File: test_source.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (217 lines) | stat: -rw-r--r-- 7,257 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os.path as op

import numpy as np
from numpy.testing import assert_array_almost_equal, assert_array_equal
from nose.tools import assert_true

from mne.datasets import sample
from mne import read_label, read_forward_solution
from mne.label import Label
from mne.simulation.source import generate_stc, generate_sparse_stc


data_path = sample.data_path(download=False)
fname_fwd = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis-meg-oct-6-fwd.fif')
label_names = ['Aud-lh', 'Aud-rh', 'Vis-rh']

label_names_single_hemi = ['Aud-rh', 'Vis-rh']


@sample.requires_sample_data
def test_generate_stc():
    """ Test generation of source estimate """
    fwd = read_forward_solution(fname_fwd, force_fixed=True)
    labels = [read_label(op.join(data_path, 'MEG', 'sample', 'labels',
                         '%s.label' % label)) for label in label_names]
    mylabels = []
    for i, label in enumerate(labels):
        new_label = Label(vertices=label.vertices,
                          pos=label.pos,
                          values=2 * i * np.ones(len(label.values)),
                          hemi=label.hemi,
                          comment=label.comment)
        mylabels.append(new_label)

    n_times = 10
    tmin = 0
    tstep = 1e-3

    stc_data = np.ones((len(labels), n_times))
    stc = generate_stc(fwd['src'], mylabels, stc_data, tmin, tstep)

    for label in labels:
        if label.hemi == 'lh':
            hemi_idx = 0
        else:
            hemi_idx = 1

        idx = np.intersect1d(stc.vertno[hemi_idx], label.vertices)
        idx = np.searchsorted(stc.vertno[hemi_idx], idx)

        if hemi_idx == 1:
            idx += len(stc.vertno[0])

        assert_true(np.all(stc.data[idx] == 1.0))
        assert_true(stc.data[idx].shape[1] == n_times)

    # test with function
    fun = lambda x: x ** 2
    stc = generate_stc(fwd['src'], mylabels, stc_data, tmin, tstep, fun)

    # the first label has value 0, the second value 2, the third value 6

    for i, label in enumerate(labels):
        if label.hemi == 'lh':
            hemi_idx = 0
        else:
            hemi_idx = 1

        idx = np.intersect1d(stc.vertno[hemi_idx], label.vertices)
        idx = np.searchsorted(stc.vertno[hemi_idx], idx)

        if hemi_idx == 1:
            idx += len(stc.vertno[0])

        res = ((2. * i) ** 2.) * np.ones((len(idx), n_times))
        assert_array_almost_equal(stc.data[idx], res)


@sample.requires_sample_data
def test_generate_sparse_stc():
    """ Test generation of sparse source estimate """
    fwd = read_forward_solution(fname_fwd, force_fixed=True)
    labels = [read_label(op.join(data_path, 'MEG', 'sample', 'labels',
                         '%s.label' % label)) for label in label_names]

    n_times = 10
    tmin = 0
    tstep = 1e-3

    stc_data = (np.ones((len(labels), n_times))
                * np.arange(len(labels))[:, None])
    stc_1 = generate_sparse_stc(fwd['src'], labels, stc_data, tmin, tstep, 0)

    for i, label in enumerate(labels):
        if label.hemi == 'lh':
            hemi_idx = 0
        else:
            hemi_idx = 1

        idx = np.intersect1d(stc_1.vertno[hemi_idx], label.vertices)
        idx = np.searchsorted(stc_1.vertno[hemi_idx], idx)

        if hemi_idx == 1:
            idx += len(stc_1.vertno[0])

        assert_true(np.all(stc_1.data[idx] == float(i)))

    assert_true(stc_1.data.shape[0] == len(labels))
    assert_true(stc_1.data.shape[1] == n_times)

    # make sure we get the same result when using the same seed
    stc_2 = generate_sparse_stc(fwd['src'], labels, stc_data, tmin, tstep, 0)

    assert_array_equal(stc_1.lh_vertno, stc_2.lh_vertno)
    assert_array_equal(stc_1.rh_vertno, stc_2.rh_vertno)


@sample.requires_sample_data
def test_generate_stc_single_hemi():
    """ Test generation of source estimate """
    fwd = read_forward_solution(fname_fwd, force_fixed=True)
    labels_single_hemi = [read_label(op.join(data_path, 'MEG', 'sample',
                                             'labels', '%s.label' % label))
                          for label in label_names_single_hemi]
    mylabels = []
    for i, label in enumerate(labels_single_hemi):
        new_label = Label(vertices=label.vertices,
                          pos=label.pos,
                          values=2 * i * np.ones(len(label.values)),
                          hemi=label.hemi,
                          comment=label.comment)
        mylabels.append(new_label)

    n_times = 10
    tmin = 0
    tstep = 1e-3

    stc_data = np.ones((len(labels_single_hemi), n_times))
    stc = generate_stc(fwd['src'], mylabels, stc_data, tmin, tstep)

    for label in labels_single_hemi:
        if label.hemi == 'lh':
            hemi_idx = 0
        else:
            hemi_idx = 1

        idx = np.intersect1d(stc.vertno[hemi_idx], label.vertices)
        idx = np.searchsorted(stc.vertno[hemi_idx], idx)

        if hemi_idx == 1:
            idx += len(stc.vertno[0])

        assert_true(np.all(stc.data[idx] == 1.0))
        assert_true(stc.data[idx].shape[1] == n_times)

    # test with function
    fun = lambda x: x ** 2
    stc = generate_stc(fwd['src'], mylabels, stc_data, tmin, tstep, fun)

    # the first label has value 0, the second value 2, the third value 6

    for i, label in enumerate(labels_single_hemi):
        if label.hemi == 'lh':
            hemi_idx = 0
        else:
            hemi_idx = 1

        idx = np.intersect1d(stc.vertno[hemi_idx], label.vertices)
        idx = np.searchsorted(stc.vertno[hemi_idx], idx)

        if hemi_idx == 1:
            idx += len(stc.vertno[0])

        res = ((2. * i) ** 2.) * np.ones((len(idx), n_times))
        assert_array_almost_equal(stc.data[idx], res)


@sample.requires_sample_data
def test_generate_sparse_stc_single_hemi():
    """ Test generation of sparse source estimate """
    fwd = read_forward_solution(fname_fwd, force_fixed=True)
    n_times = 10
    tmin = 0
    tstep = 1e-3
    labels_single_hemi = [read_label(op.join(data_path, 'MEG', 'sample',
                                             'labels', '%s.label' % label))
                          for label in label_names_single_hemi]

    stc_data = (np.ones((len(labels_single_hemi), n_times))
                * np.arange(len(labels_single_hemi))[:, None])
    stc_1 = generate_sparse_stc(fwd['src'], labels_single_hemi, stc_data,
                                tmin, tstep, 0)

    for i, label in enumerate(labels_single_hemi):
        if label.hemi == 'lh':
            hemi_idx = 0
        else:
            hemi_idx = 1

        idx = np.intersect1d(stc_1.vertno[hemi_idx], label.vertices)
        idx = np.searchsorted(stc_1.vertno[hemi_idx], idx)

        if hemi_idx == 1:
            idx += len(stc_1.vertno[0])

        assert_true(np.all(stc_1.data[idx] == float(i)))

    assert_true(stc_1.data.shape[0] == len(labels_single_hemi))
    assert_true(stc_1.data.shape[1] == n_times)

    # make sure we get the same result when using the same seed
    stc_2 = generate_sparse_stc(fwd['src'], labels_single_hemi, stc_data,
                                tmin, tstep, 0)

    assert_array_equal(stc_1.lh_vertno, stc_2.lh_vertno)
    assert_array_equal(stc_1.rh_vertno, stc_2.rh_vertno)