1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
import os.path as op
import numpy as np
from numpy.testing import assert_array_almost_equal, assert_array_equal
from nose.tools import assert_true
from mne.datasets import sample
from mne import read_label, read_forward_solution
from mne.label import Label
from mne.simulation.source import generate_stc, generate_sparse_stc
data_path = sample.data_path(download=False)
fname_fwd = op.join(data_path, 'MEG', 'sample',
'sample_audvis-meg-oct-6-fwd.fif')
label_names = ['Aud-lh', 'Aud-rh', 'Vis-rh']
label_names_single_hemi = ['Aud-rh', 'Vis-rh']
@sample.requires_sample_data
def test_generate_stc():
""" Test generation of source estimate """
fwd = read_forward_solution(fname_fwd, force_fixed=True)
labels = [read_label(op.join(data_path, 'MEG', 'sample', 'labels',
'%s.label' % label)) for label in label_names]
mylabels = []
for i, label in enumerate(labels):
new_label = Label(vertices=label.vertices,
pos=label.pos,
values=2 * i * np.ones(len(label.values)),
hemi=label.hemi,
comment=label.comment)
mylabels.append(new_label)
n_times = 10
tmin = 0
tstep = 1e-3
stc_data = np.ones((len(labels), n_times))
stc = generate_stc(fwd['src'], mylabels, stc_data, tmin, tstep)
for label in labels:
if label.hemi == 'lh':
hemi_idx = 0
else:
hemi_idx = 1
idx = np.intersect1d(stc.vertno[hemi_idx], label.vertices)
idx = np.searchsorted(stc.vertno[hemi_idx], idx)
if hemi_idx == 1:
idx += len(stc.vertno[0])
assert_true(np.all(stc.data[idx] == 1.0))
assert_true(stc.data[idx].shape[1] == n_times)
# test with function
fun = lambda x: x ** 2
stc = generate_stc(fwd['src'], mylabels, stc_data, tmin, tstep, fun)
# the first label has value 0, the second value 2, the third value 6
for i, label in enumerate(labels):
if label.hemi == 'lh':
hemi_idx = 0
else:
hemi_idx = 1
idx = np.intersect1d(stc.vertno[hemi_idx], label.vertices)
idx = np.searchsorted(stc.vertno[hemi_idx], idx)
if hemi_idx == 1:
idx += len(stc.vertno[0])
res = ((2. * i) ** 2.) * np.ones((len(idx), n_times))
assert_array_almost_equal(stc.data[idx], res)
@sample.requires_sample_data
def test_generate_sparse_stc():
""" Test generation of sparse source estimate """
fwd = read_forward_solution(fname_fwd, force_fixed=True)
labels = [read_label(op.join(data_path, 'MEG', 'sample', 'labels',
'%s.label' % label)) for label in label_names]
n_times = 10
tmin = 0
tstep = 1e-3
stc_data = (np.ones((len(labels), n_times))
* np.arange(len(labels))[:, None])
stc_1 = generate_sparse_stc(fwd['src'], labels, stc_data, tmin, tstep, 0)
for i, label in enumerate(labels):
if label.hemi == 'lh':
hemi_idx = 0
else:
hemi_idx = 1
idx = np.intersect1d(stc_1.vertno[hemi_idx], label.vertices)
idx = np.searchsorted(stc_1.vertno[hemi_idx], idx)
if hemi_idx == 1:
idx += len(stc_1.vertno[0])
assert_true(np.all(stc_1.data[idx] == float(i)))
assert_true(stc_1.data.shape[0] == len(labels))
assert_true(stc_1.data.shape[1] == n_times)
# make sure we get the same result when using the same seed
stc_2 = generate_sparse_stc(fwd['src'], labels, stc_data, tmin, tstep, 0)
assert_array_equal(stc_1.lh_vertno, stc_2.lh_vertno)
assert_array_equal(stc_1.rh_vertno, stc_2.rh_vertno)
@sample.requires_sample_data
def test_generate_stc_single_hemi():
""" Test generation of source estimate """
fwd = read_forward_solution(fname_fwd, force_fixed=True)
labels_single_hemi = [read_label(op.join(data_path, 'MEG', 'sample',
'labels', '%s.label' % label))
for label in label_names_single_hemi]
mylabels = []
for i, label in enumerate(labels_single_hemi):
new_label = Label(vertices=label.vertices,
pos=label.pos,
values=2 * i * np.ones(len(label.values)),
hemi=label.hemi,
comment=label.comment)
mylabels.append(new_label)
n_times = 10
tmin = 0
tstep = 1e-3
stc_data = np.ones((len(labels_single_hemi), n_times))
stc = generate_stc(fwd['src'], mylabels, stc_data, tmin, tstep)
for label in labels_single_hemi:
if label.hemi == 'lh':
hemi_idx = 0
else:
hemi_idx = 1
idx = np.intersect1d(stc.vertno[hemi_idx], label.vertices)
idx = np.searchsorted(stc.vertno[hemi_idx], idx)
if hemi_idx == 1:
idx += len(stc.vertno[0])
assert_true(np.all(stc.data[idx] == 1.0))
assert_true(stc.data[idx].shape[1] == n_times)
# test with function
fun = lambda x: x ** 2
stc = generate_stc(fwd['src'], mylabels, stc_data, tmin, tstep, fun)
# the first label has value 0, the second value 2, the third value 6
for i, label in enumerate(labels_single_hemi):
if label.hemi == 'lh':
hemi_idx = 0
else:
hemi_idx = 1
idx = np.intersect1d(stc.vertno[hemi_idx], label.vertices)
idx = np.searchsorted(stc.vertno[hemi_idx], idx)
if hemi_idx == 1:
idx += len(stc.vertno[0])
res = ((2. * i) ** 2.) * np.ones((len(idx), n_times))
assert_array_almost_equal(stc.data[idx], res)
@sample.requires_sample_data
def test_generate_sparse_stc_single_hemi():
""" Test generation of sparse source estimate """
fwd = read_forward_solution(fname_fwd, force_fixed=True)
n_times = 10
tmin = 0
tstep = 1e-3
labels_single_hemi = [read_label(op.join(data_path, 'MEG', 'sample',
'labels', '%s.label' % label))
for label in label_names_single_hemi]
stc_data = (np.ones((len(labels_single_hemi), n_times))
* np.arange(len(labels_single_hemi))[:, None])
stc_1 = generate_sparse_stc(fwd['src'], labels_single_hemi, stc_data,
tmin, tstep, 0)
for i, label in enumerate(labels_single_hemi):
if label.hemi == 'lh':
hemi_idx = 0
else:
hemi_idx = 1
idx = np.intersect1d(stc_1.vertno[hemi_idx], label.vertices)
idx = np.searchsorted(stc_1.vertno[hemi_idx], idx)
if hemi_idx == 1:
idx += len(stc_1.vertno[0])
assert_true(np.all(stc_1.data[idx] == float(i)))
assert_true(stc_1.data.shape[0] == len(labels_single_hemi))
assert_true(stc_1.data.shape[1] == n_times)
# make sure we get the same result when using the same seed
stc_2 = generate_sparse_stc(fwd['src'], labels_single_hemi, stc_data,
tmin, tstep, 0)
assert_array_equal(stc_1.lh_vertno, stc_2.lh_vertno)
assert_array_equal(stc_1.rh_vertno, stc_2.rh_vertno)
|