freq,
h_freq=h_freq, filter_length=filter_length)
n_events = len(ecg_events)
average_pulse = n_events * 60.0 / (times[-1] - times[0])
logger.info("Number of ECG events detected : %d (average pulse %d / "
"min.)" % (n_events, average_pulse))
ecg_events = np.c_[ecg_events + raw.first_samp, np.zeros(n_events),
event_id * np.ones(n_events)]
return ecg_events, idx_ecg, average_pulse
def _get_ecg_channel_index(ch_name, inst):
# Geting ECG Channel
if ch_name is None:
ecg_idx = pick_types(inst.info, meg=False, eeg=False, stim=False,
eog=False, ecg=True, emg=False, ref_meg=False,
exclude='bads')
else:
ecg_idx = pick_channels(inst.ch_names, include=[ch_name])
if len(ecg_idx) == 0:
raise ValueError('%s not in channel list (%s)' %
(ch_name, inst.ch_names))
if len(ecg_idx) == 0 and ch_name is None:
raise RuntimeError('No ECG channel found. Please specify ch_name '
'parameter e.g. MEG 1531')
return ecg_idx
@verbose
def create_ecg_epochs(raw, ch_name=None, event_id=999, picks=None,
tmin=-0.5, tmax=0.5, l_freq=8, h_freq=16, reject=None,
flat=None, verbose=None, baseline=None):
"""Conveniently generate epochs around ECG artifact events
Parameters
----------
raw : instance of Raw
The raw data
ch_name : str
The name of the channel to use for ECG peak detection.
The argument is mandatory if the dataset contains no ECG
channels.
event_id : int
The index to assign to found events
picks : array-like of int | None (default)
Indices of channels to include (if None, all channels are used).
tmin : float
Start time before event.
tmax : float
End time after event.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
reject : dict | None
Rejection parameters based on peak to peak amplitude.
Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'.
If reject is None then no rejection is done. You should
use such parameters to reject big measurement artifacts
and not ECG for example
flat : dict | None
Rejection parameters based on flatness of signal
Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'
If flat is None then no rejection is done.
baseline : tuple or list of length 2, or None
The time interval to apply rescaling / baseline correction.
If None do not apply it. If baseline is (a, b)
the interval is between "a (s)" and "b (s)".
If a is None the beginning of the data is used
and if b is None then b is set to the end of the interval.
If baseline is equal ot (None, None) all the time
interval is used. If None, no correction is applied.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
eog_epochs : instance of Epochs
Data epoched around EOG events.
"""
events, _, _ = find_ecg_events(raw, ch_name=ch_name, event_id=event_id,
l_freq=l_freq, h_freq=h_freq,
verbose=verbose)
if picks is not None:
picks = pick_types(raw.info, meg=True, eeg=True, ref_meg=False)
# create epochs around ECG events and baseline (important)
ecg_epochs = Epochs(raw, events=events, event_id=event_id,
tmin=tmin, tmax=tmax, proj=False,
picks=picks, reject=reject, baseline=baseline,
verbose=verbose, preload=True)
return ecg_epochs
@verbose
def _make_ecg(inst, start, stop, verbose=None):
"""Create ECG signal from cross channel average
"""
if not any([c in inst for c in ['mag', 'grad']]):
raise ValueError('Unable to generate artifical ECG channel')
for ch in ['mag', 'grad']:
if ch in inst:
break
logger.info('Reconstructing ECG signal from {0}'
.format({'mag': 'Magnetometers',
'grad': 'Gradiometers'}[ch]))
picks = pick_types(inst.info, meg=ch, eeg=False, ref_meg=False)
if isinstance(inst, _BaseRaw):
ecg, times = inst[picks, start:stop]
elif isinstance(inst, _BaseEpochs):
ecg = np.hstack(inst.crop(start, stop, copy=True).get_data())
times = inst.times
elif isinstance(inst, Evoked):
ecg = inst.data
times = inst.times
return ecg.mean(0), times
|