1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
import numpy as np
from .peak_finder import peak_finder
from .. import pick_types, pick_channels
from ..utils import logger, verbose
from ..filter import band_pass_filter
from ..epochs import Epochs
@verbose
def find_eog_events(raw, event_id=998, l_freq=1, h_freq=10,
filter_length='10s', ch_name=None, tstart=0,
verbose=None):
"""Locate EOG artifacts
Parameters
----------
raw : instance of Raw
The raw data.
event_id : int
The index to assign to found events.
low_pass : float
Low pass frequency.
high_pass : float
High pass frequency.
filter_length : str | int | None
Number of taps to use for filtering.
ch_name: str | None
If not None, use specified channel(s) for EOG
tstart : float
Start detection after tstart seconds.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
eog_events : array
Events.
"""
# Getting EOG Channel
eog_inds = _get_eog_channel_index(ch_name, raw)
logger.info('EOG channel index for this subject is: %s' % eog_inds)
eog, _ = raw[eog_inds, :]
eog_events = _find_eog_events(eog, event_id=event_id, l_freq=l_freq,
h_freq=h_freq,
sampling_rate=raw.info['sfreq'],
first_samp=raw.first_samp,
filter_length=filter_length,
tstart=tstart)
return eog_events
def _find_eog_events(eog, event_id, l_freq, h_freq, sampling_rate, first_samp,
filter_length='10s', tstart=0.):
"""Helper function"""
logger.info('Filtering the data to remove DC offset to help '
'distinguish blinks from saccades')
# filtering to remove dc offset so that we know which is blink and saccades
fmax = np.minimum(45, sampling_rate / 2.0 - 0.75) # protect Nyquist
filteog = np.array([band_pass_filter(x, sampling_rate, 2, fmax,
filter_length=filter_length)
for x in eog])
temp = np.sqrt(np.sum(filteog ** 2, axis=1))
indexmax = np.argmax(temp)
# easier to detect peaks with filtering.
filteog = band_pass_filter(eog[indexmax], sampling_rate, l_freq, h_freq,
filter_length=filter_length)
# detecting eog blinks and generating event file
logger.info('Now detecting blinks and generating corresponding events')
temp = filteog - np.mean(filteog)
n_samples_start = int(sampling_rate * tstart)
if np.abs(np.max(temp)) > np.abs(np.min(temp)):
eog_events, _ = peak_finder(filteog[n_samples_start:], extrema=1)
else:
eog_events, _ = peak_finder(filteog[n_samples_start:], extrema=-1)
eog_events += n_samples_start
n_events = len(eog_events)
logger.info("Number of EOG events detected : %d" % n_events)
eog_events = np.c_[eog_events + first_samp, np.zeros(n_events),
event_id * np.ones(n_events)]
return eog_events
def _get_eog_channel_index(ch_name, inst):
if isinstance(ch_name, str):
# Check if multiple EOG Channels
if ',' in ch_name:
ch_name = ch_name.split(',')
else:
ch_name = [ch_name]
eog_inds = pick_channels(inst.ch_names, include=ch_name)
if len(eog_inds) == 0:
raise ValueError('%s not in channel list' % ch_name)
else:
logger.info('Using channel %s as EOG channel%s' % (
" and ".join(ch_name),
'' if len(eog_inds) < 2 else 's'))
elif ch_name is None:
eog_inds = pick_types(inst.info, meg=False, eeg=False, stim=False,
eog=True, ecg=False, emg=False, ref_meg=False,
exclude='bads')
if len(eog_inds) == 0:
logger.info('No EOG channels found')
logger.info('Trying with EEG 061 and EEG 062')
eog_inds = pick_channels(inst.ch_names,
include=['EEG 061', 'EEG 062'])
if len(eog_inds) != 2:
raise RuntimeError('EEG 61 or EEG 62 channel not found !!')
else:
raise ValueError('Could not find EOG channel.')
return eog_inds
@verbose
def create_eog_epochs(raw, ch_name=None, event_id=998, picks=None,
tmin=-0.5, tmax=0.5, l_freq=1, h_freq=10,
reject=None, flat=None,
baseline=None, verbose=None):
"""Conveniently generate epochs around EOG artifact events
Parameters
----------
raw : instance of Raw
The raw data
ch_name : str
The name of the channel to use for ECG peak detection.
The argument is mandatory if the dataset contains no ECG channels.
event_id : int
The index to assign to found events
picks : array-like of int | None (default)
Indices of channels to include (if None, all channels
are used).
tmin : float
Start time before event.
tmax : float
End time after event.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
reject : dict | None
Rejection parameters based on peak to peak amplitude.
Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'.
If reject is None then no rejection is done. You should
use such parameters to reject big measurement artifacts
and not ECG for example
flat : dict | None
Rejection parameters based on flatness of signal
Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'
If flat is None then no rejection is done.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
baseline : tuple or list of length 2, or None
The time interval to apply rescaling / baseline correction.
If None do not apply it. If baseline is (a, b)
the interval is between "a (s)" and "b (s)".
If a is None the beginning of the data is used
and if b is None then b is set to the end of the interval.
If baseline is equal ot (None, None) all the time
interval is used. If None, no correction is applied.
Returns
-------
ecg_epochs : instance of Epochs
Data epoched around ECG r-peaks.
"""
events = find_eog_events(raw, ch_name=ch_name, event_id=event_id,
l_freq=l_freq, h_freq=h_freq)
# create epochs around EOG events
eog_epochs = Epochs(raw, events=events, event_id=event_id,
tmin=tmin, tmax=tmax, proj=False, reject=reject,
flat=flat, picks=picks, baseline=baseline,
preload=True)
return eog_epochs
|