File: source.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (198 lines) | stat: -rw-r--r-- 6,239 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Daniel Strohmeier <daniel.strohmeier@tu-ilmenau.de>
#
# License: BSD (3-clause)

import numpy as np

from ..source_estimate import SourceEstimate
from ..utils import check_random_state
from ..externals.six.moves import zip


def select_source_in_label(src, label, random_state=None):
    """Select source positions using a label

    Parameters
    ----------
    src : list of dict
        The source space
    label : Label
        the label (read with mne.read_label)
    random_state : None | int | np.random.RandomState
        To specify the random generator state.

    Returns
    -------
    lh_vertno : list
        selected source coefficients on the left hemisphere
    rh_vertno : list
        selected source coefficients on the right hemisphere
    """
    lh_vertno = list()
    rh_vertno = list()

    rng = check_random_state(random_state)

    if label.hemi == 'lh':
        src_sel_lh = np.intersect1d(src[0]['vertno'], label.vertices)
        idx_select = rng.randint(0, len(src_sel_lh), 1)
        lh_vertno.append(src_sel_lh[idx_select][0])
    else:
        src_sel_rh = np.intersect1d(src[1]['vertno'], label.vertices)
        idx_select = rng.randint(0, len(src_sel_rh), 1)
        rh_vertno.append(src_sel_rh[idx_select][0])

    return lh_vertno, rh_vertno


def generate_sparse_stc(src, labels, stc_data, tmin, tstep, random_state=None):
    """Generate sparse sources time courses from waveforms and labels

    This function randomly selects a single vertex in each label and assigns
    a waveform from stc_data to it.

    Parameters
    ----------
    src : list of dict
        The source space
    labels : list of Labels
        The labels
    stc_data : array (shape: len(labels) x n_times)
        The waveforms
    tmin : float
        The beginning of the timeseries
    tstep : float
        The time step (1 / sampling frequency)
    random_state : None | int | np.random.RandomState
        To specify the random generator state.

    Returns
    -------
    stc : SourceEstimate
        The generated source time courses.
    """
    if len(labels) != len(stc_data):
        raise ValueError('labels and stc_data must have the same length')

    rng = check_random_state(random_state)
    vertno = [[], []]
    lh_data = list()
    rh_data = list()
    for label_data, label in zip(stc_data, labels):
        lh_vertno, rh_vertno = select_source_in_label(src, label, rng)
        vertno[0] += lh_vertno
        vertno[1] += rh_vertno
        if len(lh_vertno) != 0:
            lh_data.append(np.atleast_2d(label_data))
        elif len(rh_vertno) != 0:
            rh_data.append(np.atleast_2d(label_data))
        else:
            raise ValueError('No vertno found.')

    vertno = [np.array(v) for v in vertno]

    # the data is in the order left, right
    data = list()
    if len(vertno[0]) != 0:
        idx = np.argsort(vertno[0])
        vertno[0] = vertno[0][idx]
        data.append(np.concatenate(lh_data)[idx])

    if len(vertno[1]) != 0:
        idx = np.argsort(vertno[1])
        vertno[1] = vertno[1][idx]
        data.append(np.concatenate(rh_data)[idx])

    data = np.concatenate(data)

    stc = SourceEstimate(data, vertices=vertno, tmin=tmin, tstep=tstep)

    return stc


def generate_stc(src, labels, stc_data, tmin, tstep, value_fun=None):
    """Generate sources time courses from waveforms and labels

    This function generates a source estimate with extended sources by
    filling the labels with the waveforms given in stc_data.

    By default, the vertices within a label are assigned the same waveform.
    The waveforms can be scaled for each vertex by using the label values
    and value_fun. E.g.,

    # create a source label where the values are the distance from the center
    labels = circular_source_labels('sample', 0, 10, 0)

    # sources with decaying strength (x will be the distance from the center)
    fun = lambda x: exp(- x / 10)
    stc = generate_stc(fwd, labels, stc_data, tmin, tstep, fun)

    Parameters
    ----------
    src : list of dict
        The source space
    labels : list of Labels
        The labels
    stc_data : array (shape: len(labels) x n_times)
        The waveforms
    tmin : float
        The beginning of the timeseries
    tstep : float
        The time step (1 / sampling frequency)
    value_fun : function
        Function to apply to the label values

    Returns
    -------
    stc : SourceEstimate
        The generated source time courses.
    """

    if len(labels) != len(stc_data):
        raise ValueError('labels and stc_data must have the same length')

    vertno = [[], []]
    stc_data_extended = [[], []]
    hemi_to_ind = {'lh': 0, 'rh': 1}
    for i, label in enumerate(labels):
        hemi_ind = hemi_to_ind[label.hemi]
        src_sel = np.intersect1d(src[hemi_ind]['vertno'],
                                 label.vertices)
        if value_fun is not None:
            idx_sel = np.searchsorted(label.vertices, src_sel)
            values_sel = np.array([value_fun(v) for v in
                                   label.values[idx_sel]])

            data = np.outer(values_sel, stc_data[i])
        else:
            data = np.tile(stc_data[i], (len(src_sel), 1))

        vertno[hemi_ind].append(src_sel)
        stc_data_extended[hemi_ind].append(np.atleast_2d(data))

    # format the vertno list
    for idx in (0, 1):
        if len(vertno[idx]) > 1:
            vertno[idx] = np.concatenate(vertno[idx])
        elif len(vertno[idx]) == 1:
            vertno[idx] = vertno[idx][0]
    vertno = [np.array(v) for v in vertno]

    # the data is in the order left, right
    data = list()
    if len(vertno[0]) != 0:
        idx = np.argsort(vertno[0])
        vertno[0] = vertno[0][idx]
        data.append(np.concatenate(stc_data_extended[0])[idx])

    if len(vertno[1]) != 0:
        idx = np.argsort(vertno[1])
        vertno[1] = vertno[1][idx]
        data.append(np.concatenate(stc_data_extended[1])[idx])

    data = np.concatenate(data)

    stc = SourceEstimate(data, vertices=vertno, tmin=tmin, tstep=tstep)
    return stc