1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
# Authors: Christoph Dinh <chdinh@nmr.mgh.harvard.edu>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)
import time
import copy
import numpy as np
from .. import pick_channels, pick_types
from ..utils import logger, verbose
from ..baseline import rescale
from ..epochs import _BaseEpochs
from ..event import _find_events
from ..filter import detrend
from ..io.proj import setup_proj
class RtEpochs(_BaseEpochs):
"""Realtime Epochs
Can receive epochs in real time from an RtClient.
For example, to get some epochs from a running mne_rt_server on
'localhost', you could use:
client = mne.realtime.RtClient('localhost')
event_id, tmin, tmax = 1, -0.2, 0.5
epochs = mne.realtime.RtEpochs(client, event_id, tmin, tmax)
epochs.start() # start the measurement and start receiving epochs
evoked_1 = epochs.average() # computed over all epochs
evoked_2 = epochs[-5:].average() # computed over the last 5 epochs
Parameters
----------
client : instance of mne.realtime.RtClient
The realtime client.
event_id : int | list of int
The id of the event to consider. If int, only events with the
ID specified by event_id are considered. Multiple event ID's
can be specified using a list.
tmin : float
Start time before event.
tmax : float
End time after event.
stim_channel : string or list of string
Name of the stim channel or all the stim channels affected by
the trigger.
sleep_time : float
Time in seconds to wait between checking for new epochs when epochs
are requested and the receive queue is empty.
name : string
Comment that describes the Evoked data created.
baseline : None (default) or tuple of length 2
The time interval to apply baseline correction.
If None do not apply it. If baseline is (a, b)
the interval is between "a (s)" and "b (s)".
If a is None the beginning of the data is used
and if b is None then b is set to the end of the interval.
If baseline is equal to (None, None) all the time
interval is used.
reject : dict
Epoch rejection parameters based on peak to peak amplitude.
Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'.
If reject is None then no rejection is done.
Values are float. Example:
reject = dict(grad=4000e-13, # T / m (gradiometers)
mag=4e-12, # T (magnetometers)
eeg=40e-6, # uV (EEG channels)
eog=250e-6 # uV (EOG channels)
)
flat : dict
Epoch rejection parameters based on flatness of signal
Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'
If flat is None then no rejection is done.
proj : bool, optional
Apply SSP projection vectors
decim : int
Factor by which to downsample the data from the raw file upon import.
Warning: This simply selects every nth sample, data is not filtered
here. If data is not properly filtered, aliasing artifacts may occur.
reject_tmin : scalar | None
Start of the time window used to reject epochs (with the default None,
the window will start with tmin).
reject_tmax : scalar | None
End of the time window used to reject epochs (with the default None,
the window will end with tmax).
detrend : int | None
If 0 or 1, the data channels (MEG and EEG) will be detrended when
loaded. 0 is a constant (DC) detrend, 1 is a linear detrend. None
is no detrending. Note that detrending is performed before baseline
correction. If no DC offset is preferred (zeroth order detrending),
either turn off baseline correction, as this may introduce a DC
shift, or set baseline correction to use the entire time interval
(will yield equivalent results but be slower).
add_eeg_ref : bool
If True, an EEG average reference will be added (unless one
already exists).
isi_max : float
The maximmum time in seconds between epochs. If no epoch
arrives in the next isi_max seconds the RtEpochs stops.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Defaults to client.verbose.
Attributes
----------
info : dict
Measurement info.
event_id : dict
Names of of conditions corresponding to event_ids.
ch_names : list of string
List of channels' names.
events : list of tuples
The events associated with the epochs currently in the queue.
verbose : bool, str, int, or None
See above.
"""
@verbose
def __init__(self, client, event_id, tmin, tmax, stim_channel='STI 014',
sleep_time=0.1, baseline=(None, 0), picks=None,
name='Unknown', reject=None, flat=None, proj=True,
decim=1, reject_tmin=None, reject_tmax=None, detrend=None,
add_eeg_ref=True, isi_max=2., verbose=None):
info = client.get_measurement_info()
# the measurement info of the data as we receive it
self._client_info = copy.deepcopy(info)
verbose = client.verbose if verbose is None else verbose
# call _BaseEpochs constructor
super(RtEpochs, self).__init__(info, event_id, tmin, tmax,
baseline=baseline, picks=picks, name=name, reject=reject,
flat=flat, decim=decim, reject_tmin=reject_tmin,
reject_tmax=reject_tmax, detrend=detrend,
add_eeg_ref=add_eeg_ref, verbose=verbose)
self.proj = proj
self._projector, self.info = setup_proj(self.info, add_eeg_ref,
activate=self.proj)
self._client = client
if not isinstance(stim_channel, list):
stim_channel = [stim_channel]
stim_picks = pick_channels(self._client_info['ch_names'],
include=stim_channel, exclude=[])
if len(stim_picks) == 0:
raise ValueError('No stim channel found to extract event '
'triggers.')
self._stim_picks = stim_picks
self._sleep_time = sleep_time
# add calibration factors
cals = np.zeros(self._client_info['nchan'])
for k in range(self._client_info['nchan']):
cals[k] = (self._client_info['chs'][k]['range']
* self._client_info['chs'][k]['cal'])
self._cals = cals[:, None]
# FIFO queues for received epochs and events
self._epoch_queue = list()
self.events = list()
# variables needed for receiving raw buffers
self._last_buffer = None
self._first_samp = 0
self._event_backlog = list()
# Number of good and bad epochs received
self._n_good = 0
self._n_bad = 0
self._started = False
self._last_time = time.time()
self.isi_max = isi_max
def start(self):
"""Start receiving epochs
The measurement will be started if it has not already been started.
"""
if not self._started:
# register the callback
self._client.register_receive_callback(self._process_raw_buffer)
# start the measurement and the receive thread
nchan = self._client_info['nchan']
self._client.start_receive_thread(nchan)
self._started = True
self._last_time = np.inf # init delay counter. Will stop iterations
def stop(self, stop_receive_thread=False, stop_measurement=False):
"""Stop receiving epochs
Parameters
----------
stop_receive_thread : bool
Stop the receive thread. Note: Other RtEpochs instances will also
stop receiving epochs when the receive thread is stopped. The
receive thread will always be stopped if stop_measurement is True.
stop_measurement : bool
Also stop the measurement. Note: Other clients attached to the
server will also stop receiving data.
"""
if self._started:
self._client.unregister_receive_callback(self._process_raw_buffer)
self._started = False
if stop_receive_thread or stop_measurement:
self._client.stop_receive_thread(stop_measurement=stop_measurement)
def next(self, return_event_id=False):
"""To make iteration over epochs easy.
"""
first = True
while True:
current_time = time.time()
if current_time > (self._last_time + self.isi_max):
logger.info('Time of %s seconds exceeded.' % self.isi_max)
raise StopIteration
if len(self._epoch_queue) > self._current:
epoch = self._epoch_queue[self._current]
event_id = self.events[self._current][-1]
self._current += 1
self._last_time = current_time
if return_event_id:
return epoch, event_id
else:
return epoch
if self._started:
if first:
logger.info('Waiting for epoch %d' % (self._current + 1))
first = False
time.sleep(self._sleep_time)
else:
raise RuntimeError('Not enough epochs in queue and currently '
'not receiving epochs, cannot get epochs!')
def _get_data_from_disk(self):
"""Return the data for n_epochs epochs"""
epochs = list()
for epoch in self:
epochs.append(epoch)
data = np.array(epochs)
return data
def _process_raw_buffer(self, raw_buffer):
"""Process raw buffer (callback from RtClient)
Note: Do not print log messages during regular use. It will be printed
asynchronously which is annyoing when working in an interactive shell.
Parameters
----------
raw_buffer : array of float, shape=(nchan, n_times)
The raw buffer.
"""
verbose = 'ERROR'
sfreq = self.info['sfreq']
n_samp = len(self._raw_times)
# relative start and stop positions in samples
tmin_samp = int(round(sfreq * self.tmin))
tmax_samp = tmin_samp + n_samp
last_samp = self._first_samp + raw_buffer.shape[1] - 1
# apply calibration without inplace modification
raw_buffer = self._cals * raw_buffer
# detect events
data = np.abs(raw_buffer[self._stim_picks]).astype(np.int)
data = np.atleast_2d(data)
buff_events = _find_events(data, self._first_samp, verbose=verbose)
events = self._event_backlog
for event_id in self.event_id.values():
idx = np.where(buff_events[:, -1] == event_id)[0]
events.extend(zip(list(buff_events[idx, 0]),
list(buff_events[idx, -1])))
events.sort()
event_backlog = list()
for event_samp, event_id in events:
epoch = None
if (event_samp + tmin_samp >= self._first_samp
and event_samp + tmax_samp <= last_samp):
# easy case: whole epoch is in this buffer
start = event_samp + tmin_samp - self._first_samp
stop = event_samp + tmax_samp - self._first_samp
epoch = raw_buffer[:, start:stop]
elif (event_samp + tmin_samp < self._first_samp
and event_samp + tmax_samp <= last_samp):
# have to use some samples from previous buffer
if self._last_buffer is None:
continue
n_last = self._first_samp - (event_samp + tmin_samp)
n_this = n_samp - n_last
epoch = np.c_[self._last_buffer[:, -n_last:],
raw_buffer[:, :n_this]]
elif event_samp + tmax_samp > last_samp:
# we need samples from next buffer
if event_samp + tmin_samp < self._first_samp:
raise RuntimeError('Epoch spans more than two raw '
'buffers, increase buffer size!')
# we will process this epoch with the next buffer
event_backlog.append((event_samp, event_id))
else:
raise RuntimeError('Unhandled case..')
if epoch is not None:
self._append_epoch_to_queue(epoch, event_samp, event_id)
# set things up for processing of next buffer
self._event_backlog = event_backlog
self._first_samp = last_samp + 1
self._last_buffer = raw_buffer
def _append_epoch_to_queue(self, epoch, event_samp, event_id):
"""Append a (raw) epoch to queue
Note: Do not print log messages during regular use. It will be printed
asynchronously which is annyoing when working in an interactive shell.
Parameters
----------
epoch : array of float, shape=(nchan, n_times)
The raw epoch (only calibration has been applied) over all
channels.
event_samp : int
The time in samples when the epoch occurred.
event_id : int
The event ID of the epoch.
"""
# select the channels
epoch = epoch[self.picks, :]
# handle offset
if self._offset is not None:
epoch += self._offset
# apply SSP
if self.proj and self._projector is not None:
epoch = np.dot(self._projector, epoch)
# Detrend, baseline correct, decimate
epoch = self._preprocess(epoch, verbose='ERROR')
# Decide if this is a good epoch
is_good, _ = self._is_good_epoch(epoch, verbose='ERROR')
if is_good:
self._epoch_queue.append(epoch)
self.events.append((event_samp, 0, event_id))
self._n_good += 1
else:
self._n_bad += 1
def __repr__(self):
s = 'good / bad epochs received: %d / %d, epochs in queue: %d, '\
% (self._n_good, self._n_bad, len(self._epoch_queue))
s += ', tmin : %s (s)' % self.tmin
s += ', tmax : %s (s)' % self.tmax
s += ', baseline : %s' % str(self.baseline)
return '<RtEpochs | %s>' % s
|