File: ica.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (2381 lines) | stat: -rw-r--r-- 100,888 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
# Authors: Denis A. Engemann <denis.engemann@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Juergen Dammers <j.dammers@fz-juelich.de>
#
# License: BSD (3-clause)

import warnings

from copy import deepcopy
from inspect import getargspec, isfunction
from collections import namedtuple

import os
import json

import numpy as np
from scipy import stats
from scipy.spatial import distance
from scipy import linalg

from .ecg import (qrs_detector, _get_ecg_channel_index, _make_ecg,
                  create_ecg_epochs)
from .eog import _find_eog_events, _get_eog_channel_index
from .infomax_ import infomax

from ..cov import compute_whitener
from .. import Covariance, Evoked
from ..io.pick import (pick_types, pick_channels, pick_info)
from ..io.write import (write_double_matrix, write_string,
                        write_name_list, write_int, start_block,
                        end_block)
from ..io.tree import dir_tree_find
from ..io.open import fiff_open
from ..io.tag import read_tag
from ..io.meas_info import write_meas_info, read_meas_info
from ..io.constants import Bunch, FIFF
from ..io.base import _BaseRaw
from ..epochs import _BaseEpochs
from ..viz import (plot_ica_components, plot_ica_scores,
                   plot_ica_sources, plot_ica_overlay)
from ..channels import _contains_ch_type, ContainsMixin
from ..io.write import start_file, end_file, write_id
from ..utils import (check_sklearn_version, logger, check_fname, verbose,
                     deprecated, _reject_data_segments)
from ..filter import band_pass_filter
from .bads import find_outliers
from .ctps_ import ctps
from ..externals.six import string_types, text_type

try:
    from sklearn.utils.extmath import fast_dot
except ImportError:
    fast_dot = np.dot


def _make_xy_sfunc(func, ndim_output=False):
    """Aux function"""
    if ndim_output:
        sfunc = lambda x, y: np.array([func(a, y.ravel()) for a in x])[:, 0]
    else:
        sfunc = lambda x, y: np.array([func(a, y.ravel()) for a in x])
    sfunc.__name__ = '.'.join(['score_func', func.__module__, func.__name__])
    sfunc.__doc__ = func.__doc__
    return sfunc

# makes score funcs attr accessible for users
score_funcs = Bunch()

xy_arg_dist_funcs = [(n, f) for n, f in vars(distance).items() if isfunction(f)
                     and not n.startswith('_')]

xy_arg_stats_funcs = [(n, f) for n, f in vars(stats).items() if isfunction(f)
                      and not n.startswith('_')]

score_funcs.update(dict((n, _make_xy_sfunc(f)) for n, f in xy_arg_dist_funcs
                   if getargspec(f).args == ['u', 'v']))

score_funcs.update(dict((n, _make_xy_sfunc(f, ndim_output=True))
                   for n, f in xy_arg_stats_funcs
                   if getargspec(f).args == ['x', 'y']))


__all__ = ['ICA', 'ica_find_ecg_events', 'ica_find_eog_events', 'score_funcs',
           'read_ica', 'run_ica']


class ICA(ContainsMixin):

    """M/EEG signal decomposition using Independent Component Analysis (ICA)

    This object can be used to estimate ICA components and then
    remove some from Raw or Epochs for data exploration or artifact
    correction.

    Caveat! If supplying a noise covariance keep track of the projections
    available in the cov or in the raw object. For example, if you are
    interested in EOG or ECG artifacts, EOG and ECG projections should be
    temporally removed before fitting the ICA. You can say::

        >> projs, raw.info['projs'] = raw.info['projs'], []
        >> ica.decompose_raw(raw)
        >> raw.info['projs'] = projs

    Parameters
    ----------
    n_components : int | float | None
        The number of components used for ICA decomposition. If int, it must be
        smaller then max_pca_components. If None, all PCA components will be
        used. If float between 0 and 1 components can will be selected by the
        cumulative percentage of explained variance.
    max_pca_components : int | None
        The number of components used for PCA decomposition. If None, no
        dimension reduction will be applied and max_pca_components will equal
        the number of channels supplied on decomposing data. Defaults to None.
    n_pca_components : int | float
        The number of PCA components used after ICA recomposition. The ensuing
        attribute allows to balance noise reduction against potential loss of
        features due to dimensionality reduction. If greater than
        `self.n_components_`, the next `n_pca_components` minus
        `n_components_` PCA components will be added before restoring the
        sensor space data. The attribute gets updated each time the according
        parameter for in .pick_sources_raw or .pick_sources_epochs is changed.
        If float, the number of components selected matches the number of
        components with a cumulative explained variance below
        `n_pca_components`.
    noise_cov : None | instance of mne.cov.Covariance
        Noise covariance used for whitening. If None, channels are just
        z-scored.
    random_state : None | int | instance of np.random.RandomState
        np.random.RandomState to initialize the FastICA estimation.
        As the estimation is non-deterministic it can be useful to
        fix the seed to have reproducible results.
    method : {'fastica', 'infomax', 'extended-infomax'}
        The ICA method to use. Defaults to 'fastica'.
    algorithm : {'parallel', 'deflation'}
        Apply parallel or deflational algorithm for FastICA. This parameter
        belongs to FastICA and is deprecated. Please use `fit_params` instead.
    fun : string or function, optional. Default: 'logcosh'
        The functional form of the G function used in the
        approximation to neg-entropy. Could be either 'logcosh', 'exp',
        or 'cube'.
        You can also provide your own function. It should return a tuple
        containing the value of the function, and of its derivative, in the
        point. This parameter belongs to FastICA and is deprecated.
        Please use `fit_params` instead.
    fun_args: dictionary, optional
        Arguments to send to the functional form.
        If empty and if fun='logcosh', fun_args will take value
        {'alpha' : 1.0}. This parameter belongs to FastICA and is deprecated.
        Please use `fit_params` instead.
    fit_params : dict | None.
        Additional parameters passed to the ICA estimator chosen by `method`.
    max_iter : int, optional
        Maximum number of iterations during fit.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Attributes
    ----------
    current_fit : str
        Flag informing about which data type (raw or epochs) was used for
        the fit.
    ch_names : list-like
        Channel names resulting from initial picking.
        The number of components used for ICA decomposition.
    `n_components_` : int
        If fit, the actual number of components used for ICA decomposition.
    n_pca_components : int
        See above.
    max_pca_components : int
        The number of components used for PCA dimensionality reduction.
    verbose : bool, str, int, or None
        See above.
    `pca_components_` : ndarray
        If fit, the PCA components
    `pca_mean_` : ndarray
        If fit, the mean vector used to center the data before doing the PCA.
    `pca_explained_variance_` : ndarray
        If fit, the variance explained by each PCA component
    `mixing_matrix_` : ndarray
        If fit, the mixing matrix to restore observed data, else None.
    `unmixing_matrix_` : ndarray
        If fit, the matrix to unmix observed data, else None.
    exclude : list
        List of sources indices to exclude, i.e. artifact components identified
        throughout the ICA solution. Indices added to this list, will be
        dispatched to the .pick_sources methods. Source indices passed to
        the .pick_sources method via the 'exclude' argument are added to the
        .exclude attribute. When saving the ICA also the indices are restored.
        Hence, artifact components once identified don't have to be added
        again. To dump this 'artifact memory' say: ica.exclude = []
    info : None | instance of mne.io.meas_info.Info
        The measurement info copied from the object fitted.
    `n_samples_` : int
        the number of samples used on fit.
    """
    @verbose
    def __init__(self, n_components=None, max_pca_components=None,
                 n_pca_components=None, noise_cov=None, random_state=None,
                 method='fastica',
                 algorithm=None, fun=None, fun_args=None,
                 fit_params=None, max_iter=200, verbose=None):
        methods = ('fastica', 'infomax', 'extended-infomax')
        if method not in methods:
            raise ValueError('`method` must be "%s". You passed: "%s"' %
                             ('" or "'.join(methods), method))
        if not check_sklearn_version(min_version='0.12'):
            raise RuntimeError('the scikit-learn package (version >= 0.12)'
                               'is required for ICA')

        self.noise_cov = noise_cov

        if max_pca_components is not None and \
                n_components > max_pca_components:
            raise ValueError('n_components must be smaller than '
                             'max_pca_components')

        if isinstance(n_components, float) \
                and not 0 < n_components <= 1:
            raise ValueError('Selecting ICA components by explained variance '
                             'needs values between 0.0 and 1.0 ')

        self.current_fit = 'unfitted'
        self.verbose = verbose
        self.n_components = n_components
        self.max_pca_components = max_pca_components
        self.n_pca_components = n_pca_components
        self.ch_names = None
        self.random_state = random_state if random_state is not None else 42

        for attr in ['algorithm', 'fun', 'fun_args']:
            if eval(attr) is not None:
                warnings.warn('The parameter `%s` is deprecated and will be'
                              'removed in MNE 0.9. Please use '
                              '`fit_params` instead' % attr,
                              DeprecationWarning)

        self.algorithm = algorithm
        self.fun = fun
        self.fun_args = fun_args

        if fit_params is None:
            fit_params = {}
        if method == 'fastica':
            update = {'algorithm': 'parallel', 'fun': 'logcosh',
                      'fun_args': None}
            fit_params.update(dict((k, v) for k, v in update.items() if k
                              not in fit_params))
        elif method == 'infomax':
            fit_params.update({'extended': False})
        elif method == 'extended-infomax':
            fit_params.update({'extended': True})
        if 'max_iter' not in fit_params:
            fit_params['max_iter'] = max_iter
        self.max_iter = max_iter
        self.fit_params = fit_params

        self.exclude = []
        self.info = None
        self.method = method

    def __repr__(self):
        """ICA fit information"""
        if self.current_fit == 'unfitted':
            s = 'no'
        elif self.current_fit == 'raw':
            s = 'raw data'
        else:
            s = 'epochs'
        s += ' decomposition, '
        s += 'fit (%s): %s samples, ' % (self.method,
                                         str(getattr(self, 'n_samples_', '')))
        s += ('%s components' % str(self.n_components_) if
              hasattr(self, 'n_components_') else
              'no dimension reduction')
        if self.info is not None:
            ch_fit = ['"%s"' % c for c in ['mag', 'grad', 'eeg'] if c in self]
            s += ', channels used: {0}'.format('; '.join(ch_fit))
        if self.exclude:
            s += ', %i sources marked for exclusion' % len(self.exclude)

        return '<ICA  |  %s>' % s

    @verbose
    def fit(self, inst, picks=None, start=None, stop=None, decim=None,
            reject=None, flat=None, tstep=2.0, verbose=None):
        """Run the ICA decomposition on raw data

        Caveat! If supplying a noise covariance keep track of the projections
        available in the cov, the raw or the epochs object. For example,
        if you are interested in EOG or ECG artifacts, EOG and ECG projections
        should be temporally removed before fitting the ICA.

        Parameters
        ----------
        inst : instance of Raw, Epochs or Evoked
            Raw measurements to be decomposed.
        picks : array-like of int
            Channels to be included. This selection remains throughout the
            initialized ICA solution. If None only good data channels are used.
        start : int | float | None
            First sample to include. If float, data will be interpreted as
            time in seconds. If None, data will be used from the first sample.
        stop : int | float | None
            Last sample to not include. If float, data will be interpreted as
            time in seconds. If None, data will be used to the last sample.
        decim : int | None
            Increment for selecting each nth time slice. If None, all samples
            within ``start`` and ``stop`` are used.
        reject : dict | None
            Rejection parameters based on peak to peak amplitude.
            Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'.
            If reject is None then no rejection is done. You should
            use such parameters to reject big measurement artifacts
            and not EOG for example. It only applies if `inst` is of type Raw.
        flat : dict | None
            Rejection parameters based on flatness of signal
            Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'
            If flat is None then no rejection is done.
            It only applies if `inst` is of type Raw.
        tstep : float
            Length of data chunks for artifact rejection in seconds.
            It only applies if `inst` is of type Raw.
        verbose : bool, str, int, or None
            If not None, override default verbose level (see mne.verbose).
            Defaults to self.verbose.

        Returns
        -------
        self : instance of ICA
            Returns the modified instance.
        """
        if isinstance(inst, _BaseRaw):
            self._fit_raw(inst, picks, start, stop, decim, reject, flat,
                          tstep, verbose)
        elif isinstance(inst, _BaseEpochs):
            self._fit_epochs(inst, picks, decim, verbose)
        else:
            raise ValueError('Data input must be of Raw or Epochs type')
        return self

    def _reset(self):
        """Aux method"""
        del self._pre_whitener
        del self.unmixing_matrix_
        del self.mixing_matrix_
        del self.n_components_
        del self.n_samples_
        if hasattr(self, 'drop_inds_'):
            del self.drop_inds_

    def _fit_raw(self, raw, picks, start, stop, decim, reject, flat, tstep,
                 verbose):
        """Aux method
        """
        if self.current_fit != 'unfitted':
            self._reset()

        if picks is None:  # just use good data channels
            picks = pick_types(raw.info, meg=True, eeg=True, eog=False,
                               ecg=False, misc=False, stim=False,
                               ref_meg=False, exclude='bads')
        logger.info('Fitting ICA to data using %i channels. \n'
                    'Please be patient, this may take some time' % len(picks))

        if self.max_pca_components is None:
            self.max_pca_components = len(picks)
            logger.info('Inferring max_pca_components from picks.')

        self.info = pick_info(raw.info, picks)
        if self.info['comps']:
            self.info['comps'] = []
        self.ch_names = self.info['ch_names']
        start, stop = _check_start_stop(raw, start, stop)

        data = raw[picks, start:stop][0]
        if decim is not None:
            data = data[:, ::decim].copy()

        if (reject is not None) or (flat is not None):
            data, self.drop_inds_ = _reject_data_segments(data, reject, flat,
                                                          decim, self.info,
                                                          tstep)

        self.n_samples_ = data.shape[1]

        data, self._pre_whitener = self._pre_whiten(data,
                                                    raw.info, picks)

        self._fit(data, self.max_pca_components, 'raw')

        return self

    def _fit_epochs(self, epochs, picks, decim, verbose):
        """Aux method
        """
        if self.current_fit != 'unfitted':
            self._reset()

        if picks is None:
            picks = pick_types(epochs.info, meg=True, eeg=True, eog=False,
                               ecg=False, misc=False, stim=False,
                               ref_meg=False, exclude='bads')
        logger.info('Fitting ICA to data using %i channels. \n'
                    'Please be patient, this may take some time' % len(picks))

        # filter out all the channels the raw wouldn't have initialized
        self.info = pick_info(epochs.info, picks)
        if self.info['comps']:
            self.info['comps'] = []
        self.ch_names = self.info['ch_names']

        if self.max_pca_components is None:
            self.max_pca_components = len(picks)
            logger.info('Inferring max_pca_components from picks.')

        data = epochs.get_data()[:, picks]
        if decim is not None:
            data = data[:, :, ::decim].copy()

        self.n_samples_ = np.prod(data[:, 0, :].shape)

        data, self._pre_whitener = \
            self._pre_whiten(np.hstack(data), epochs.info, picks)

        self._fit(data, self.max_pca_components, 'epochs')

        return self

    def _pre_whiten(self, data, info, picks):
        """Aux function"""
        has_pre_whitener = hasattr(self, '_pre_whitener')
        if not has_pre_whitener and self.noise_cov is None:
            # use standardization as whitener
            # Scale (z-score) the data by channel type
            info = pick_info(deepcopy(info), picks)
            pre_whitener = np.empty([len(data), 1])
            for ch_type in ['mag', 'grad', 'eeg']:
                if _contains_ch_type(info, ch_type):
                    if ch_type == 'eeg':
                        this_picks = pick_types(info, meg=False, eeg=True)
                    else:
                        this_picks = pick_types(info, meg=ch_type, eeg=False)
                    pre_whitener[this_picks] = np.std(data[this_picks])
            data /= pre_whitener
        elif not has_pre_whitener and self.noise_cov is not None:
            pre_whitener, _ = compute_whitener(self.noise_cov, info, picks)
            assert data.shape[0] == pre_whitener.shape[1]
            data = fast_dot(pre_whitener, data)
        elif has_pre_whitener and self.noise_cov is None:
            data /= self._pre_whitener
            pre_whitener = self._pre_whitener
        else:
            data = fast_dot(self._pre_whitener, data)
            pre_whitener = self._pre_whitener

        return data, pre_whitener

    def _fit(self, data, max_pca_components, fit_type):
        """Aux function """
        from sklearn.decomposition import RandomizedPCA

        # XXX fix copy==True later. Bug in sklearn, see PR #2273
        pca = RandomizedPCA(n_components=max_pca_components, whiten=True,
                            copy=True, random_state=self.random_state)

        if isinstance(self.n_components, float):
            # compute full feature variance before doing PCA
            full_var = np.var(data, axis=1).sum()

        data = pca.fit_transform(data.T)

        if isinstance(self.n_components, float):
            # compute eplained variance manually, cf. sklearn bug
            # fixed in #2664
            explained_variance_ratio_ = pca.explained_variance_ / full_var
            n_components_ = np.sum(explained_variance_ratio_.cumsum()
                                   <= self.n_components)
            if n_components_ < 1:
                raise RuntimeError('One PCA component captures most of the '
                                   'explained variance, your threshold resu'
                                   'lts in 0 components. You should select '
                                   'a higher value.')
            logger.info('Selection by explained variance: %i components' %
                        n_components_)
            sel = slice(n_components_)
        else:
            logger.info('Selection by number: %i components' %
                        self.n_components)
            if self.n_components is not None:  # normal n case
                sel = slice(self.n_components)
            else:  # None case
                logger.info('Using all PCA components: %i' % pca.components_)
                sel = slice(len(pca.components_))

        # the things to store for PCA
        self.pca_mean_ = pca.mean_
        self.pca_components_ = pca.components_
        # unwhiten pca components and put scaling in unmixintg matrix later.
        self.pca_explained_variance_ = exp_var = pca.explained_variance_
        self.pca_components_ *= np.sqrt(exp_var[:, None])
        del pca
        # update number of components
        self.n_components_ = sel.stop
        if self.n_pca_components is not None:
            if self.n_pca_components > len(self.pca_components_):
                self.n_pca_components = len(self.pca_components_)

        # Take care of ICA
        if self.method == 'fastica':
            from sklearn.decomposition import FastICA  # to avoid strong dep.
            ica = FastICA(whiten=False,
                          random_state=self.random_state, **self.fit_params)
            ica.fit(data[:, sel])
            # get unmixing and add scaling
            self.unmixing_matrix_ = getattr(ica, 'components_',
                                            'unmixing_matrix_')
        elif self.method in ('infomax', 'extended-infomax'):
            self.unmixing_matrix_ = infomax(data[:, sel], **self.fit_params)
        self.unmixing_matrix_ /= np.sqrt(exp_var[sel])[None, :]
        self.mixing_matrix_ = linalg.pinv(self.unmixing_matrix_)
        self.current_fit = fit_type

    def _transform(self, data):
        """Compute sources from data (operates inplace)"""
        if self.pca_mean_ is not None:
            data -= self.pca_mean_[:, None]

        # Apply first PCA
        pca_data = fast_dot(self.pca_components_[:self.n_components_], data)
        # Apply unmixing to low dimension PCA
        sources = fast_dot(self.unmixing_matrix_, pca_data)
        return sources

    def _transform_raw(self, raw, start, stop):
        if not hasattr(self, 'mixing_matrix_'):
            raise RuntimeError('No fit available. Please fit ICA.')
        start, stop = _check_start_stop(raw, start, stop)

        picks = [raw.ch_names.index(k) for k in self.ch_names]
        if len(picks) != len(self.ch_names):
            raise RuntimeError('Epochs don\'t match fitted data: %i channels '
                               'fitted but %i channels supplied. \nPlease '
                               'provide Epochs compatible with '
                               'ica.ch_names' % (len(self.ch_names),
                                                 len(picks)))

        data, _ = self._pre_whiten(raw[picks, start:stop][0], raw.info, picks)
        return self._transform(data)

    def _transform_epochs(self, epochs, concatenate):
        """Aux method
        """
        if not hasattr(self, 'mixing_matrix_'):
            raise RuntimeError('No fit available. Please fit ICA')

        picks = pick_types(epochs.info, include=self.ch_names, exclude=[],
                           ref_meg=False)

        # special case where epochs come picked but fit was 'unpicked'.
        if len(picks) != len(self.ch_names):
            raise RuntimeError('Epochs don\'t match fitted data: %i channels '
                               'fitted but %i channels supplied. \nPlease '
                               'provide Epochs compatible with '
                               'ica.ch_names' % (len(self.ch_names),
                                                 len(picks)))

        data = np.hstack(epochs.get_data()[:, picks])
        data, _ = self._pre_whiten(data, epochs.info, picks)
        sources = self._transform(data)

        if not concatenate:
            # Put the data back in 3D
            sources = np.array(np.split(sources, len(epochs.events), 1))

        return sources

    def _transform_evoked(self, evoked):
        """Aux method
        """
        if not hasattr(self, 'mixing_matrix_'):
            raise RuntimeError('No fit available. Please first fit ICA')

        picks = pick_types(evoked.info, include=self.ch_names, exclude=[],
                           ref_meg=False)

        if len(picks) != len(self.ch_names):
            raise RuntimeError('Epochs don\'t match fitted data: %i channels '
                               'fitted but %i channels supplied. \nPlease '
                               'provide Epochs compatible with '
                               'ica.ch_names' % (len(self.ch_names),
                                                 len(picks)))

        data, _ = self._pre_whiten(evoked.data[picks], evoked.info, picks)
        sources = self._transform(data)

        return sources

    def get_sources(self, inst, add_channels=None, start=None, stop=None):
        """Estimate sources given the unmixing matrix

        This method will return the sources in the container format passed.
        Typical usecases:

        1. pass Raw object to use `raw.plot` for ICA sources
        2. pass Epochs object to compute trial-based statistics in ICA space
        3. pass Evoked object to investigate time-locking in ICA space

        Parameters
        ----------
        inst : instance of Raw, Epochs or Evoked
            Object to compute sources from and to represent sources in.
        add_channels : None | list of str
            Additional channels  to be added. Useful to e.g. compare sources
            with some reference. Defaults to None
        start : int | float | None
            First sample to include. If float, data will be interpreted as
            time in seconds. If None, the entire data will be used.
        stop : int | float | None
            Last sample to not include. If float, data will be interpreted as
            time in seconds. If None, the entire data will be used.

        Returns
        -------
        sources : instance of Raw, Epochs or Evoked
            The ICA sources time series.
        """
        if isinstance(inst, _BaseRaw):
            sources = self._sources_as_raw(inst, add_channels, start, stop)
        elif isinstance(inst, _BaseEpochs):
            sources = self._sources_as_epochs(inst, add_channels, False)
        elif isinstance(inst, Evoked):
            sources = self._sources_as_evoked(inst, add_channels)
        else:
            raise ValueError('Data input must be of Raw, Epochs or Evoked '
                             'type')

        return sources

    def _sources_as_raw(self, raw, add_channels, start, stop):
        """Aux method
        """
        # merge copied instance and picked data with sources
        sources = self._transform_raw(raw, start=start, stop=stop)
        if raw.preload:  # get data and temporarily delete
            data, times = raw._data, raw._times
            del raw._data, raw._times

        out = raw.copy()  # copy and reappend
        if raw.preload:
            raw._data, raw._times = data, times

        # populate copied raw.
        start, stop = _check_start_stop(raw, start, stop)
        if add_channels is not None:
            raw_picked = raw.pick_channels(add_channels, copy=True)
            data_, times_ = raw_picked[:, start:stop]
            data_ = np.r_[sources, data_]
        else:
            data_ = sources
            _, times_ = raw[0, start:stop]
        out._data = data_
        out._times = times_
        out._filenames = list()
        out.preload = True

        # update first and last samples
        out.first_samp = raw.first_samp + (start if start else 0)
        out.last_samp = out.first_samp + stop if stop else raw.last_samp

        out._projector = None
        self._export_info(out.info, raw, add_channels)

        return out

    def _sources_as_epochs(self, epochs, add_channels, concatenate):
        """Aux method"""
        out = epochs.copy()
        sources = self._transform_epochs(epochs, concatenate)
        if add_channels is not None:
            picks = [epochs.ch_names.index(k) for k in add_channels]
        else:
            picks = []
        out._data = np.concatenate([sources, epochs.get_data()[:, picks]],
                                   axis=1) if len(picks) > 0 else sources

        self._export_info(out.info, epochs, add_channels)
        out.preload = True
        out.raw = None
        out._projector = None

        return out

    def _sources_as_evoked(self, evoked, add_channels):
        """Aux method
        """
        if add_channels is not None:
            picks = [evoked.ch_names.index(k) for k in add_channels]
        else:
            picks = []

        sources = self._transform_evoked(evoked)
        if len(picks) > 1:
            data = np.r_[sources, evoked.data[picks]]
        else:
            data = sources
        out = evoked.copy()
        out.data = data
        self._export_info(out.info, evoked, add_channels)

        return out

    def _export_info(self, info, container, add_channels):
        """Aux method
        """
        # set channel names and info
        ch_names = info['ch_names'] = []
        ch_info = info['chs'] = []
        for ii in range(self.n_components_):
            this_source = 'ICA %03d' % (ii + 1)
            ch_names.append(this_source)
            ch_info.append(dict(ch_name=this_source, cal=1,
                                logno=ii + 1, coil_type=FIFF.FIFFV_COIL_NONE,
                                kind=FIFF.FIFFV_MISC_CH,
                                coord_Frame=FIFF.FIFFV_COORD_UNKNOWN,
                                loc=np.array([0., 0., 0., 1.] * 3, dtype='f4'),
                                unit=FIFF.FIFF_UNIT_NONE, eeg_loc=None,
                                range=1.0, scanno=ii + 1, unit_mul=0,
                                coil_trans=None))

        if add_channels is not None:
            # re-append additionally picked ch_names
            ch_names += add_channels
            # re-append additionally picked ch_info
            ch_info += [k for k in container.info['chs'] if k['ch_name'] in
                        add_channels]
            # update number of channels
        info['nchan'] = self.n_components_
        if add_channels is not None:
            info['nchan'] += len(add_channels)
        info['bads'] = [ch_names[k] for k in self.exclude]
        info['projs'] = []  # make sure projections are removed.

    @verbose
    def score_sources(self, inst, target=None, score_func='pearsonr',
                      start=None, stop=None, l_freq=None, h_freq=None,
                      verbose=None):
        """Assign score to components based on statistic or metric

        Parameters
        ----------
        inst : instance of Raw, Epochs or Evoked
            The object to reconstruct the sources from.
        target : array-like | ch_name | None
            Signal to which the sources shall be compared. It has to be of
            the same shape as the sources. If some string is supplied, a
            routine will try to find a matching channel. If None, a score
            function expecting only one input-array argument must be used,
            for instance, scipy.stats.skew (default).
        score_func : callable | str label
            Callable taking as arguments either two input arrays
            (e.g. Pearson correlation) or one input
            array (e. g. skewness) and returns a float. For convenience the
            most common score_funcs are available via string labels: Currently,
            all distance metrics from scipy.spatial and all functions from
            scipy.stats taking compatible input arguments are supported. These
            function have been modified to support iteration over the rows of a
            2D array.
        start : int | float | None
            First sample to include. If float, data will be interpreted as
            time in seconds. If None, data will be used from the first sample.
        stop : int | float | None
            Last sample to not include. If float, data will be interpreted as
            time in seconds. If None, data will be used to the last sample.
        l_freq : float
            Low pass frequency.
        h_freq : float
            High pass frequency.
        verbose : bool, str, int, or None
            If not None, override default verbose level (see mne.verbose).
            Defaults to self.verbose.

        Returns
        -------
        scores : ndarray
            scores for each source as returned from score_func
        """
        if isinstance(inst, _BaseRaw):
            sources = self._transform_raw(inst, start, stop)
        elif isinstance(inst, _BaseEpochs):
            sources = self._transform_epochs(inst, concatenate=True)
        elif isinstance(inst, Evoked):
            sources = self._transform_evoked(inst)
        else:
            raise ValueError('Input must be of Raw, Epochs or Evoked type')

        if target is not None:  # we can have univariate metrics without target
            target = self._check_target(target, inst, start, stop)

            if sources.shape[-1] != target.shape[-1]:
                raise ValueError('Sources and target do not have the same'
                                 'number of time slices.')
            # auto target selection
            if verbose is None:
                verbose = self.verbose
            if isinstance(inst, (_BaseRaw, _BaseRaw)):
                sources, target = _band_pass_filter(self, sources, target, l_freq,
                                                    h_freq, verbose)

        scores = _find_sources(sources, target, score_func)

        return scores

    def _check_target(self, target, inst, start, stop):
        """Aux Method"""
        if isinstance(inst, _BaseRaw):
            start, stop = _check_start_stop(inst, start, stop)
            if hasattr(target, 'ndim'):
                if target.ndim < 2:
                    target = target.reshape(1, target.shape[-1])
            if isinstance(target, string_types):
                pick = _get_target_ch(inst, target)
                target, _ = inst[pick, start:stop]

        elif isinstance(inst, _BaseEpochs):
            if isinstance(target, string_types):
                pick = _get_target_ch(inst, target)
                target = inst.get_data()[:, pick]

            if hasattr(target, 'ndim'):
                if target.ndim == 3 and min(target.shape) == 1:
                    target = target.ravel()

        elif isinstance(inst, Evoked):
            if isinstance(target, string_types):
                pick = _get_target_ch(inst, target)
                target = inst.data[pick]

        return target

    @verbose
    def find_bads_ecg(self, inst, ch_name=None, threshold=None,
                      start=None, stop=None, l_freq=8, h_freq=16,
                      method='ctps', verbose=None):
        """Detect ECG related components using correlation

        Note. If no ECG channel is available, routine attempts to create
        an artificial ECG based on cross-channel averaging.

        Parameters
        ----------
        inst : instance of Raw, Epochs or Evoked
            Object to compute sources from.
        ch_name : str
            The name of the channel to use for ECG peak detection.
            The argument is mandatory if the dataset contains no ECG
            channels.
        threshold : float
            The value above which a feature is classified as outlier. If
            method is 'ctps', defaults to 0.25, else defaults to 3.0.
        start : int | float | None
            First sample to include. If float, data will be interpreted as
            time in seconds. If None, data will be used from the first sample.
        stop : int | float | None
            Last sample to not include. If float, data will be interpreted as
            time in seconds. If None, data will be used to the last sample.
        l_freq : float
            Low pass frequency.
        h_freq : float
            High pass frequency.
        method : {'ctps', 'correlation'}
            The method used for detection. If 'ctps', cross-trial phase
            statistics [1] are used to detect ECG related components.
            Thresholding is then based on the significance value of a Kuiper
            statistic.
            If 'correlation', detection is based on Pearson correlation
            between the filtered data and the filtered ECG channel.
            Thresholding is based on iterative z-scoring. The above
            threshold components will be masked and the z-score will
            be recomputed until no supra-threshold component remains.
            Defaults to 'ctps'.
        verbose : bool, str, int, or None
            If not None, override default verbose level (see mne.verbose).
            Defaults to self.verbose.

        Returns
        -------
        ecg_idx : list of int
            The indices of EOG related components.
        scores : np.ndarray of float, shape (ica.n_components_)
            The correlation scores.

        References
        ----------
        [1] Dammers, J., Schiek, M., Boers, F., Silex, C., Zvyagintsev,
            M., Pietrzyk, U., Mathiak, K., 2008. Integration of amplitude
            and phase statistics for complete artifact removal in independent
            components of neuromagnetic recordings. Biomedical
            Engineering, IEEE Transactions on 55 (10), 2353-2362.
        """
        if verbose is None:
            verbose = self.verbose
        try:
            idx_ecg = _get_ecg_channel_index(ch_name, inst)
        except RuntimeError:
            idx_ecg = []
        if not np.any(idx_ecg):
            if verbose is not None:
                verbose = self.verbose
            ecg, times = _make_ecg(inst, start, stop, verbose)
            ch_name = 'ECG'
        else:
            ecg = inst.ch_names[idx_ecg]

        # some magic we need inevitably ...
        if inst.ch_names != self.ch_names:
            inst = inst.pick_channels(self.ch_names, copy=True)

        if method == 'ctps':
            if threshold is None:
                threshold = 0.25
            if isinstance(inst, _BaseRaw):
                sources = self.get_sources(create_ecg_epochs(inst)).get_data()
            elif isinstance(inst, _BaseEpochs):
                sources = self.get_sources(inst).get_data()
            else:
                raise ValueError('With `ctps` only Raw and Epochs input is '
                                 'supported')
            _, p_vals, _ = ctps(sources)
            scores = p_vals.max(-1)
            ecg_idx = np.where(scores >= threshold)[0]
        elif method == 'correlation':
            if threshold is None:
                threshold = 3.0
            scores = self.score_sources(inst, target=ecg,
                                        score_func='pearsonr',
                                        start=start, stop=stop,
                                        l_freq=l_freq, h_freq=h_freq,
                                        verbose=verbose)
            ecg_idx = find_outliers(scores, threshold=threshold)
        else:
            raise ValueError('Mehtod "%s" not supported.' % method)
        # sort indices by scores
        ecg_idx = ecg_idx[np.abs(scores[ecg_idx]).argsort()[::-1]]
        return list(ecg_idx), scores

    @verbose
    def find_bads_eog(self, inst, ch_name=None, threshold=3.0,
                      start=None, stop=None, l_freq=1, h_freq=10,
                      verbose=None):
        """Detect EOG related components using correlation

        Detection is based on Pearson correlation between the
        filtered data and the filtered ECG channel.
        Thresholding is based on adaptive z-scoring. The above threshold
        components will be masked and the z-score will be recomputed
        until no supra-threshold component remains.

        Parameters
        ----------
        inst : instance of Raw, Epochs or Evoked
            Object to compute sources from.
        ch_name : str
            The name of the channel to use for ECG peak detection.
            The argument is mandatory if the dataset contains no ECG
            channels.
        threshold : int | float
            The value above which a feature is classified as outlier.
        start : int | float | None
            First sample to include. If float, data will be interpreted as
            time in seconds. If None, data will be used from the first sample.
        stop : int | float | None
            Last sample to not include. If float, data will be interpreted as
            time in seconds. If None, data will be used to the last sample.
        l_freq : float
            Low pass frequency.
        h_freq : float
            High pass frequency.
        verbose : bool, str, int, or None
            If not None, override default verbose level (see mne.verbose).
            Defaults to self.verbose.

        Returns
        -------
        ecg_idx : list of int
            The indices of EOG related components, sorted by score.
        scores : np.ndarray of float, shape (ica.n_components_) | list of array
            The correlation scores.
        """
        if verbose is None:
            verbose = self.verbose

        eog_inds = _get_eog_channel_index(ch_name, inst)
        if len(eog_inds) > 2:
            eog_inds = eog_inds[:1]
            logger.info('Using EOG channel %s' % inst.ch_names[eog_inds[0]])
        scores, eog_idx = [], []
        eog_chs = [inst.ch_names[k] for k in eog_inds]

        # some magic we need inevitably ...
        # get targets befor equalizing
        targets = [self._check_target(k, inst, start, stop) for k in eog_chs]

        if inst.ch_names != self.ch_names:
            inst = inst.pick_channels(self.ch_names, copy=True)

        for eog_ch, target in zip(eog_chs, targets):
            scores += [self.score_sources(inst, target=target,
                                          score_func='pearsonr',
                                          start=start, stop=stop,
                                          l_freq=l_freq, h_freq=h_freq,
                                          verbose=verbose)]
            eog_idx += [find_outliers(scores[-1], threshold=threshold)]

        # remove duplicates but keep order by score, even across multiple
        # EOG channels
        scores_ = np.concatenate([scores[ii][inds]
                                  for ii, inds in enumerate(eog_idx)])
        eog_idx_ = np.concatenate(eog_idx)[np.abs(scores_).argsort()[::-1]]

        eog_idx_unique = list(np.unique(eog_idx_))
        eog_idx = []
        for i in eog_idx_:
            if i in eog_idx_unique:
                eog_idx.append(i)
                eog_idx_unique.remove(i)
        if len(scores) == 1:
            scores = scores[0]

        return eog_idx, scores

    def apply(self, inst, include=None, exclude=None,
              n_pca_components=None, start=None, stop=None,
              copy=False):
        """Remove selected components from the signal.

        Given the unmixing matrix, transform data,
        zero out components, and inverse transform the data.
        This procedure will reconstruct M/EEG signals from which
        the dynamics described by the excluded components is subtracted.

        Parameters
        ----------
        inst : instance of Raw, Epochs or Evoked
            The data to be processed.
        include : array_like of int.
            The indices refering to columns in the ummixing matrix. The
            components to be kept.
        exclude : array_like of int.
            The indices refering to columns in the ummixing matrix. The
            components to be zeroed out.
        n_pca_components : int | float | None
            The number of PCA components to be kept, either absolute (int)
            or percentage of the explained variance (float). If None (default),
            all PCA components will be used.
        start : int | float | None
            First sample to include. If float, data will be interpreted as
            time in seconds. If None, data will be used from the first sample.
        stop : int | float | None
            Last sample to not include. If float, data will be interpreted as
            time in seconds. If None, data will be used to the last sample.
        copy : bool
            Whether to return a copy or whether to apply the solution in place.
            Defaults to False.
        """
        if isinstance(inst, _BaseRaw):
            out = self._apply_raw(raw=inst, include=include,
                                  exclude=exclude,
                                  n_pca_components=n_pca_components,
                                  start=start, stop=stop, copy=copy)
        elif isinstance(inst, _BaseEpochs):
            out = self._apply_epochs(epochs=inst, include=include,
                                     exclude=exclude,
                                     n_pca_components=n_pca_components,
                                     copy=copy)
        elif isinstance(inst, Evoked):
            out = self._apply_evoked(evoked=inst, include=include,
                                     exclude=exclude,
                                     n_pca_components=n_pca_components,
                                     copy=copy)
        else:
            raise ValueError('Data input must be of Raw, Epochs or Evoked '
                             'type')
        return out

    def _apply_raw(self, raw, include, exclude, n_pca_components, start, stop,
                   copy=True):
        """Aux method"""
        if not raw.preload:
            raise ValueError('Raw data must be preloaded to apply ICA')

        if exclude is None:
            exclude = list(set(self.exclude))
        else:
            exclude = list(set(self.exclude + exclude))

        if n_pca_components is not None:
            self.n_pca_components = n_pca_components

        start, stop = _check_start_stop(raw, start, stop)

        picks = pick_types(raw.info, meg=False, include=self.ch_names,
                           exclude='bads')

        data = raw[picks, start:stop][0]
        data, _ = self._pre_whiten(data, raw.info, picks)

        data = self._pick_sources(data, include, exclude)

        if copy is True:
            raw = raw.copy()

        raw[picks, start:stop] = data
        return raw

    def _apply_epochs(self, epochs, include, exclude,
                      n_pca_components, copy):

        if not epochs.preload:
            raise ValueError('Epochs must be preloaded to apply ICA')

        picks = pick_types(epochs.info, meg=False, ref_meg=False,
                           include=self.ch_names,
                           exclude='bads')

        # special case where epochs come picked but fit was 'unpicked'.
        if len(picks) != len(self.ch_names):
            raise RuntimeError('Epochs don\'t match fitted data: %i channels '
                               'fitted but %i channels supplied. \nPlease '
                               'provide Epochs compatible with '
                               'ica.ch_names' % (len(self.ch_names),
                                                 len(picks)))

        if n_pca_components is not None:
            self.n_pca_components = n_pca_components

        data = np.hstack(epochs.get_data()[:, picks])
        data, _ = self._pre_whiten(data, epochs.info, picks)
        data = self._pick_sources(data, include=include, exclude=exclude)

        if copy is True:
            epochs = epochs.copy()

        # restore epochs, channels, tsl order
        epochs._data[:, picks] = np.array(np.split(data,
                                          len(epochs.events), 1))
        epochs.preload = True

        return epochs

    def _apply_evoked(self, evoked, include, exclude,
                      n_pca_components, copy):

        picks = pick_types(evoked.info, meg=False, ref_meg=False,
                           include=self.ch_names,
                           exclude='bads')

        # special case where evoked come picked but fit was 'unpicked'.
        if len(picks) != len(self.ch_names):
            raise RuntimeError('Evoked does not match fitted data: %i channels'
                               ' fitted but %i channels supplied. \nPlease '
                               'provide an Evoked object that\'s compatible '
                               'with ica.ch_names' % (len(self.ch_names),
                                                      len(picks)))

        if n_pca_components is not None:
            self.n_pca_components = n_pca_components

        data = evoked.data[picks]
        data, _ = self._pre_whiten(data, evoked.info, picks)
        data = self._pick_sources(data, include=include,
                                  exclude=exclude)

        if copy is True:
            evoked = evoked.copy()

        # restore evoked
        evoked.data[picks] = data

        return evoked

    def _pick_sources(self, data, include, exclude):
        """Aux function"""
        if exclude is None:
            exclude = self.exclude
        else:
            exclude = list(set(self.exclude + list(exclude)))

        _n_pca_comp = _check_n_pca_components(self, self.n_pca_components,
                                              self.verbose)

        if not(self.n_components_ <= _n_pca_comp <= self.max_pca_components):
            raise ValueError('n_pca_components must be >= '
                             'n_components and <= max_pca_components.')

        n_components = self.n_components_
        logger.info('Transforming to ICA space (%i components)' % n_components)

        # Apply first PCA
        if self.pca_mean_ is not None:
            data -= self.pca_mean_[:, None]

        pca_data = fast_dot(self.pca_components_, data)
        # Apply unmixing to low dimension PCA
        sources = fast_dot(self.unmixing_matrix_, pca_data[:n_components])

        if include not in (None, []):
            mask = np.ones(len(sources), dtype=np.bool)
            mask[np.unique(include)] = False
            sources[mask] = 0.
            logger.info('Zeroing out %i ICA components' % mask.sum())
        elif exclude not in (None, []):
            exclude_ = np.unique(exclude)
            sources[exclude_] = 0.
            logger.info('Zeroing out %i ICA components' % len(exclude_))
        logger.info('Inverse transforming to PCA space')
        pca_data[:n_components] = fast_dot(self.mixing_matrix_, sources)
        data = fast_dot(self.pca_components_[:n_components].T,
                        pca_data[:n_components])
        logger.info('Reconstructing sensor space signals from %i PCA '
                    'components' % max(_n_pca_comp, n_components))
        if _n_pca_comp > n_components:
            data += fast_dot(self.pca_components_[n_components:_n_pca_comp].T,
                             pca_data[n_components:_n_pca_comp])

        if self.pca_mean_ is not None:
            data += self.pca_mean_[:, None]

        # restore scaling
        if self.noise_cov is None:  # revert standardization
            data *= self._pre_whitener
        else:
            data = fast_dot(linalg.pinv(self._pre_whitener), data)

        return data

    @verbose
    def save(self, fname):
        """Store ICA solution into a fiff file.

        Parameters
        ----------
        fname : str
            The absolute path of the file name to save the ICA solution into.
            The file name should end with -ica.fif or -ica.fif.gz.
        """
        if self.current_fit == 'unfitted':
            raise RuntimeError('No fit available. Please first fit ICA')

        check_fname(fname, 'ICA', ('-ica.fif', '-ica.fif.gz'))

        logger.info('Writing ica solution to %s...' % fname)
        fid = start_file(fname)

        try:
            _write_ica(fid, self)
        except Exception as inst:
            os.remove(fname)
            raise inst
        end_file(fid)

        return self

    def plot_components(self, picks=None, ch_type='mag', res=64, layout=None,
                        vmin=None, vmax=None, cmap='RdBu_r', sensors='k,',
                        colorbar=False, title=None, show=True, outlines='head',
                        contours=6, image_interp='bilinear'):
        """Project unmixing matrix on interpolated sensor topogrpahy.

        Parameters
        ----------
        picks : int | array-like | None
            The indices of the sources to be plotted.
            If None all are plotted in batches of 20.
        ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg'
            The channel type to plot. For 'grad', the gradiometers are
            collected in pairs and the RMS for each pair is plotted.
        layout : None | Layout
            Layout instance specifying sensor positions (does not need to
            be specified for Neuromag data). If possible, the correct layout is
            inferred from the data.
        vmin : float | callable
            The value specfying the lower bound of the color range.
            If None, and vmax is None, -vmax is used. Else np.min(data).
            If callable, the output equals vmin(data).
        vmax : float | callable
            The value specfying the upper bound of the color range.
            If None, the maximum absolute value is used. If vmin is None,
            but vmax is not, defaults to np.min(data).
            If callable, the output equals vmax(data).
        cmap : matplotlib colormap
            Colormap.
        sensors : bool | str
            Add markers for sensor locations to the plot. Accepts matplotlib
            plot format string (e.g., 'r+' for red plusses).
        colorbar : bool
            Plot a colorbar.
        res : int
            The resolution of the topomap image (n pixels along each side).
        show : bool
            Call pyplot.show() at the end.
        outlines : 'head' | dict | None
            The outlines to be drawn. If 'head', a head scheme will be drawn.
            If dict, each key refers to a tuple of x and y positions. The
            values in 'mask_pos' will serve as image mask. If None,
            nothing will be drawn. Defaults to 'head'.
        contours : int | False | None
            The number of contour lines to draw. If 0, no contours will
            be drawn.
        image_interp : str
            The image interpolation to be used. All matplotlib options are
            accepted.

        Returns
        -------
        fig : instance of matplotlib.pyplot.Figure
            The figure object.
        """
        return plot_ica_components(self, picks=picks,
                                   ch_type=ch_type,
                                   res=res, layout=layout, vmax=vmax,
                                   cmap=cmap,
                                   sensors=sensors, colorbar=colorbar,
                                   title=title, show=show,
                                   outlines=outlines, contours=contours,
                                   image_interp=image_interp)

    def plot_sources(self, inst, picks=None, exclude=None, start=None,
                     stop=None, show=True, title=None):
        """Plot estimated latent sources given the unmixing matrix.

        Typical usecases:

        1. plot evolution of latent sources over time based on (Raw input)
        2. plot latent source around event related time windows (Epochs input)
        3. plot time-locking in ICA space (Evoked input)


        Parameters
        ----------
        inst : instance of mne.io.Raw, mne.Epochs, mne.Evoked
            The object to plot the sources from.
        picks : ndarray | None.
            The components to be displayed. If None, plot will show the
            sources in the order as fitted.
        start : int
            X-axis start index. If None from the beginning.
        stop : int
            X-axis stop index. If None to the end.
        exclude : array_like of int
            The components marked for exclusion. If None (default), ICA.exclude
            will be used.
        title : str | None
            The figure title. If None a default is provided.
        show : bool
            If True, plot will be shown, else just the figure is returned.

        Returns
        -------
        fig : instance of pyplot.Figure
            The figure.
        """

        return plot_ica_sources(self, inst=inst, picks=picks, exclude=exclude,
                                title=title, start=start, stop=stop, show=show)

    def plot_scores(self, scores, exclude=None, axhline=None,
                    title='ICA component scores', figsize=(12, 6)):
        """Plot scores related to detected components.

        Use this function to asses how well your score describes outlier
        sources and how well you were detecting them.

        Parameters
        ----------
        scores : array_like of float, shape (n ica components,) | list of array
            Scores based on arbitrary metric to characterize ICA components.
        exclude : array_like of int
            The components marked for exclusion. If None (default), ICA.exclude
            will be used.
        axhline : float
            Draw horizontal line to e.g. visualize rejection threshold.
        title : str
            The figure title.
        figsize : tuple of int
            The figure size. Defaults to (12, 6)

        Returns
        -------
        fig : instance of matplotlib.pyplot.Figure
            The figure object.
        """
        return plot_ica_scores(ica=self, scores=scores, exclude=exclude,
                               axhline=axhline, title=title, figsize=figsize)

    def plot_overlay(self, inst, exclude=None, start=None, stop=None,
                     title=None):
        """Overlay of raw and cleaned signals given the unmixing matrix.

        This method helps visualizing signal quality and arficat rejection.

        Parameters
        ----------
        inst : instance of mne.io.Raw or mne.Evoked
            The signals to be compared given the ICA solution. If Raw input,
            The raw data are displayed before and after cleaning. In a second
            panel the cross channel average will be displayed. Since dipolar
            sources will be canceled out this display is sensitive to
            artifacts. If evoked input, butterfly plots for clean and raw
            signals will be superimposed.
        exclude : array_like of int
            The components marked for exclusion. If None (default), ICA.exclude
            will be used.
        picks : array-like of int | None (default)
            Indices of channels to include (if None, all channels
            are used that were included on fitting).
        start : int
            X-axis start index. If None from the beginning.
        stop : int
            X-axis stop index. If None to the end.
        title : str
            The figure title.

        Returns
        -------
        fig : instance of pyplot.Figure
            The figure.
        """
        return plot_ica_overlay(self, inst=inst, exclude=exclude, start=start,
                                stop=stop, title=title)

    @deprecated('`decompose_raw` is deprecated and will be removed in MNE 0.9.'
                ' Use `fit` instead')
    @verbose
    def decompose_raw(self, raw, picks=None, start=None, stop=None,
                      decim=None, reject=None, flat=None, tstep=2.0,
                      verbose=None):
        """This method is deprecated.
        See ``ICA.fit``
        """
        return self.fit(raw, picks, start, stop, decim, reject, flat, tstep,
                        verbose)

    @deprecated('`decompose_epochs` is deprecated and will be removed in MNE'
                ' 1.0. Use `fit` instead')
    @verbose
    def decompose_epochs(self, epochs, picks=None, decim=None, verbose=None):
        """This method is deprecated.
        See ``ICA.fit``
        """
        return self._fit_epochs(epochs, picks, decim, verbose)

    @deprecated('`get_sources_raw` is deprecated and will be removed in '
                'MNE 0.9. Use `get_sources` instead')
    def get_sources_raw(self, raw, start=None, stop=None):
        """This method is deprecated.
        See ``ICA.fit``
        """
        return self._transform_raw(raw, start, stop)

    @deprecated('`get_sources_epochs` is deprecated and will be removed in '
                'MNE 0.9. Use `get_sources` instead')
    def get_sources_epochs(self, epochs, concatenate=False):
        """This method is deprecated.
        See ``ICA.get_sources``
        """
        return self._transform_epochs(epochs, concatenate)

    @deprecated('`sources_as_raw` is deprecated and will be removed in '
                'MNE 0.9. Use `get_sources` instead')
    def sources_as_raw(self, raw, picks=None, start=None, stop=None):
        """This method is deprecated

        see ``ICA.get_sources``.
        """
        if picks is None:
            picks = pick_types(raw.info, meg=False, eeg=False, misc=True,
                               ecg=True, eog=True, stim=True, exclude='bads')

        add_channels = [raw.ch_names[k] for k in picks]
        return self.get_sources(raw, add_channels, start, stop)

    @deprecated('`sources_as_raw` is deprecated and will be removed in '
                'MNE 0.9. Use `get_sources` instead')
    def sources_as_epochs(self, epochs, picks=None):
        """This method is deprecated

        see ``ICA.get_sources``.
        """
        if picks is None:
            picks = pick_types(epochs.info, meg=False, eeg=False, misc=True,
                               ecg=True, eog=True, stim=True, exclude='bads')

        add_channels = [epochs.ch_names[k] for k in picks]
        return self.get_sources(epochs, add_channels, False)

    @deprecated('`find_sources_raw` is deprecated and will be removed in '
                'MNE 0.9. Use `find_bads` instead')
    def find_sources_raw(self, raw, target=None, score_func='pearsonr',
                         start=None, stop=None, l_freq=None, h_freq=None):
        """Find sources based on own distribution or based on similarity to
        other sources or between source and target.

        Parameters
        ----------
        raw : instance of Raw
            Raw object to draw sources from.
        target : array-like | ch_name | None
            Signal to which the sources shall be compared. It has to be of
            the same shape as the sources. If some string is supplied, a
            routine will try to find a matching channel. If None, a score
            function expecting only one input-array argument must be used,
            for instance, scipy.stats.skew (default).
        score_func : callable | str label
            Callable taking as arguments either two input arrays
            (e.g. pearson correlation) or one input
            array (e. g. skewness) and returns a float. For convenience the
            most common score_funcs are available via string labels: Currently,
            all distance metrics from scipy.spatial and all functions from
            scipy.stats taking compatible input arguments are supported. These
            function have been modified to support iteration over the rows of a
            2D array.
        start : int | float | None
            First sample to include. If float, data will be interpreted as
            time in seconds. If None, data will be used from the first sample.
        stop : int | float | None
            Last sample to not include. If float, data will be interpreted as
            time in seconds. If None, data will be used to the last sample.
        scores : ndarray
            Scores for each source as returned from score_func.

        Returns
        -------
        scores : ndarray
            scores for each source as returned from score_func
        """
        return self.score_sources(inst=raw, target=target,
                                  score_func=score_func,
                                  start=start, stop=stop, l_freq=l_freq,
                                  h_freq=h_freq)

    @deprecated('`find_sources_epochs` is deprecated and will be removed in '
                'MNE 0.9. Use `find_bads` instead')
    def find_sources_epochs(self, epochs, target=None, score_func='pearsonr',
                            l_freq=None, h_freq=None):
        """Find sources based on relations between source and target

        Parameters
        ----------
        epochs : instance of Epochs
            Epochs object to draw sources from.
        target : array-like | ch_name | None
            Signal to which the sources shall be compared. It has to be of
            the same shape as the sources. If some string is supplied, a
            routine will try to find a matching channel. If None, a score
            function expecting only one input-array argument must be used,
            for instance, scipy.stats.skew (default).
        score_func : callable | str label
            Callable taking as arguments either two input arrays
            (e.g. pearson correlation) or one input
            array (e. g. skewness) and returns a float. For convenience the
            most common score_funcs are available via string labels: Currently,
            all distance metrics from scipy.spatial and all functions from
            scipy.stats taking compatible input arguments are supported. These
            function have been modified to support iteration over the rows of a
            2D array.

        Returns
        -------
        scores : ndarray
            scores for each source as returned from score_func
        """
        return self.score_sources(inst=epochs, target=target,
                                  score_func=score_func, l_freq=l_freq,
                                  h_freq=h_freq)

    @deprecated('`pick_sources_raw` is deprecated and will be removed in '
                'MNE 0.9. Use `apply` instead')
    def pick_sources_raw(self, raw, include=None, exclude=None,
                         n_pca_components=None, start=None, stop=None,
                         copy=True):
        """Recompose raw data including or excluding some sources

        Parameters
        ----------
        raw : instance of Raw
            Raw object to pick to remove ICA components from.
        include : list-like | None
            The source indices to use. If None all are used.
        exclude : list-like | None
            The source indices to remove. If None all are used.
        n_pca_components : int | float
            The number of PCA components to be unwhitened, where
            `n_components_` is the lower bound and max_pca_components
            the upper bound. If greater than `self.n_components_`, the next
            `n_pca_components` minus 'n_components' PCA components will
            be added before restoring the sensor space data. This can be used
            to take back the PCA dimension reduction. If float, the number of
            components selected matches the number of components with a
            cumulative explained variance below `n_pca_components`.
        start : int | float | None
            First sample to include. If float, data will be interpreted as
            time in seconds. If None, data will be used from the first sample.
        stop : int | float | None
            Last sample to not include. If float, data will be interpreted as
            time in seconds. If None, data will be used to the last sample.
        copy: bool
            modify raw instance in place or return modified copy.

        Returns
        -------
        raw : instance of Raw
            raw instance with selected ICA components removed
        """
        return self.apply(inst=raw, include=include, exclude=exclude,
                          n_pca_components=n_pca_components, start=stop,
                          stop=stop, copy=copy)

    @deprecated('`pick_sources_epochs` is deprecated and will be removed in '
                'MNE 0.9. Use `apply` instead')
    def pick_sources_epochs(self, epochs, include=None, exclude=None,
                            n_pca_components=None, copy=True):
        """Recompose epochs

        Parameters
        ----------
        epochs : instance of Epochs
            Epochs object to pick to remove ICA components from.
            Data must be preloaded.
        include : list-like | None
            The source indices to use. If None all are used.
        exclude : list-like | None
            The source indices to remove. If None  all are used.
        n_pca_components : int | float
            The number of PCA components to be unwhitened, where
            `n_components_` is the lower bound and max_pca_components
            the upper bound. If greater than `self.n_components_`, the next
            `n_pca_components` minus `n_components_` PCA components will
            be added before restoring the sensor space data. This can be used
            to take back the PCA dimension reduction. If float, the number of
            components selected matches the number of components with a
            cumulative explained variance below `n_pca_components`.
        copy : bool
            Modify Epochs instance in place or return modified copy.

        Returns
        -------
        epochs : instance of Epochs
            Epochs with selected ICA components removed.
        """
        return self.apply(inst=epochs, include=include,
                          exclude=exclude, n_pca_components=n_pca_components,
                          copy=copy)

    @deprecated('`pick_topomap` is deprecated and will be removed in '
                'MNE 0.9. Use `plot_components` instead')
    def plot_topomap(self, source_idx, ch_type='mag', res=64, layout=None,
                     vmax=None, cmap='RdBu_r', sensors='k,', colorbar=True,
                     show=True):
        """This method is deprecatd

        see ``ica.plot_components``.
        """
        return self.plot_components(picks=source_idx,
                                    ch_type=ch_type,
                                    res=res, layout=layout, vmax=vmax,
                                    cmap=cmap,
                                    sensors=sensors, colorbar=colorbar,
                                    show=show)

    @deprecated('`plot_sources_raw` is deprecated and will be removed in '
                'MNE 0.9. Use `plot_sources` instead')
    def plot_sources_raw(self, raw, order=None, start=None, stop=None,
                         n_components=None, source_idx=None, ncol=3, nrow=None,
                         title=None, show=True):
        """This method is deprecated.

        See ``ica.plot_sources``
        """
        fig = self.plot_sources(inst=raw, picks=source_idx, ncol=ncol,
                                title=title, show=show)

        return fig

    @deprecated('`plot_sources_epochs` is deprecated and will be removed in '
                'MNE 0.9. Use `plot_sources` instead')
    def plot_sources_epochs(self, epochs, order=None, epoch_idx=None,
                            start=None, stop=None, n_components=None,
                            source_idx=None, ncol=3, nrow=None, title=None,
                            show=True):
        """This method is deprecated.

        See ``ica.plot_sources``
        """
        return plot_ica_sources(self, inst=epochs[epoch_idx], picks=order,
                                start=start, stop=stop, ncol=ncol)

    def detect_artifacts(self, raw, start_find=None, stop_find=None,
                         ecg_ch=None, ecg_score_func='pearsonr',
                         ecg_criterion=0.1, eog_ch=None,
                         eog_score_func='pearsonr',
                         eog_criterion=0.1, skew_criterion=-1,
                         kurt_criterion=-1, var_criterion=0,
                         add_nodes=None):
        """Run ICA artifacts detection workflow.

        Note. This is still experimental and will most likely change. Over
        the next releases. For maximum control use the workflow exposed in
        the examples.

        Hints and caveats:
        - It is highly recommended to bandpass filter ECG and EOG
        data and pass them instead of the channel names as ecg_ch and eog_ch
        arguments.
        - please check your results. Detection by kurtosis and variance
        may be powerful but misclassification of brain signals as
        noise cannot be precluded.
        - Consider using shorter times for start_find and stop_find than
        for start and stop. It can save you much time.

        Example invocation (taking advantage of the defaults)::

            ica.detect_artifacts(ecg_channel='MEG 1531', eog_channel='EOG 061')

        Parameters
        ----------
        start_find : int | float | None
            First sample to include for artifact search. If float, data will be
            interpreted as time in seconds. If None, data will be used from the
            first sample.
        stop_find : int | float | None
            Last sample to not include for artifact search. If float, data will
            be interpreted as time in seconds. If None, data will be used to
            the last sample.
        ecg_ch : str | ndarray | None
            The `target` argument passed to ica.find_sources_raw. Either the
            name of the ECG channel or the ECG time series. If None, this step
            will be skipped.
        ecg_score_func : str | callable
            The `score_func` argument passed to ica.find_sources_raw. Either
            the name of function supported by ICA or a custom function.
        ecg_criterion : float | int | list-like | slice
            The indices of the sorted skewness scores. If float, sources with
            scores smaller than the criterion will be dropped. Else, the scores
            sorted in descending order will be indexed accordingly.
            E.g. range(2) would return the two sources with the highest score.
            If None, this step will be skipped.
        eog_ch : list | str | ndarray | None
            The `target` argument or the list of target arguments subsequently
            passed to ica.find_sources_raw. Either the name of the vertical EOG
            channel or the corresponding EOG time series. If None, this step
            will be skipped.
        eog_score_func : str | callable
            The `score_func` argument passed to ica.find_sources_raw. Either
            the name of function supported by ICA or a custom function.
        eog_criterion : float | int | list-like | slice
            The indices of the sorted skewness scores. If float, sources with
            scores smaller than the criterion will be dropped. Else, the scores
            sorted in descending order will be indexed accordingly.
            E.g. range(2) would return the two sources with the highest score.
            If None, this step will be skipped.
        skew_criterion : float | int | list-like | slice
            The indices of the sorted skewness scores. If float, sources with
            scores smaller than the criterion will be dropped. Else, the scores
            sorted in descending order will be indexed accordingly.
            E.g. range(2) would return the two sources with the highest score.
            If None, this step will be skipped.
        kurt_criterion : float | int | list-like | slice
            The indices of the sorted skewness scores. If float, sources with
            scores smaller than the criterion will be dropped. Else, the scores
            sorted in descending order will be indexed accordingly.
            E.g. range(2) would return the two sources with the highest score.
            If None, this step will be skipped.
        var_criterion : float | int | list-like | slice
            The indices of the sorted skewness scores. If float, sources with
            scores smaller than the criterion will be dropped. Else, the scores
            sorted in descending order will be indexed accordingly.
            E.g. range(2) would return the two sources with the highest score.
            If None, this step will be skipped.
        add_nodes : list of ica_nodes
            Additional list if tuples carrying the following parameters:
            (name : str, target : str | array, score_func : callable,
            criterion : float | int | list-like | slice). This parameter is a
            generalization of the artifact specific parameters above and has
            the same structure. Example:
            add_nodes=('ECG phase lock', ECG 01', my_phase_lock_function, 0.5)

        Returns
        -------
        self : instance of ICA
            The ica object with the detected artifact indices marked for
            exclusion
        """
        logger.info('    Searching for artifacts...')
        _detect_artifacts(self, raw=raw, start_find=start_find,
                          stop_find=stop_find, ecg_ch=ecg_ch,
                          ecg_score_func=ecg_score_func,
                          ecg_criterion=ecg_criterion,
                          eog_ch=eog_ch, eog_score_func=eog_score_func,
                          eog_criterion=eog_criterion,
                          skew_criterion=skew_criterion,
                          kurt_criterion=kurt_criterion,
                          var_criterion=var_criterion,
                          add_nodes=add_nodes)

        return self


@verbose
def _check_n_pca_components(ica, _n_pca_comp, verbose=None):
    """Aux function"""
    if isinstance(_n_pca_comp, float):
        _n_pca_comp = ((ica.pca_explained_variance_ /
                       ica.pca_explained_variance_.sum()).cumsum()
                       <= _n_pca_comp).sum()
        logger.info('Selected %i PCA components by explained '
                    'variance' % _n_pca_comp)
    elif _n_pca_comp is None:
        _n_pca_comp = ica.max_pca_components
    elif _n_pca_comp < ica.n_components_:
        _n_pca_comp = ica.n_components_

    return _n_pca_comp


def _check_start_stop(raw, start, stop):
    """Aux function"""
    return [c if (isinstance(c, int) or c is None) else
            raw.time_as_index(c)[0] for c in (start, stop)]


@verbose
def ica_find_ecg_events(raw, ecg_source, event_id=999,
                        tstart=0.0, l_freq=5, h_freq=35, qrs_threshold='auto',
                        verbose=None):
    """Find ECG peaks from one selected ICA source

    Parameters
    ----------
    ecg_source : ndarray
        ICA source resembling ECG to find peaks from.
    event_id : int
        The index to assign to found events.
    raw : instance of Raw
        Raw object to draw sources from.
    tstart : float
        Start detection after tstart seconds. Useful when beginning
        of run is noisy.
    l_freq : float
        Low pass frequency.
    h_freq : float
        High pass frequency.
    qrs_threshold : float | str
        Between 0 and 1. qrs detection threshold. Can also be "auto" to
        automatically choose the threshold that generates a reasonable
        number of heartbeats (40-160 beats / min).
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    ecg_events : array
        Events.
    ch_ECG : string
        Name of channel used.
    average_pulse : float.
        Estimated average pulse.
    """
    logger.info('Using ICA source to identify heart beats')

    # detecting QRS and generating event file
    ecg_events = qrs_detector(raw.info['sfreq'], ecg_source.ravel(),
                              tstart=tstart, thresh_value=qrs_threshold,
                              l_freq=l_freq, h_freq=h_freq)

    n_events = len(ecg_events)

    ecg_events = np.c_[ecg_events + raw.first_samp, np.zeros(n_events),
                       event_id * np.ones(n_events)]

    return ecg_events


@verbose
def ica_find_eog_events(raw, eog_source=None, event_id=998, l_freq=1,
                        h_freq=10, verbose=None):
    """Locate EOG artifacts from one selected ICA source

    Parameters
    ----------
    raw : instance of Raw
        The raw data.
    eog_source : ndarray
        ICA source resembling EOG to find peaks from.
    event_id : int
        The index to assign to found events.
    low_pass : float
        Low pass frequency.
    high_pass : float
        High pass frequency.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    eog_events : array
        Events
    """
    eog_events = _find_eog_events(eog_source[np.newaxis], event_id=event_id,
                                  l_freq=l_freq, h_freq=h_freq,
                                  sampling_rate=raw.info['sfreq'],
                                  first_samp=raw.first_samp)
    return eog_events


def _get_target_ch(container, target):
    """Aux function"""

    # auto target selection
    picks = pick_channels(container.ch_names, include=[target])
    ref_picks = pick_types(container.info, meg=False, eeg=False, ref_meg=True)
    if len(ref_picks) > 0:
        picks = list(set(picks) - set(ref_picks))

    if len(picks) == 0:
        raise ValueError('%s not in channel list (%s)' %
                        (target, container.ch_names))
    return picks


def _find_sources(sources, target, score_func):
    """Aux function"""
    if isinstance(score_func, string_types):
        score_func = score_funcs.get(score_func, score_func)

    if not callable(score_func):
        raise ValueError('%s is not a valid score_func.' % score_func)

    scores = (score_func(sources, target) if target is not None
              else score_func(sources, 1))

    return scores


def _serialize(dict_, outer_sep=';', inner_sep=':'):
    """Aux function"""
    s = []
    for k, v in dict_.items():
        if callable(v):
            v = v.__name__
        elif isinstance(v, int):
            v = int(v)
        for cls in (np.random.RandomState, Covariance):
            if isinstance(v, cls):
                v = cls.__name__

        s.append(k + inner_sep + json.dumps(v))

    return outer_sep.join(s)


def _deserialize(str_, outer_sep=';', inner_sep=':'):
    """Aux Function"""
    out = {}
    for mapping in str_.split(outer_sep):
        k, v = mapping.split(inner_sep)
        vv = json.loads(v)
        out[k] = vv if not isinstance(vv, text_type) else str(vv)

    return out


def _write_ica(fid, ica):
    """Write an ICA object

    Parameters
    ----------
    fid: file
        The file descriptor
    ica:
        The instance of ICA to write
    """
    ica_init = dict(noise_cov=ica.noise_cov,
                    n_components=ica.n_components,
                    n_pca_components=ica.n_pca_components,
                    max_pca_components=ica.max_pca_components,
                    current_fit=ica.current_fit,
                    algorithm=ica.algorithm,
                    fun=ica.fun,
                    fun_args=ica.fun_args)

    if ica.info is not None:
        start_block(fid, FIFF.FIFFB_MEAS)
        write_id(fid, FIFF.FIFF_BLOCK_ID)
        if ica.info['meas_id'] is not None:
            write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, ica.info['meas_id'])

        # Write measurement info
        write_meas_info(fid, ica.info)
        end_block(fid, FIFF.FIFFB_MEAS)

    start_block(fid, FIFF.FIFFB_ICA)

    #   ICA interface params
    write_string(fid, FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS,
                 _serialize(ica_init))

    #   Channel names
    if ica.ch_names is not None:
        write_name_list(fid, FIFF.FIFF_MNE_ROW_NAMES, ica.ch_names)

    # samples on fit
    ica_misc = {'n_samples_': getattr(ica, 'n_samples_', None)}
    #   ICA init params
    write_string(fid, FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS,
                 _serialize(ica_init))

    #   ICA misct params
    write_string(fid, FIFF.FIFF_MNE_ICA_MISC_PARAMS,
                 _serialize(ica_misc))

    #   Whitener
    write_double_matrix(fid, FIFF.FIFF_MNE_ICA_WHITENER, ica._pre_whitener)

    #   PCA components_
    write_double_matrix(fid, FIFF.FIFF_MNE_ICA_PCA_COMPONENTS,
                        ica.pca_components_)

    #   PCA mean_
    write_double_matrix(fid, FIFF.FIFF_MNE_ICA_PCA_MEAN, ica.pca_mean_)

    #   PCA explained_variance_
    write_double_matrix(fid, FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR,
                        ica.pca_explained_variance_)

    #   ICA unmixing
    write_double_matrix(fid, FIFF.FIFF_MNE_ICA_MATRIX, ica.unmixing_matrix_)

    #   Write bad components

    write_int(fid, FIFF.FIFF_MNE_ICA_BADS, ica.exclude)

    # Done!
    end_block(fid, FIFF.FIFFB_ICA)


@verbose
def read_ica(fname):
    """Restore ICA solution from fif file.

    Parameters
    ----------
    fname : str
        Absolute path to fif file containing ICA matrices.
        The file name should end with -ica.fif or -ica.fif.gz.

    Returns
    -------
    ica : instance of ICA
        The ICA estimator.
    """
    check_fname(fname, 'ICA', ('-ica.fif', '-ica.fif.gz'))

    logger.info('Reading %s ...' % fname)
    fid, tree, _ = fiff_open(fname)

    try:
        info, meas = read_meas_info(fid, tree)
        info['filename'] = fname
    except ValueError:
        logger.info('Could not find the measurement info. \n'
                    'Functionality requiring the info won\'t be'
                    ' available.')
        info = None

    ica_data = dir_tree_find(tree, FIFF.FIFFB_ICA)
    if len(ica_data) == 0:
        fid.close()
        raise ValueError('Could not find ICA data')

    my_ica_data = ica_data[0]
    for d in my_ica_data['directory']:
        kind = d.kind
        pos = d.pos
        if kind == FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS:
            tag = read_tag(fid, pos)
            ica_init = tag.data
        elif kind == FIFF.FIFF_MNE_ROW_NAMES:
            tag = read_tag(fid, pos)
            ch_names = tag.data
        elif kind == FIFF.FIFF_MNE_ICA_WHITENER:
            tag = read_tag(fid, pos)
            pre_whitener = tag.data
        elif kind == FIFF.FIFF_MNE_ICA_PCA_COMPONENTS:
            tag = read_tag(fid, pos)
            pca_components = tag.data
        elif kind == FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR:
            tag = read_tag(fid, pos)
            pca_explained_variance = tag.data
        elif kind == FIFF.FIFF_MNE_ICA_PCA_MEAN:
            tag = read_tag(fid, pos)
            pca_mean = tag.data
        elif kind == FIFF.FIFF_MNE_ICA_MATRIX:
            tag = read_tag(fid, pos)
            unmixing_matrix = tag.data
        elif kind == FIFF.FIFF_MNE_ICA_BADS:
            tag = read_tag(fid, pos)
            exclude = tag.data
        elif kind == FIFF.FIFF_MNE_ICA_MISC_PARAMS:
            tag = read_tag(fid, pos)
            ica_misc = tag.data

    fid.close()

    ica_init, ica_misc = [_deserialize(k) for k in (ica_init, ica_misc)]
    current_fit = ica_init.pop('current_fit')
    if ica_init['noise_cov'] == Covariance.__name__:
        logger.info('Reading whitener drawn from noise covariance ...')

    logger.info('Now restoring ICA solution ...')
    # make sure dtypes are np.float64 to satisfy fast_dot
    f = lambda x: x.astype(np.float64)
    ica = ICA(**ica_init)
    ica.current_fit = current_fit
    ica.ch_names = ch_names.split(':')
    ica._pre_whitener = f(pre_whitener)
    ica.pca_mean_ = f(pca_mean)
    ica.pca_components_ = f(pca_components)
    ica.n_components_ = unmixing_matrix.shape[0]
    ica.pca_explained_variance_ = f(pca_explained_variance)
    ica.unmixing_matrix_ = f(unmixing_matrix)
    ica.mixing_matrix_ = linalg.pinv(ica.unmixing_matrix_)
    ica.exclude = [] if exclude is None else list(exclude)
    ica.info = info
    if 'n_samples_' in ica_misc:
        ica.n_samples_ = ica_misc['n_samples_']

    logger.info('Ready.')

    return ica


_ica_node = namedtuple('Node', 'name target score_func criterion')


def _detect_artifacts(ica, raw, start_find, stop_find, ecg_ch, ecg_score_func,
                      ecg_criterion, eog_ch, eog_score_func, eog_criterion,
                      skew_criterion, kurt_criterion, var_criterion,
                      add_nodes):
    """Aux Function"""

    nodes = []
    if ecg_ch is not None:
        nodes += [_ica_node('ECG', ecg_ch, ecg_score_func, ecg_criterion)]

    if eog_ch not in [None, []]:
        if not isinstance(eog_ch, list):
            eog_ch = [eog_ch]
        for idx, ch in enumerate(eog_ch):
            nodes += [_ica_node('EOG %02d' % idx, ch, eog_score_func,
                      eog_criterion)]

    if skew_criterion is not None:
        nodes += [_ica_node('skewness', None, stats.skew, skew_criterion)]

    if kurt_criterion is not None:
        nodes += [_ica_node('kurtosis', None, stats.kurtosis, kurt_criterion)]

    if var_criterion is not None:
        nodes += [_ica_node('variance', None, np.var, var_criterion)]

    if add_nodes is not None:
        nodes.extend(add_nodes)

    for node in nodes:
        scores = ica.score_sources(raw, start=start_find, stop=stop_find,
                                   target=node.target,
                                   score_func=node.score_func)
        if isinstance(node.criterion, float):
            found = list(np.where(np.abs(scores) > node.criterion)[0])
        else:
            found = list(np.atleast_1d(abs(scores).argsort()[node.criterion]))

        case = (len(found), 's' if len(found) > 1 else '', node.name)
        logger.info('    found %s artifact%s by %s' % case)
        ica.exclude += found

    logger.info('Artifact indices found:\n    ' + str(ica.exclude).strip('[]'))
    if len(set(ica.exclude)) != len(ica.exclude):
        logger.info('    Removing duplicate indices...')
        ica.exclude = list(set(ica.exclude))

    logger.info('Ready.')


@verbose
def run_ica(raw, n_components, max_pca_components=100,
            n_pca_components=64, noise_cov=None, random_state=None,
            algorithm='parallel', fun='logcosh', fun_args=None,
            verbose=None, picks=None, start=None, stop=None, start_find=None,
            stop_find=None, ecg_ch=None, ecg_score_func='pearsonr',
            ecg_criterion=0.1, eog_ch=None, eog_score_func='pearsonr',
            eog_criterion=0.1, skew_criterion=-1, kurt_criterion=-1,
            var_criterion=0, add_nodes=None):
    """Run ICA decomposition on raw data and identify artifact sources

    This function implements an automated artifact removal work flow.

    Hints and caveats:
    - It is highly recommended to bandpass filter ECG and EOG
    data and pass them instead of the channel names as ecg_ch and eog_ch
    arguments.
    - Please check your results. Detection by kurtosis and variance
    can be powerful but misclassification of brain signals as
    noise cannot be precluded. If you are not sure set those to None.
    - Consider using shorter times for start_find and stop_find than
    for start and stop. It can save you much time.

    Example invocation (taking advantage of defaults):

    ica = run_ica(raw, n_components=.9, start_find=10000, stop_find=12000,
                  ecg_ch='MEG 1531', eog_ch='EOG 061')

    Parameters
    ----------
    raw : instance of Raw
        The raw data to decompose.
    n_components : int | float | None
        The number of components used for ICA decomposition. If int, it must be
        smaller then max_pca_components. If None, all PCA components will be
        used. If float between 0 and 1 components can will be selected by the
        cumulative percentage of explained variance.
    n_pca_components
        The number of PCA components used after ICA recomposition. The ensuing
        attribute allows to balance noise reduction against potential loss of
        features due to dimensionality reduction. If greater than
        self.n_components_, the next 'n_pca_components' minus
        'n_components_' PCA components will be added before restoring the
        sensor space data. The attribute gets updated each time the according
        parameter for in .pick_sources_raw or .pick_sources_epochs is changed.
    max_pca_components : int | None
        The number of components used for PCA decomposition. If None, no
        dimension reduction will be applied and max_pca_components will equal
        the number of channels supplied on decomposing data.
    noise_cov : None | instance of mne.cov.Covariance
        Noise covariance used for whitening. If None, channels are just
        z-scored.
    random_state : None | int | instance of np.random.RandomState
        np.random.RandomState to initialize the FastICA estimation.
        As the estimation is non-deterministic it can be useful to
        fix the seed to have reproducible results.
    algorithm : {'parallel', 'deflation'}
        Apply parallel or deflational algorithm for FastICA
    fun : string or function, optional. Default: 'logcosh'
        The functional form of the G function used in the
        approximation to neg-entropy. Could be either 'logcosh', 'exp',
        or 'cube'.
        You can also provide your own function. It should return a tuple
        containing the value of the function, and of its derivative, in the
        point.
    fun_args: dictionary, optional
        Arguments to send to the functional form.
        If empty and if fun='logcosh', fun_args will take value
        {'alpha' : 1.0}
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).
    picks : array-like of int
        Channels to be included. This selection remains throughout the
        initialized ICA solution. If None only good data channels are used.
    start : int | float | None
        First sample to include for decomposition. If float, data will be
        interpreted as time in seconds. If None, data will be used from the
        first sample.
    stop : int | float | None
        Last sample to not include for decomposition. If float, data will be
        interpreted as time in seconds. If None, data will be used to the
        last sample.
    start_find : int | float | None
        First sample to include for artifact search. If float, data will be
        interpreted as time in seconds. If None, data will be used from the
        first sample.
    stop_find : int | float | None
        Last sample to not include for artifact search. If float, data will be
        interpreted as time in seconds. If None, data will be used to the last
        sample.
    ecg_ch : str | ndarray | None
        The `target` argument passed to ica.find_sources_raw. Either the
        name of the ECG channel or the ECG time series. If None, this step
        will be skipped.
    ecg_score_func : str | callable
        The `score_func` argument passed to ica.find_sources_raw. Either
        the name of function supported by ICA or a custom function.
    ecg_criterion : float | int | list-like | slice
        The indices of the sorted skewness scores. If float, sources with
        scores smaller than the criterion will be dropped. Else, the scores
        sorted in descending order will be indexed accordingly.
        E.g. range(2) would return the two sources with the highest score.
        If None, this step will be skipped.
    eog_ch : list | str | ndarray | None
        The `target` argument or the list of target arguments subsequently
        passed to ica.find_sources_raw. Either the name of the vertical EOG
        channel or the corresponding EOG time series. If None, this step
        will be skipped.
    eog_score_func : str | callable
        The `score_func` argument passed to ica.find_sources_raw. Either
        the name of function supported by ICA or a custom function.
    eog_criterion : float | int | list-like | slice
        The indices of the sorted skewness scores. If float, sources with
        scores smaller than the criterion will be dropped. Else, the scores
        sorted in descending order will be indexed accordingly.
        E.g. range(2) would return the two sources with the highest score.
        If None, this step will be skipped.
    skew_criterion : float | int | list-like | slice
        The indices of the sorted skewness scores. If float, sources with
        scores smaller than the criterion will be dropped. Else, the scores
        sorted in descending order will be indexed accordingly.
        E.g. range(2) would return the two sources with the highest score.
        If None, this step will be skipped.
    kurt_criterion : float | int | list-like | slice
        The indices of the sorted skewness scores. If float, sources with
        scores smaller than the criterion will be dropped. Else, the scores
        sorted in descending order will be indexed accordingly.
        E.g. range(2) would return the two sources with the highest score.
        If None, this step will be skipped.
    var_criterion : float | int | list-like | slice
        The indices of the sorted skewness scores. If float, sources with
        scores smaller than the criterion will be dropped. Else, the scores
        sorted in descending order will be indexed accordingly.
        E.g. range(2) would return the two sources with the highest score.
        If None, this step will be skipped.
    add_nodes : list of ica_nodes
        Additional list if tuples carrying the following parameters:
        (name : str, target : str | array, score_func : callable,
        criterion : float | int | list-like | slice). This parameter is a
        generalization of the artifact specific parameters above and has
        the same structure. Example:
        add_nodes=('ECG phase lock', ECG 01', my_phase_lock_function, 0.5)

    Returns
    -------
    ica : instance of ICA
        The ica object with detected artifact sources marked for exclusion
    """
    ica = ICA(n_components=n_components, max_pca_components=max_pca_components,
              n_pca_components=n_pca_components, noise_cov=noise_cov,
              random_state=random_state, algorithm=algorithm, fun=fun,
              fun_args=fun_args, verbose=verbose)

    ica.decompose_raw(raw, start=start, stop=stop, picks=picks)
    logger.info('%s' % ica)
    logger.info('    Now searching for artifacts...')

    _detect_artifacts(ica=ica, raw=raw, start_find=start_find,
                      stop_find=stop_find, ecg_ch=ecg_ch,
                      ecg_score_func=ecg_score_func,
                      ecg_criterion=ecg_criterion, eog_ch=eog_ch,
                      eog_score_func=eog_score_func,
                      eog_criterion=ecg_criterion,
                      skew_criterion=skew_criterion,
                      kurt_criterion=kurt_criterion,
                      var_criterion=var_criterion,
                      add_nodes=add_nodes)
    return ica


@verbose
def _band_pass_filter(ica, sources, target, l_freq, h_freq, verbose=None):
    if l_freq is not None and h_freq is not None:
        logger.info('... filtering ICA sources')
        # use fft, here, steeper is better here.
        sources = band_pass_filter(sources, ica.info['sfreq'],
                                   l_freq, h_freq,  method='fft',
                                   verbose=verbose)
        logger.info('... filtering target')
        target = band_pass_filter(target, ica.info['sfreq'],
                                  l_freq, h_freq,  method='fft',
                                  verbose=verbose)
    elif l_freq is not None or h_freq is not None:
        raise ValueError('Must specify both pass bands')

    return sources, target