File: source_space.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (1753 lines) | stat: -rw-r--r-- 66,137 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)

from .externals.six import string_types
import numpy as np
import os
import os.path as op
from scipy import sparse, linalg
from copy import deepcopy

from .io.constants import FIFF
from .io.tree import dir_tree_find
from .io.tag import find_tag, read_tag
from .io.open import fiff_open
from .io.write import (start_block, end_block, write_int,
                       write_float_sparse_rcs, write_string,
                       write_float_matrix, write_int_matrix,
                       write_coord_trans, start_file, end_file, write_id)
from .surface import (read_surface, _create_surf_spacing, _get_ico_surface,
                      _tessellate_sphere_surf, read_bem_surfaces,
                      _read_surface_geom, _normalize_vectors,
                      _complete_surface_info, _compute_nearest,
                      fast_cross_3d)
from .source_estimate import mesh_dist
from .utils import (get_subjects_dir, run_subprocess, has_freesurfer,
                    has_nibabel, check_fname, logger, verbose,
                    check_scipy_version)
from .fixes import in1d, partial, gzip_open
from .parallel import parallel_func, check_n_jobs
from .transforms import (invert_transform, apply_trans, _print_coord_trans,
                         combine_transforms)


class SourceSpaces(list):
    """Represent a list of source space

    Currently implemented as a list of dictionaries containing the source
    space information

    Parameters
    ----------
    source_spaces : list
        A list of dictionaries containing the source space information.
    info : dict
        Dictionary with information about the creation of the source space
        file. Has keys 'working_dir' and 'command_line'.

    Attributes
    ----------
    info : dict
        Dictionary with information about the creation of the source space
        file. Has keys 'working_dir' and 'command_line'.
    """
    def __init__(self, source_spaces, info=None):
        super(SourceSpaces, self).__init__(source_spaces)
        if info is None:
            self.info = dict()
        else:
            self.info = dict(info)

    def __repr__(self):
        ss_repr = []
        for ss in self:
            ss_type = ss['type']
            if ss_type == 'vol':
                r = ("'vol', shape=%s, n_used=%i"
                     % (repr(ss['shape']), ss['nuse']))
            elif ss_type == 'surf':
                r = "'surf', n_vertices=%i, n_used=%i" % (ss['np'], ss['nuse'])
            else:
                r = "%r" % ss_type
            ss_repr.append('<%s>' % r)
        ss_repr = ', '.join(ss_repr)
        return "<SourceSpaces: [{ss}]>".format(ss=ss_repr)

    def copy(self):
        """Make a copy of the source spaces

        Returns
        -------
        src : instance of SourceSpaces
            The copied source spaces.
        """
        src = deepcopy(self)
        return src

    def save(self, fname):
        """Save the source spaces to a fif file

        Parameters
        ----------
        fname : str
            File to write.
        """
        write_source_spaces(fname, self)


def _add_patch_info(s):
    """Patch information in a source space

    Generate the patch information from the 'nearest' vector in
    a source space. For vertex in the source space it provides
    the list of neighboring vertices in the high resolution
    triangulation.

    Parameters
    ----------
    s : dict
        The source space.
    """
    nearest = s['nearest']
    if nearest is None:
        s['pinfo'] = None
        s['patch_inds'] = None
        return

    logger.info('    Computing patch statistics...')

    indn = np.argsort(nearest)
    nearest_sorted = nearest[indn]

    steps = np.where(nearest_sorted[1:] != nearest_sorted[:-1])[0] + 1
    starti = np.r_[[0], steps]
    stopi = np.r_[steps, [len(nearest)]]

    pinfo = list()
    for start, stop in zip(starti, stopi):
        pinfo.append(np.sort(indn[start:stop]))
    s['pinfo'] = pinfo

    # compute patch indices of the in-use source space vertices
    patch_verts = nearest_sorted[steps - 1]
    s['patch_inds'] = np.searchsorted(patch_verts, s['vertno'])

    logger.info('    Patch information added...')


@verbose
def read_source_spaces_from_tree(fid, tree, add_geom=False, verbose=None):
    """Read the source spaces from a FIF file

    Parameters
    ----------
    fid : file descriptor
        An open file descriptor.
    tree : dict
        The FIF tree structure if source is a file id.
    add_geom : bool, optional (default False)
        Add geometry information to the surfaces.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    src : SourceSpaces
        The source spaces.
    """
    #   Find all source spaces
    spaces = dir_tree_find(tree, FIFF.FIFFB_MNE_SOURCE_SPACE)
    if len(spaces) == 0:
        raise ValueError('No source spaces found')

    src = list()
    for s in spaces:
        logger.info('    Reading a source space...')
        this = _read_one_source_space(fid, s)
        logger.info('    [done]')
        if add_geom:
            _complete_source_space_info(this)

        src.append(this)

    src = SourceSpaces(src)
    logger.info('    %d source spaces read' % len(spaces))

    return src


@verbose
def read_source_spaces(fname, add_geom=False, verbose=None):
    """Read the source spaces from a FIF file

    Parameters
    ----------
    fname : str
        The name of the file, which should end with -src.fif or
        -src.fif.gz.
    add_geom : bool, optional (default False)
        Add geometry information to the surfaces.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    src : SourceSpaces
        The source spaces.
    """
    # be more permissive on read than write (fwd/inv can contain src)
    check_fname(fname, 'source space', ('-src.fif', '-src.fif.gz',
                                        '-fwd.fif', '-fwd.fif.gz',
                                        '-inv.fif', '-inv.fif.gz'))

    ff, tree, _ = fiff_open(fname)
    with ff as fid:
        src = read_source_spaces_from_tree(fid, tree, add_geom=add_geom,
                                           verbose=verbose)
        src.info['fname'] = fname
        node = dir_tree_find(tree, FIFF.FIFFB_MNE_ENV)
        if node:
            node = node[0]
            for p in range(node['nent']):
                kind = node['directory'][p].kind
                pos = node['directory'][p].pos
                tag = read_tag(fid, pos)
                if kind == FIFF.FIFF_MNE_ENV_WORKING_DIR:
                    src.info['working_dir'] = tag.data
                elif kind == FIFF.FIFF_MNE_ENV_COMMAND_LINE:
                    src.info['command_line'] = tag.data
    return src


@verbose
def _read_one_source_space(fid, this, verbose=None):
    """Read one source space
    """
    FIFF_BEM_SURF_NTRI = 3104
    FIFF_BEM_SURF_TRIANGLES = 3106

    res = dict()

    tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_ID)
    if tag is None:
        res['id'] = int(FIFF.FIFFV_MNE_SURF_UNKNOWN)
    else:
        res['id'] = int(tag.data)

    tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_TYPE)
    if tag is None:
        raise ValueError('Unknown source space type')
    else:
        src_type = int(tag.data)
        if src_type == FIFF.FIFFV_MNE_SPACE_SURFACE:
            res['type'] = 'surf'
        elif src_type == FIFF.FIFFV_MNE_SPACE_VOLUME:
            res['type'] = 'vol'
        elif src_type == FIFF.FIFFV_MNE_SPACE_DISCRETE:
            res['type'] = 'discrete'
        else:
            raise ValueError('Unknown source space type (%d)' % src_type)

    if res['type'] == 'vol':

        tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_VOXEL_DIMS)
        if tag is not None:
            res['shape'] = tuple(tag.data)

        tag = find_tag(fid, this, FIFF.FIFF_COORD_TRANS)
        if tag is not None:
            res['src_mri_t'] = tag.data

        parent_mri = dir_tree_find(this, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
        if len(parent_mri) == 0:
            # MNE 2.7.3 (and earlier) didn't store necessary information
            # about volume coordinate translations. Although there is a
            # FFIF_COORD_TRANS in the higher level of the FIFF file, this
            # doesn't contain all the info we need. Safer to return an
            # error unless a user really wants us to add backward compat.
            raise ValueError('Can not find parent MRI location. The volume '
                             'source space may have been made with an MNE '
                             'version that is too old (<= 2.7.3). Consider '
                             'updating and regenerating the inverse.')

        mri = parent_mri[0]
        for d in mri['directory']:
            if d.kind == FIFF.FIFF_COORD_TRANS:
                tag = read_tag(fid, d.pos)
                trans = tag.data
                if trans['from'] == FIFF.FIFFV_MNE_COORD_MRI_VOXEL:
                    res['vox_mri_t'] = tag.data
                if trans['to'] == FIFF.FIFFV_MNE_COORD_RAS:
                    res['mri_ras_t'] = tag.data

        tag = find_tag(fid, mri, FIFF.FIFF_MNE_SOURCE_SPACE_INTERPOLATOR)
        if tag is not None:
            res['interpolator'] = tag.data
        else:
            logger.info("Interpolation matrix for MRI not found.")

        tag = find_tag(fid, mri, FIFF.FIFF_MNE_SOURCE_SPACE_MRI_FILE)
        if tag is not None:
            res['mri_file'] = tag.data

        tag = find_tag(fid, mri, FIFF.FIFF_MRI_WIDTH)
        if tag is not None:
            res['mri_width'] = int(tag.data)

        tag = find_tag(fid, mri, FIFF.FIFF_MRI_HEIGHT)
        if tag is not None:
            res['mri_height'] = int(tag.data)

        tag = find_tag(fid, mri, FIFF.FIFF_MRI_DEPTH)
        if tag is not None:
            res['mri_depth'] = int(tag.data)

    tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS)
    if tag is None:
        raise ValueError('Number of vertices not found')

    res['np'] = int(tag.data)

    tag = find_tag(fid, this, FIFF_BEM_SURF_NTRI)
    if tag is None:
        tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NTRI)
        if tag is None:
            res['ntri'] = 0
        else:
            res['ntri'] = int(tag.data)
    else:
        res['ntri'] = tag.data

    tag = find_tag(fid, this, FIFF.FIFF_MNE_COORD_FRAME)
    if tag is None:
        raise ValueError('Coordinate frame information not found')

    res['coord_frame'] = tag.data

    #   Vertices, normals, and triangles
    tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_POINTS)
    if tag is None:
        raise ValueError('Vertex data not found')

    res['rr'] = tag.data.astype(np.float)  # double precision for mayavi
    if res['rr'].shape[0] != res['np']:
        raise ValueError('Vertex information is incorrect')

    tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS)
    if tag is None:
        raise ValueError('Vertex normals not found')

    res['nn'] = tag.data
    if res['nn'].shape[0] != res['np']:
        raise ValueError('Vertex normal information is incorrect')

    if res['ntri'] > 0:
        tag = find_tag(fid, this, FIFF_BEM_SURF_TRIANGLES)
        if tag is None:
            tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_TRIANGLES)
            if tag is None:
                raise ValueError('Triangulation not found')
            else:
                res['tris'] = tag.data - 1  # index start at 0 in Python
        else:
            res['tris'] = tag.data - 1  # index start at 0 in Python

        if res['tris'].shape[0] != res['ntri']:
            raise ValueError('Triangulation information is incorrect')
    else:
        res['tris'] = None

    #   Which vertices are active
    tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE)
    if tag is None:
        res['nuse'] = 0
        res['inuse'] = np.zeros(res['nuse'], dtype=np.int)
        res['vertno'] = None
    else:
        res['nuse'] = int(tag.data)
        tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_SELECTION)
        if tag is None:
            raise ValueError('Source selection information missing')

        res['inuse'] = tag.data.astype(np.int).T
        if len(res['inuse']) != res['np']:
            raise ValueError('Incorrect number of entries in source space '
                             'selection')

        res['vertno'] = np.where(res['inuse'])[0]

    #   Use triangulation
    tag1 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE_TRI)
    tag2 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_USE_TRIANGLES)
    if tag1 is None or tag2 is None:
        res['nuse_tri'] = 0
        res['use_tris'] = None
    else:
        res['nuse_tri'] = tag1.data
        res['use_tris'] = tag2.data - 1  # index start at 0 in Python

    #   Patch-related information
    tag1 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST)
    tag2 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST_DIST)

    if tag1 is None or tag2 is None:
        res['nearest'] = None
        res['nearest_dist'] = None
    else:
        res['nearest'] = tag1.data
        res['nearest_dist'] = tag2.data.T

    _add_patch_info(res)

    #   Distances
    tag1 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_DIST)
    tag2 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_DIST_LIMIT)
    if tag1 is None or tag2 is None:
        res['dist'] = None
        res['dist_limit'] = None
    else:
        res['dist'] = tag1.data
        res['dist_limit'] = tag2.data
        #   Add the upper triangle
        res['dist'] = res['dist'] + res['dist'].T
    if (res['dist'] is not None):
        logger.info('    Distance information added...')

    tag = find_tag(fid, this, FIFF.FIFF_SUBJ_HIS_ID)
    if tag is not None:
        res['subject_his_id'] = tag.data

    return res


@verbose
def _complete_source_space_info(this, verbose=None):
    """Add more info on surface
    """
    #   Main triangulation
    logger.info('    Completing triangulation info...')
    this['tri_area'] = np.zeros(this['ntri'])
    r1 = this['rr'][this['tris'][:, 0], :]
    r2 = this['rr'][this['tris'][:, 1], :]
    r3 = this['rr'][this['tris'][:, 2], :]
    this['tri_cent'] = (r1 + r2 + r3) / 3.0
    this['tri_nn'] = fast_cross_3d((r2 - r1), (r3 - r1))
    size = np.sqrt(np.sum(this['tri_nn'] ** 2, axis=1))
    this['tri_area'] = size / 2.0
    this['tri_nn'] /= size[:, None]
    logger.info('[done]')

    #   Selected triangles
    logger.info('    Completing selection triangulation info...')
    if this['nuse_tri'] > 0:
        r1 = this['rr'][this['use_tris'][:, 0], :]
        r2 = this['rr'][this['use_tris'][:, 1], :]
        r3 = this['rr'][this['use_tris'][:, 2], :]
        this['use_tri_cent'] = (r1 + r2 + r3) / 3.0
        this['use_tri_nn'] = fast_cross_3d((r2 - r1), (r3 - r1))
        this['use_tri_area'] = np.sqrt(np.sum(this['use_tri_nn'] ** 2, axis=1)
                                       ) / 2.0
    logger.info('[done]')


def find_source_space_hemi(src):
    """Return the hemisphere id for a source space

    Parameters
    ----------
    src : dict
        The source space to investigate

    Returns
    -------
    hemi : int
        Deduced hemisphere id
    """
    xave = src['rr'][:, 0].sum()

    if xave < 0:
        hemi = int(FIFF.FIFFV_MNE_SURF_LEFT_HEMI)
    else:
        hemi = int(FIFF.FIFFV_MNE_SURF_RIGHT_HEMI)

    return hemi


def label_src_vertno_sel(label, src):
    """ Find vertex numbers and indices from label

    Parameters
    ----------
    label : Label
        Source space label
    src : dict
        Source space

    Returns
    -------
    vertno : list of length 2
        Vertex numbers for lh and rh
    src_sel : array of int (len(idx) = len(vertno[0]) + len(vertno[1]))
        Indices of the selected vertices in sourse space
    """
    if src[0]['type'] != 'surf':
        return Exception('Label are only supported with surface source spaces')

    vertno = [src[0]['vertno'], src[1]['vertno']]

    if label.hemi == 'lh':
        vertno_sel = np.intersect1d(vertno[0], label.vertices)
        src_sel = np.searchsorted(vertno[0], vertno_sel)
        vertno[0] = vertno_sel
        vertno[1] = np.array([])
    elif label.hemi == 'rh':
        vertno_sel = np.intersect1d(vertno[1], label.vertices)
        src_sel = np.searchsorted(vertno[1], vertno_sel) + len(vertno[0])
        vertno[0] = np.array([])
        vertno[1] = vertno_sel
    elif label.hemi == 'both':
        vertno_sel_lh = np.intersect1d(vertno[0], label.lh.vertices)
        src_sel_lh = np.searchsorted(vertno[0], vertno_sel_lh)
        vertno_sel_rh = np.intersect1d(vertno[1], label.rh.vertices)
        src_sel_rh = np.searchsorted(vertno[1], vertno_sel_rh) + len(vertno[0])
        src_sel = np.hstack((src_sel_lh, src_sel_rh))
        vertno = [vertno_sel_lh, vertno_sel_rh]
    else:
        raise Exception("Unknown hemisphere type")

    return vertno, src_sel


def _get_vertno(src):
    return [s['vertno'] for s in src]


###############################################################################
# Write routines

@verbose
def _write_source_spaces_to_fid(fid, src, verbose=None):
    """Write the source spaces to a FIF file

    Parameters
    ----------
    fid : file descriptor
        An open file descriptor.
    src : list
        The list of source spaces.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).
    """
    for s in src:
        logger.info('    Write a source space...')
        start_block(fid, FIFF.FIFFB_MNE_SOURCE_SPACE)
        _write_one_source_space(fid, s, verbose)
        end_block(fid, FIFF.FIFFB_MNE_SOURCE_SPACE)
        logger.info('    [done]')
    logger.info('    %d source spaces written' % len(src))


@verbose
def write_source_spaces(fname, src, verbose=None):
    """Write source spaces to a file

    Parameters
    ----------
    fname : str
        The name of the file, which should end with -src.fif or
        -src.fif.gz.
    src : SourceSpaces
        The source spaces (as returned by read_source_spaces).
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).
    """
    check_fname(fname, 'source space', ('-src.fif', '-src.fif.gz'))

    fid = start_file(fname)
    start_block(fid, FIFF.FIFFB_MNE)

    if src.info:
        start_block(fid, FIFF.FIFFB_MNE_ENV)

        write_id(fid, FIFF.FIFF_BLOCK_ID)

        data = src.info.get('working_dir', None)
        if data:
            write_string(fid, FIFF.FIFF_MNE_ENV_WORKING_DIR, data)
        data = src.info.get('command_line', None)
        if data:
            write_string(fid, FIFF.FIFF_MNE_ENV_COMMAND_LINE, data)

        end_block(fid, FIFF.FIFFB_MNE_ENV)

    _write_source_spaces_to_fid(fid, src, verbose)

    end_block(fid, FIFF.FIFFB_MNE)
    end_file(fid)


def _write_one_source_space(fid, this, verbose=None):
    """Write one source space"""
    if this['type'] == 'surf':
        src_type = FIFF.FIFFV_MNE_SPACE_SURFACE
    elif this['type'] == 'vol':
        src_type = FIFF.FIFFV_MNE_SPACE_VOLUME
    elif this['type'] == 'discrete':
        src_type = FIFF.FIFFV_MNE_SPACE_DISCRETE
    else:
        raise ValueError('Unknown source space type (%s)' % this['type'])
    write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_TYPE, src_type)
    if this['id'] >= 0:
        write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_ID, this['id'])

    data = this.get('subject_his_id', None)
    if data:
        write_string(fid, FIFF.FIFF_SUBJ_HIS_ID, data)
    write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, this['coord_frame'])

    write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS, this['np'])
    write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_POINTS, this['rr'])
    write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS, this['nn'])

    #   Which vertices are active
    write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_SELECTION, this['inuse'])
    write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE, this['nuse'])

    if this['ntri'] > 0:
        write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NTRI, this['ntri'])
        write_int_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_TRIANGLES,
                         this['tris'] + 1)

    if this['type'] != 'vol' and this['use_tris'] is not None:
        #   Use triangulation
        write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE_TRI, this['nuse_tri'])
        write_int_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_USE_TRIANGLES,
                         this['use_tris'] + 1)

    if this['type'] == 'vol':
        neighbor_vert = this.get('neighbor_vert', None)
        if neighbor_vert is not None:
            nneighbors = np.array([len(n) for n in neighbor_vert])
            neighbors = np.concatenate(neighbor_vert)
            write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NNEIGHBORS, nneighbors)
            write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NEIGHBORS, neighbors)

        write_coord_trans(fid, this['src_mri_t'])

        write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_VOXEL_DIMS, this['shape'])

        start_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
        write_coord_trans(fid, this['mri_ras_t'])
        write_coord_trans(fid, this['vox_mri_t'])

        mri_volume_name = this.get('mri_volume_name', None)
        if mri_volume_name is not None:
            write_string(fid, FIFF.FIFF_MNE_FILE_NAME, mri_volume_name)

        write_float_sparse_rcs(fid, FIFF.FIFF_MNE_SOURCE_SPACE_INTERPOLATOR,
                               this['interpolator'])

        if 'mri_file' in this and this['mri_file'] is not None:
            write_string(fid, FIFF.FIFF_MNE_SOURCE_SPACE_MRI_FILE,
                         this['mri_file'])

        write_int(fid, FIFF.FIFF_MRI_WIDTH, this['mri_width'])
        write_int(fid, FIFF.FIFF_MRI_HEIGHT, this['mri_height'])
        write_int(fid, FIFF.FIFF_MRI_DEPTH, this['mri_depth'])

        end_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)

    #   Patch-related information
    if this['nearest'] is not None:
        write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST, this['nearest'])
        write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST_DIST,
                           this['nearest_dist'])

    #   Distances
    if this['dist'] is not None:
        # Save only upper triangular portion of the matrix
        dists = this['dist'].copy()
        dists = sparse.triu(dists, format=dists.format)
        write_float_sparse_rcs(fid, FIFF.FIFF_MNE_SOURCE_SPACE_DIST, dists)
        write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_DIST_LIMIT,
                           this['dist_limit'])


##############################################################################
# Surface to MNI conversion

@verbose
def vertex_to_mni(vertices, hemis, subject, subjects_dir=None, mode=None,
                  verbose=None):
    """Convert the array of vertices for a hemisphere to MNI coordinates

    Parameters
    ----------
    vertices : int, or list of int
        Vertex number(s) to convert
    hemis : int, or list of int
        Hemisphere(s) the vertices belong to
    subject : string
        Name of the subject to load surfaces from.
    subjects_dir : string, or None
        Path to SUBJECTS_DIR if it is not set in the environment.
    mode : string | None
        Either 'nibabel' or 'freesurfer' for the software to use to
        obtain the transforms. If None, 'nibabel' is tried first, falling
        back to 'freesurfer' if it fails. Results should be equivalent with
        either option, but nibabel may be quicker (and more pythonic).
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    coordinates : n_vertices x 3 array of float
        The MNI coordinates (in mm) of the vertices

    Notes
    -----
    This function requires either nibabel (in Python) or Freesurfer
    (with utility "mri_info") to be correctly installed.
    """
    if not has_freesurfer and not has_nibabel():
        raise RuntimeError('NiBabel (Python) or Freesurfer (Unix) must be '
                           'correctly installed and accessible from Python')

    if not isinstance(vertices, list) and not isinstance(vertices, np.ndarray):
        vertices = [vertices]

    if not isinstance(hemis, list) and not isinstance(hemis, np.ndarray):
        hemis = [hemis] * len(vertices)

    if not len(hemis) == len(vertices):
        raise ValueError('hemi and vertices must match in length')

    subjects_dir = get_subjects_dir(subjects_dir)

    surfs = [op.join(subjects_dir, subject, 'surf', '%s.white' % h)
             for h in ['lh', 'rh']]
    rr = [read_surface(s)[0] for s in surfs]

    # take point locations in RAS space and convert to MNI coordinates
    xfm = _read_talxfm(subject, subjects_dir, mode)
    data = np.array([np.concatenate((rr[h][v, :], [1]))
                     for h, v in zip(hemis, vertices)]).T
    return np.dot(xfm, data)[:3, :].T.copy()


@verbose
def _read_talxfm(subject, subjects_dir, mode=None, verbose=None):
    """Read MNI transform from FreeSurfer talairach.xfm file

    Adapted from freesurfer m-files. Altered to deal with Norig
    and Torig correctly.
    """
    if mode is not None and not mode in ['nibabel', 'freesurfer']:
        raise ValueError('mode must be "nibabel" or "freesurfer"')
    fname = op.join(subjects_dir, subject, 'mri', 'transforms',
                    'talairach.xfm')
    with open(fname, 'r') as fid:
        logger.debug('Reading FreeSurfer talairach.xfm file:\n%s' % fname)

        # read lines until we get the string 'Linear_Transform', which precedes
        # the data transformation matrix
        got_it = False
        comp = 'Linear_Transform'
        for line in fid:
            if line[:len(comp)] == comp:
                # we have the right line, so don't read any more
                got_it = True
                break

        if got_it:
            xfm = list()
            # read the transformation matrix (3x4)
            for ii, line in enumerate(fid):
                digs = [float(s) for s in line.strip('\n;').split()]
                xfm.append(digs)
                if ii == 2:
                    break
            xfm.append([0., 0., 0., 1.])
            xfm = np.array(xfm, dtype=float)
        else:
            raise ValueError('failed to find \'Linear_Transform\' string in '
                             'xfm file:\n%s' % fname)

    # now get Norig and Torig
    path = op.join(subjects_dir, subject, 'mri', 'orig.mgz')

    if has_nibabel():
        use_nibabel = True
    else:
        use_nibabel = False
        if mode == 'nibabel':
            raise ImportError('Tried to import nibabel but failed, try using '
                              'mode=None or mode=Freesurfer')

    # note that if mode == None, then we default to using nibabel
    if use_nibabel is True and mode == 'freesurfer':
        use_nibabel = False
    if use_nibabel:
        import nibabel as nib
        img = nib.load(path)
        hdr = img.get_header()
        n_orig = hdr.get_vox2ras()
        ds = np.array(hdr.get_zooms())
        ns = (np.array(hdr.get_data_shape()[:3]) * ds) / 2.0
        t_orig = np.array([[-ds[0], 0, 0, ns[0]],
                           [0, 0, ds[2], -ns[2]],
                           [0, -ds[1], 0, ns[1]],
                           [0, 0, 0, 1]], dtype=float)
        nt_orig = [n_orig, t_orig]
    else:
        nt_orig = list()
        for conv in ['--vox2ras', '--vox2ras-tkr']:
            stdout, stderr = run_subprocess(['mri_info', conv, path])
            stdout = np.fromstring(stdout, sep=' ').astype(float)
            if not stdout.size == 16:
                raise ValueError('Could not parse Freesurfer mri_info output')
            nt_orig.append(stdout.reshape(4, 4))
    xfm = np.dot(xfm, np.dot(nt_orig[0], linalg.inv(nt_orig[1])))
    return xfm


###############################################################################
# Creation and decimation

@verbose
def setup_source_space(subject, fname=True, spacing='oct6', surface='white',
                       overwrite=False, subjects_dir=None, add_dist=None,
                       verbose=None):
    """Setup a source space with subsampling

    Parameters
    ----------
    subject : str
        Subject to process.
    fname : str | None | bool
        Filename to use. If True, a default name will be used. If None,
        the source space will not be saved (only returned).
    spacing : str
        The spacing to use. Can be ``'ico#'`` for a recursively subdivided
        icosahedron, ``'oct#'`` for a recursively subdivided octahedron,
        or ``'all'`` for all points.
    surface : str
        The surface to use.
    overwrite: bool
        If True, overwrite output file (if it exists).
    subjects_dir : string, or None
        Path to SUBJECTS_DIR if it is not set in the environment.
    add_dist : bool
        Add distance and patch information to the source space. This takes some
        time so precomputing it is recommended. The default is currently False
        but will change to True in release 0.9.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    src : list
        The source space for each hemisphere.
    """
    if add_dist is None:
        msg = ("The add_dist parameter to mne.setup_source_space currently "
               "defaults to False, but the default will change to True in "
               "release 0.9. Specify the parameter explicitly to avoid this "
               "warning.")
        logger.warning(msg)

    cmd = ('setup_source_space(%s, fname=%s, spacing=%s, surface=%s, '
           'overwrite=%s, subjects_dir=%s, add_dist=%s, verbose=%s)'
           % (subject, fname, spacing, surface, overwrite,
              subjects_dir, add_dist, verbose))
    # check to make sure our parameters are good, parse 'spacing'
    space_err = ('"spacing" must be a string with values '
                 '"ico#", "oct#", or "all", and "ico" and "oct"'
                 'numbers must be integers')
    if not isinstance(spacing, string_types) or len(spacing) < 3:
        raise ValueError(space_err)
    if spacing == 'all':
        stype = 'all'
        sval = ''
    elif spacing[:3] == 'ico':
        stype = 'ico'
        sval = spacing[3:]
    elif spacing[:3] == 'oct':
        stype = 'oct'
        sval = spacing[3:]
    else:
        raise ValueError(space_err)
    try:
        if stype in ['ico', 'oct']:
            sval = int(sval)
        elif stype == 'spacing':  # spacing
            sval = float(sval)
    except:
        raise ValueError(space_err)
    subjects_dir = get_subjects_dir(subjects_dir)
    surfs = [op.join(subjects_dir, subject, 'surf', hemi + surface)
             for hemi in ['lh.', 'rh.']]
    bem_dir = op.join(subjects_dir, subject, 'bem')

    for surf, hemi in zip(surfs, ['LH', 'RH']):
        if surf is not None and not op.isfile(surf):
            raise IOError('Could not find the %s surface %s'
                          % (hemi, surf))

    if not (fname is True or fname is None or isinstance(fname, string_types)):
        raise ValueError('"fname" must be a string, True, or None')
    if fname is True:
        extra = '%s-%s' % (stype, sval) if sval != '' else stype
        fname = op.join(bem_dir, '%s-%s-src.fif' % (subject, extra))
    if fname is not None and op.isfile(fname) and overwrite is False:
        raise IOError('file "%s" exists, use overwrite=True if you want '
                      'to overwrite the file' % fname)

    logger.info('Setting up the source space with the following parameters:\n')
    logger.info('SUBJECTS_DIR = %s' % subjects_dir)
    logger.info('Subject      = %s' % subject)
    logger.info('Surface      = %s' % surface)
    if stype == 'ico':
        src_type_str = 'ico = %s' % sval
        logger.info('Icosahedron subdivision grade %s\n' % sval)
    elif stype == 'oct':
        src_type_str = 'oct = %s' % sval
        logger.info('Octahedron subdivision grade %s\n' % sval)
    else:
        src_type_str = 'all'
        logger.info('Include all vertices\n')

    # Create the fif file
    if fname is not None:
        logger.info('>>> 1. Creating the source space file %s...' % fname)
    else:
        logger.info('>>> 1. Creating the source space...\n')

    # mne_make_source_space ... actually make the source spaces
    src = []

    # pre-load ico/oct surf (once) for speed, if necessary
    if stype in ['ico', 'oct']:
        ### from mne_ico_downsample.c ###
        if stype == 'ico':
            logger.info('Doing the icosahedral vertex picking...')
            ico_surf = _get_ico_surface(sval)
        else:
            logger.info('Doing the octahedral vertex picking...')
            ico_surf = _tessellate_sphere_surf(sval)
    else:
        ico_surf = None

    for hemi, surf in zip(['lh', 'rh'], surfs):
        logger.info('Loading %s...' % surf)
        s = _create_surf_spacing(surf, hemi, subject, stype, sval, ico_surf,
                                 subjects_dir)
        logger.info('loaded %s %d/%d selected to source space (%s)'
                    % (op.split(surf)[1], s['nuse'], s['np'], src_type_str))
        src.append(s)
        logger.info('')  # newline after both subject types are run

    # Fill in source space info
    hemi_ids = [FIFF.FIFFV_MNE_SURF_LEFT_HEMI, FIFF.FIFFV_MNE_SURF_RIGHT_HEMI]
    for s, s_id in zip(src, hemi_ids):
        # Add missing fields
        s.update(dict(dist=None, dist_limit=None, nearest=None, type='surf',
                      nearest_dist=None, pinfo=None, patch_inds=None, id=s_id,
                      coord_frame=np.array((FIFF.FIFFV_COORD_MRI,), np.int32)))
        s['rr'] /= 1000.0
        del s['tri_area']
        del s['tri_cent']
        del s['tri_nn']
        del s['neighbor_tri']

    # upconvert to object format from lists
    src = SourceSpaces(src, dict(working_dir=os.getcwd(), command_line=cmd))

    if add_dist:
        add_source_space_distances(src, verbose=verbose)

    # write out if requested, then return the data
    if fname is not None:
        write_source_spaces(fname, src)
        logger.info('Wrote %s' % fname)
    logger.info('You are now one step closer to computing the gain matrix')
    return src


@verbose
def setup_volume_source_space(subject, fname=None, pos=5.0, mri=None,
                              sphere=(0.0, 0.0, 0.0, 90.0), bem=None,
                              surface=None, mindist=5.0, exclude=0.0,
                              overwrite=False, subjects_dir=None,
                              verbose=None):
    """Setup a volume source space with grid spacing or discrete source space

    Parameters
    ----------
    subject : str
        Subject to process.
    fname : str | None
        Filename to use. If None, the source space will not be saved
        (only returned).
    pos : float | dict
        Positions to use for sources. If float, a grid will be constructed
        with the spacing given by `pos` in mm, generating a volume source
        space. If dict, pos['rr'] and pos['nn'] will be used as the source
        space locations (in meters) and normals, respectively, creating a
        discrete source space. NOTE: For a discrete source space (`pos` is
        a dict), `mri` must be None.
    mri : str | None
        The filename of an MRI volume (mgh or mgz) to create the
        interpolation matrix over. Source estimates obtained in the
        volume source space can then be morphed onto the MRI volume
        using this interpolator. If pos is a dict, this can be None.
    sphere : array_like (length 4)
        Define spherical source space bounds using origin and radius given
        by (ox, oy, oz, rad) in mm. Only used if `bem` and `surface` are
        both None.
    bem : str | None
        Define source space bounds using a BEM file (specifically the inner
        skull surface).
    surface : str | dict | None
        Define source space bounds using a FreeSurfer surface file. Can
        also be a dictionary with entries `'rr'` and `'tris'`, such as
        those returned by `read_surface()`.
    mindist : float
        Exclude points closer than this distance (mm) to the bounding surface.
    exclude : float
        Exclude points closer than this distance (mm) from the center of mass
        of the bounding surface.
    overwrite: bool
        If True, overwrite output file (if it exists).
    subjects_dir : string, or None
        Path to SUBJECTS_DIR if it is not set in the environment.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    src : list
        The source space. Note that this list will have length 1 for
        compatibility reasons, as most functions expect source spaces
        to be provided as lists).

    Notes
    -----
    To create a discrete source space, `pos` must be a dict. To create a
    volume source space, `pos` must be a float. Note that if a discrete
    source space is created, then `mri` is optional (can be None), whereas
    for a volume source space, `mri` must be provided.
    """
    if bem is not None and surface is not None:
        raise ValueError('Only one of "bem" and "surface" should be '
                         'specified')
    if mri is not None:
        if not op.isfile(mri):
            raise IOError('mri file "%s" not found' % mri)
        if isinstance(pos, dict):
            raise ValueError('Cannot create interpolation matrix for '
                             'discrete source space, mri must be None if '
                             'pos is a dict')
    elif not isinstance(pos, dict):
        # "pos" will create a discrete src, so we don't need "mri"
        # if "pos" is None, we must have "mri" b/c it will be vol src
        raise RuntimeError('"mri" must be provided if "pos" is not a dict '
                           '(i.e., if a volume instead of discrete source '
                           'space is desired)')

    sphere = np.asarray(sphere)
    if sphere.size != 4:
        raise ValueError('"sphere" must be array_like with 4 elements')

    # triage bounding argument
    if bem is not None:
        logger.info('BEM file              : %s', bem)
    elif surface is not None:
        if isinstance(surface, dict):
            if not all([key in surface for key in ['rr', 'tris']]):
                raise KeyError('surface, if dict, must have entries "rr" '
                               'and "tris"')
            # let's make sure we have geom info
            surface = _read_surface_geom(surface, verbose=False)
            surf_extra = 'dict()'
        elif isinstance(surface, string_types):
            if not op.isfile(surface):
                raise IOError('surface file "%s" not found' % surface)
            surf_extra = surface
        logger.info('Boundary surface file : %s', surf_extra)
    else:
        logger.info('Sphere                : origin at (%.1f %.1f %.1f) mm'
                    % (sphere[0], sphere[1], sphere[2]))
        logger.info('              radius  : %.1f mm' % sphere[3])

    # triage pos argument
    if isinstance(pos, dict):
        if not all([key in pos for key in ['rr', 'nn']]):
            raise KeyError('pos, if dict, must contain "rr" and "nn"')
        pos_extra = 'dict()'
    else:  # pos should be float-like
        try:
            pos = float(pos)
        except (TypeError, ValueError):
            raise ValueError('pos must be a dict, or something that can be '
                             'cast to float()')
    if not isinstance(pos, float):
        logger.info('Source location file  : %s', pos_extra)
        logger.info('Assuming input in millimeters')
        logger.info('Assuming input in MRI coordinates')

    logger.info('Output file           : %s', fname)
    if isinstance(pos, float):
        logger.info('grid                  : %.1f mm' % pos)
        logger.info('mindist               : %.1f mm' % mindist)
        pos /= 1000.0
    if exclude > 0.0:
        logger.info('Exclude               : %.1f mm' % exclude)
    if mri is not None:
        logger.info('MRI volume            : %s' % mri)
    exclude /= 1000.0
    logger.info('')

    # Explicit list of points
    if not isinstance(pos, float):
        # Make the grid of sources
        sp = _make_discrete_source_space(pos)
    else:
        # Load the brain surface as a template
        if bem is not None:
            surf = read_bem_surfaces(bem, s_id=FIFF.FIFFV_BEM_SURF_ID_BRAIN,
                                     verbose=False)
            logger.info('Loaded inner skull from %s (%d nodes)'
                        % (bem, surf['np']))
        elif surface is not None:
            if isinstance(surface, string_types):
                surf = _read_surface_geom(surface)
            else:
                surf = surface
            logger.info('Loaded bounding surface from %s (%d nodes)'
                        % (surface, surf['np']))
            surf = deepcopy(surf)
            surf['rr'] *= 1e-3  # must be converted to meters
        else:  # Load an icosahedron and use that as the surface
            logger.info('Setting up the sphere...')
            surf = _get_ico_surface(3)

            # Scale and shift
            _normalize_vectors(surf['rr'])
            surf['rr'] *= sphere[3] / 1000.0  # scale by radius
            surf['rr'] += sphere[:3] / 1000.0  # move by center
            _complete_surface_info(surf, True)
        # Make the grid of sources
        sp = _make_volume_source_space(surf, pos, exclude, mindist)

    # Compute an interpolation matrix to show data in an MRI volume
    if mri is not None:
        _add_interpolator(sp, mri)

    if 'vol_dims' in sp:
        del sp['vol_dims']

    # Save it
    sp.update(dict(nearest=None, dist=None, use_tris=None, patch_inds=None,
                   dist_limit=None, pinfo=None, ntri=0, nearest_dist=None,
                   nuse_tri=0, tris=None))
    sp = SourceSpaces([sp], dict(working_dir=os.getcwd(), command_line='None'))
    if fname is not None:
        write_source_spaces(fname, sp, verbose=False)
    return sp


def _make_voxel_ras_trans(move, ras, voxel_size):
    """Make a transformation for MRI voxel to MRI surface RAS"""
    assert voxel_size.ndim == 1
    assert voxel_size.size == 3
    rot = ras.T * voxel_size[np.newaxis, :]
    assert rot.ndim == 2
    assert rot.shape[0] == 3
    assert rot.shape[1] == 3
    trans = np.c_[np.r_[rot, np.zeros((1, 3))], np.r_[move, 1.0]]
    t = {'from': FIFF.FIFFV_MNE_COORD_MRI_VOXEL, 'to': FIFF.FIFFV_COORD_MRI,
         'trans': trans}
    return t


def _make_discrete_source_space(pos):
    """Use a discrete set of source locs/oris to make src space

    Parameters
    ----------
    pos : dict
        Must have entries "rr" and "nn". Data should be in meters.

    Returns
    -------
    src : dict
        The source space.
    """
    # process points
    rr = pos['rr'].copy()
    nn = pos['nn'].copy()
    if not (rr.ndim == nn.ndim == 2 and nn.shape[0] == nn.shape[0] and
            rr.shape[1] == nn.shape[1]):
        raise RuntimeError('"rr" and "nn" must both be 2D arrays with '
                           'the same number of rows and 3 columns')
    npts = rr.shape[0]
    _normalize_vectors(nn)
    nz = np.sum(np.sum(nn * nn, axis=1) == 0)
    if nz != 0:
        raise RuntimeError('%d sources have zero length normal' % nz)
    logger.info('Positions (in meters) and orientations')
    logger.info('%d sources' % npts)

    # Ready to make the source space
    coord_frame = FIFF.FIFFV_COORD_MRI
    sp = dict(coord_frame=coord_frame, type='discrete', nuse=npts, np=npts,
              inuse=np.ones(npts, int), vertno=np.arange(npts), rr=rr, nn=nn,
              id=-1)
    return sp


def _make_volume_source_space(surf, grid, exclude, mindist):
    """Make a source space which covers the volume bounded by surf"""

    # Figure out the grid size
    mins = np.min(surf['rr'], axis=0)
    maxs = np.max(surf['rr'], axis=0)
    cm = np.mean(surf['rr'], axis=0)  # center of mass

    # Define the sphere which fits the surface
    maxdist = np.sqrt(np.max(np.sum((surf['rr'] - cm) ** 2, axis=1)))

    logger.info('Surface CM = (%6.1f %6.1f %6.1f) mm'
                % (1000 * cm[0], 1000 * cm[1], 1000 * cm[2]))
    logger.info('Surface fits inside a sphere with radius %6.1f mm'
                % (1000 * maxdist))
    logger.info('Surface extent:')
    for c, mi, ma in zip('xyz', mins, maxs):
        logger.info('    %s = %6.1f ... %6.1f mm' % (c, 1000 * mi, 1000 * ma))
    maxn = np.zeros(3, int)
    minn = np.zeros(3, int)
    for c in range(3):
        if maxs[c] > 0:
            maxn[c] = np.floor(np.abs(maxs[c]) / grid) + 1
        else:
            maxn[c] = -np.floor(np.abs(maxs[c]) / grid) - 1
        if mins[c] > 0:
            minn[c] = np.floor(np.abs(mins[c]) / grid) + 1
        else:
            minn[c] = -np.floor(np.abs(mins[c]) / grid) - 1

    logger.info('Grid extent:')
    for c, mi, ma in zip('xyz', minn, maxn):
        logger.info('    %s = %6.1f ... %6.1f mm'
                    % (c, 1000 * mi * grid, 1000 * ma * grid))

    # Now make the initial grid
    ns = maxn - minn + 1
    npts = np.prod(ns)
    nrow = ns[0]
    ncol = ns[1]
    nplane = nrow * ncol
    sp = dict(np=npts, rr=np.zeros((npts, 3)), nn=np.zeros((npts, 3)),
              inuse=np.ones(npts, int), type='vol', nuse=npts,
              coord_frame=FIFF.FIFFV_COORD_MRI, id=-1, shape=ns)
    sp['nn'][:, 2] = 1.0  # Source orientation is immaterial

    x = np.arange(minn[0], maxn[0] + 1)[np.newaxis, np.newaxis, :]
    y = np.arange(minn[1], maxn[1] + 1)[np.newaxis, :, np.newaxis]
    z = np.arange(minn[2], maxn[2] + 1)[:, np.newaxis, np.newaxis]
    z = np.tile(z, (1, ns[1], ns[0])).ravel()
    y = np.tile(y, (ns[2], 1, ns[0])).ravel()
    x = np.tile(x, (ns[2], ns[1], 1)).ravel()
    k = np.arange(npts)
    sp['rr'] = np.c_[x, y, z] * grid
    neigh = np.empty((26, npts), int)
    neigh.fill(-1)

    # Figure out each neighborhood:
    # 6-neighborhood first
    idxs = [z > minn[2], x < maxn[0], y < maxn[1],
            x > minn[0], y > minn[1], z < maxn[2]]
    offsets = [-nplane, 1, nrow, -1, -nrow, nplane]
    for n, idx, offset in zip(neigh[:6], idxs, offsets):
        n[idx] = k[idx] + offset

    # Then the rest to complete the 26-neighborhood

    # First the plane below
    idx1 = z > minn[2]

    idx2 = np.logical_and(idx1, x < maxn[0])
    neigh[6, idx2] = k[idx2] + 1 - nplane
    idx3 = np.logical_and(idx2, y < maxn[1])
    neigh[7, idx3] = k[idx3] + 1 + nrow - nplane

    idx2 = np.logical_and(idx1, y < maxn[1])
    neigh[8, idx2] = k[idx2] + nrow - nplane

    idx2 = np.logical_and(idx1, x > minn[0])
    idx3 = np.logical_and(idx2, y < maxn[1])
    neigh[9, idx3] = k[idx3] - 1 + nrow - nplane
    neigh[10, idx2] = k[idx2] - 1 - nplane
    idx3 = np.logical_and(idx2, y > minn[1])
    neigh[11, idx3] = k[idx3] - 1 - nrow - nplane

    idx2 = np.logical_and(idx1, y > minn[1])
    neigh[12, idx2] = k[idx2] - nrow - nplane
    idx3 = np.logical_and(idx2, x < maxn[0])
    neigh[13, idx3] = k[idx3] + 1 - nrow - nplane

    # Then the same plane
    idx1 = np.logical_and(x < maxn[0], y < maxn[1])
    neigh[14, idx1] = k[idx1] + 1 + nrow

    idx1 = x > minn[0]
    idx2 = np.logical_and(idx1, y < maxn[1])
    neigh[15, idx2] = k[idx2] - 1 + nrow
    idx2 = np.logical_and(idx1, y > minn[1])
    neigh[16, idx2] = k[idx2] - 1 - nrow

    idx1 = np.logical_and(y > minn[1], x < maxn[0])
    neigh[17, idx1] = k[idx1] + 1 - nrow - nplane

    # Finally one plane above
    idx1 = z < maxn[2]

    idx2 = np.logical_and(idx1, x < maxn[0])
    neigh[18, idx2] = k[idx2] + 1 + nplane
    idx3 = np.logical_and(idx2, y < maxn[1])
    neigh[19, idx3] = k[idx3] + 1 + nrow + nplane

    idx2 = np.logical_and(idx1, y < maxn[1])
    neigh[20, idx2] = k[idx2] + nrow + nplane

    idx2 = np.logical_and(idx1, x > minn[0])
    idx3 = np.logical_and(idx2, y < maxn[1])
    neigh[21, idx3] = k[idx3] - 1 + nrow + nplane
    neigh[22, idx2] = k[idx2] - 1 + nplane
    idx3 = np.logical_and(idx2, y > minn[1])
    neigh[23, idx3] = k[idx3] - 1 - nrow + nplane

    idx2 = np.logical_and(idx1, y > minn[1])
    neigh[24, idx2] = k[idx2] - nrow + nplane
    idx3 = np.logical_and(idx2, x < maxn[0])
    neigh[25, idx3] = k[idx3] + 1 - nrow + nplane

    logger.info('%d sources before omitting any.', sp['nuse'])

    # Exclude infeasible points
    dists = np.sqrt(np.sum((sp['rr'] - cm) ** 2, axis=1))
    bads = np.where(np.logical_or(dists < exclude, dists > maxdist))[0]
    sp['inuse'][bads] = False
    sp['nuse'] -= len(bads)
    logger.info('%d sources after omitting infeasible sources.', sp['nuse'])

    _filter_source_spaces(surf, mindist, None, [sp])
    logger.info('%d sources remaining after excluding the sources outside '
                'the surface and less than %6.1f mm inside.'
                % (sp['nuse'], mindist))

    # Omit unused vertices from the neighborhoods
    logger.info('Adjusting the neighborhood info...')
    # remove non source-space points
    log_inuse = sp['inuse'] > 0
    neigh[:, np.logical_not(log_inuse)] = -1
    # remove these points from neigh
    vertno = np.where(log_inuse)[0]
    sp['vertno'] = vertno
    old_shape = neigh.shape
    neigh = neigh.ravel()
    checks = np.where(neigh >= 0)[0]
    removes = np.logical_not(in1d(checks, vertno))
    neigh[checks[removes]] = -1
    neigh.shape = old_shape
    neigh = neigh.T
    # Thought we would need this, but C code keeps -1 vertices, so we will:
    #neigh = [n[n >= 0] for n in enumerate(neigh[vertno])]
    sp['neighbor_vert'] = neigh

    # Set up the volume data (needed for creating the interpolation matrix)
    r0 = minn * grid
    voxel_size = grid * np.ones(3)
    ras = np.eye(3)
    sp['src_mri_t'] = _make_voxel_ras_trans(r0, ras, voxel_size)
    sp['vol_dims'] = maxn - minn + 1
    return sp


def _vol_vertex(width, height, jj, kk, pp):
    return jj + width * kk + pp * (width * height)


def _get_mgz_header(fname):
    """Adapted from nibabel to quickly extract header info"""
    if not fname.endswith('.mgz'):
        raise IOError('Filename must end with .mgz')
    header_dtd = [('version', '>i4'), ('dims', '>i4', (4,)),
                  ('type', '>i4'), ('dof', '>i4'), ('goodRASFlag', '>i2'),
                  ('delta', '>f4', (3,)), ('Mdc', '>f4', (3, 3)),
                  ('Pxyz_c', '>f4', (3,))]
    header_dtype = np.dtype(header_dtd)
    with gzip_open(fname, 'rb') as fid:
        hdr_str = fid.read(header_dtype.itemsize)
    header = np.ndarray(shape=(), dtype=header_dtype,
                        buffer=hdr_str)
    # dims
    dims = header['dims'].astype(int)
    dims = dims[:3] if len(dims) == 4 else dims
    # vox2ras_tkr
    delta = header['delta']
    ds = np.array(delta, float)
    ns = np.array(dims * ds) / 2.0
    v2rtkr = np.array([[-ds[0], 0, 0, ns[0]],
                       [0, 0, ds[2], -ns[2]],
                       [0, -ds[1], 0, ns[1]],
                       [0, 0, 0, 1]], dtype=np.float32)
    # ras2vox
    d = np.diag(delta)
    pcrs_c = dims / 2.0
    Mdc = header['Mdc'].T
    pxyz_0 = header['Pxyz_c'] - np.dot(Mdc, np.dot(d, pcrs_c))
    M = np.eye(4, 4)
    M[0:3, 0:3] = np.dot(Mdc, d)
    M[0:3, 3] = pxyz_0.T
    M = linalg.inv(M)
    header = dict(dims=dims, vox2ras_tkr=v2rtkr, ras2vox=M)
    return header


def _add_interpolator(s, mri_name):
    """Compute a sparse matrix to interpolate the data into an MRI volume"""
    # extract transformation information from mri
    logger.info('Reading %s...' % mri_name)
    header = _get_mgz_header(mri_name)
    mri_width, mri_height, mri_depth = header['dims']

    s.update(dict(mri_width=mri_width, mri_height=mri_height,
                  mri_depth=mri_depth))
    trans = header['vox2ras_tkr'].copy()
    trans[:3, :] /= 1000.0
    s['vox_mri_t'] = {'trans': trans, 'from': FIFF.FIFFV_MNE_COORD_MRI_VOXEL,
                      'to': FIFF.FIFFV_COORD_MRI}  # ras_tkr
    trans = linalg.inv(np.dot(header['vox2ras_tkr'], header['ras2vox']))
    trans[:3, 3] /= 1000.0
    s['mri_ras_t'] = {'trans': trans, 'from': FIFF.FIFFV_COORD_MRI,
                      'to': FIFF.FIFFV_MNE_COORD_RAS}  # ras

    _print_coord_trans(s['src_mri_t'], 'Source space : ')
    _print_coord_trans(s['vox_mri_t'], 'MRI volume : ')
    _print_coord_trans(s['mri_ras_t'], 'MRI volume : ')

    #
    # Convert MRI voxels from destination (MRI volume) to source (volume
    # source space subset) coordinates
    #
    combo_trans = combine_transforms(s['vox_mri_t'],
                                     invert_transform(s['src_mri_t']),
                                     FIFF.FIFFV_MNE_COORD_MRI_VOXEL,
                                     FIFF.FIFFV_MNE_COORD_MRI_VOXEL)
    combo_trans['trans'] = combo_trans['trans'].astype(np.float32)

    logger.info('Setting up interpolation...')

    # Take *all* MRI vertices...
    js = np.arange(mri_width, dtype=np.float32)
    js = np.tile(js[np.newaxis, np.newaxis, :],
                 (mri_depth, mri_height, 1)).ravel()
    ks = np.arange(mri_height, dtype=np.float32)
    ks = np.tile(ks[np.newaxis, :, np.newaxis],
                 (mri_depth, 1, mri_width)).ravel()
    ps = np.arange(mri_depth, dtype=np.float32)
    ps = np.tile(ps[:, np.newaxis, np.newaxis],
                 (1, mri_height, mri_width)).ravel()
    r0 = np.c_[js, ks, ps]
    # note we have the correct number of vertices
    assert len(r0) == mri_width * mri_height * mri_depth

    # ...and transform them from their MRI space into our source space's frame
    # (this is labeled as FIFFV_MNE_COORD_MRI_VOXEL, but it's really a subset
    # of the entire volume!)
    r0 = apply_trans(combo_trans['trans'], r0)
    rn = np.floor(r0).astype(int)
    maxs = (s['vol_dims'] - 1)[np.newaxis, :]
    good = np.logical_and(np.all(rn >= 0, axis=1), np.all(rn < maxs, axis=1))
    rn = rn[good]
    r0 = r0[good]
    # now we take each MRI voxel *in this space*, and figure out how to make
    # its value the weighted sum of voxels in the volume source space. This
    # is a 3D weighting scheme based (presumably) on the fact that we know
    # we're interpolating from one volumetric grid into another.
    jj = rn[:, 0]
    kk = rn[:, 1]
    pp = rn[:, 2]
    vss = np.empty((8, len(jj)), int)
    width = s['vol_dims'][0]
    height = s['vol_dims'][1]
    vss[0, :] = _vol_vertex(width, height, jj, kk, pp)
    vss[1, :] = _vol_vertex(width, height, jj + 1, kk, pp)
    vss[2, :] = _vol_vertex(width, height, jj + 1, kk + 1, pp)
    vss[3, :] = _vol_vertex(width, height, jj, kk + 1, pp)
    vss[4, :] = _vol_vertex(width, height, jj, kk, pp + 1)
    vss[5, :] = _vol_vertex(width, height, jj + 1, kk, pp + 1)
    vss[6, :] = _vol_vertex(width, height, jj + 1, kk + 1, pp + 1)
    vss[7, :] = _vol_vertex(width, height, jj, kk + 1, pp + 1)
    del jj, kk, pp
    uses = np.any(s['inuse'][vss], axis=0)

    verts = vss[:, uses].ravel()  # vertex (col) numbers in csr matrix
    row_idx = np.tile(np.where(good)[0][uses], (8, 1)).ravel()

    # figure out weights for each vertex
    r0 = r0[uses]
    rn = rn[uses]
    xf = r0[:, 0] - rn[:, 0].astype(np.float32)
    yf = r0[:, 1] - rn[:, 1].astype(np.float32)
    zf = r0[:, 2] - rn[:, 2].astype(np.float32)
    omxf = 1.0 - xf
    omyf = 1.0 - yf
    omzf = 1.0 - zf
    weights = np.concatenate([omxf * omyf * omzf,  # correspond to rows of vss
                              xf * omyf * omzf,
                              xf * yf * omzf,
                              omxf * yf * omzf,
                              omxf * omyf * zf,
                              xf * omyf * zf,
                              xf * yf * zf,
                              omxf * yf * zf])
    del xf, yf, zf, omxf, omyf, omzf

    # Compose the sparse matrix
    ij = (row_idx, verts)
    nvox = mri_width * mri_height * mri_depth
    interp = sparse.csr_matrix((weights, ij), shape=(nvox, s['np']))
    s['interpolator'] = interp
    s['mri_volume_name'] = mri_name
    logger.info(' %d/%d nonzero values [done]' % (len(weights), nvox))


@verbose
def _filter_source_spaces(surf, limit, mri_head_t, src, n_jobs=1,
                          verbose=None):
    """Remove all source space points closer than a given limit"""
    if src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD and mri_head_t is None:
        raise RuntimeError('Source spaces are in head coordinates and no '
                           'coordinate transform was provided!')

    # How close are the source points to the surface?
    out_str = 'Source spaces are in '

    if src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD:
        inv_trans = invert_transform(mri_head_t)
        out_str += 'head coordinates.'
    elif src[0]['coord_frame'] == FIFF.FIFFV_COORD_MRI:
        out_str += 'MRI coordinates.'
    else:
        out_str += 'unknown (%d) coordinates.' % src[0]['coord_frame']
    logger.info(out_str)
    out_str = 'Checking that the sources are inside the bounding surface'
    if limit > 0.0:
        out_str += ' and at least %6.1f mm away' % (limit)
    logger.info(out_str + ' (will take a few...)')

    for s in src:
        vertno = np.where(s['inuse'])[0]  # can't trust s['vertno'] this deep
        # Convert all points here first to save time
        r1s = s['rr'][vertno]
        if s['coord_frame'] == FIFF.FIFFV_COORD_HEAD:
            r1s = apply_trans(inv_trans['trans'], r1s)

        # Check that the source is inside surface (often the inner skull)
        x = _sum_solids_div(r1s, surf, n_jobs)
        outside = np.abs(x - 1.0) > 1e-5
        omit_outside = np.sum(outside)

        # vectorized nearest using BallTree (or cdist)
        omit = 0
        if limit > 0.0:
            dists = _compute_nearest(surf['rr'], r1s, return_dists=True)[1]
            close = np.logical_and(dists < limit / 1000.0,
                                   np.logical_not(outside))
            omit = np.sum(close)
            outside = np.logical_or(outside, close)
        s['inuse'][vertno[outside]] = False
        s['nuse'] -= (omit + omit_outside)
        s['vertno'] = np.where(s['inuse'])[0]

        if omit_outside > 0:
            extras = [omit_outside]
            extras += ['s', 'they are'] if omit_outside > 1 else ['', 'it is']
            logger.info('%d source space point%s omitted because %s '
                        'outside the inner skull surface.' % tuple(extras))
        if omit > 0:
            extras = [omit]
            extras += ['s'] if omit_outside > 1 else ['']
            extras += [limit]
            logger.info('%d source space point%s omitted because of the '
                        '%6.1f-mm distance limit.' % tuple(extras))
    logger.info('Thank you for waiting.')


def _sum_solids_div(fros, surf, n_jobs):
    """Compute sum of solid angles according to van Oosterom for all tris"""
    parallel, p_fun, _ = parallel_func(_get_solids, n_jobs)
    tot_angles = parallel(p_fun(surf['rr'][tris], fros)
                          for tris in np.array_split(surf['tris'], n_jobs))
    return np.sum(tot_angles, axis=0) / (2 * np.pi)


def _get_solids(tri_rrs, fros):
    """Helper for computing _sum_solids_div total angle in chunks"""
    # NOTE: This incorporates the division by 4PI that used to be separate
    tot_angle = np.zeros((len(fros)))
    for tri_rr in tri_rrs:
        v1 = fros - tri_rr[0]
        v2 = fros - tri_rr[1]
        v3 = fros - tri_rr[2]
        triple = np.sum(fast_cross_3d(v1, v2) * v3, axis=1)
        l1 = np.sqrt(np.sum(v1 * v1, axis=1))
        l2 = np.sqrt(np.sum(v2 * v2, axis=1))
        l3 = np.sqrt(np.sum(v3 * v3, axis=1))
        s = (l1 * l2 * l3 +
             np.sum(v1 * v2, axis=1) * l3 +
             np.sum(v1 * v3, axis=1) * l2 +
             np.sum(v2 * v3, axis=1) * l1)
        tot_angle -= np.arctan2(triple, s)
    return tot_angle


@verbose
def add_source_space_distances(src, dist_limit=np.inf, n_jobs=1, verbose=None):
    """Compute inter-source distances along the cortical surface

    This function will also try to add patch info for the source space.
    It will only occur if the ``dist_limit`` is sufficiently high that all
    points on the surface are within ``dist_limit`` of a point in the
    source space.

    Parameters
    ----------
    src : instance of SourceSpaces
        The source spaces to compute distances for.
    dist_limit : float
        The upper limit of distances to include (in meters).
        Note: if limit < np.inf, scipy > 0.13 (bleeding edge as of
        10/2013) must be installed.
    n_jobs : int
        Number of jobs to run in parallel. Will only use (up to) as many
        cores as there are source spaces.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    src : instance of SourceSpaces
        The original source spaces, with distance information added.
        The distances are stored in src[n]['dist'].
        Note: this function operates in-place.

    Notes
    -----
    Requires scipy >= 0.11 (> 0.13 for `dist_limit < np.inf`).

    This function can be memory- and CPU-intensive. On a high-end machine
    (2012) running 6 jobs in parallel, an ico-5 (10242 per hemi) source space
    takes about 10 minutes to compute all distances (`dist_limit = np.inf`).
    With `dist_limit = 0.007`, computing distances takes about 1 minute.

    We recommend computing distances once per source space and then saving
    the source space to disk, as the computed distances will automatically be
    stored along with the source space data for future use.
    """
    n_jobs = check_n_jobs(n_jobs)
    if not isinstance(src, SourceSpaces):
        raise ValueError('"src" must be an instance of SourceSpaces')
    if not np.isscalar(dist_limit):
        raise ValueError('limit must be a scalar')
    if not check_scipy_version('0.11'):
        raise RuntimeError('scipy >= 0.11 must be installed (or > 0.13 '
                           'if dist_limit < np.inf')

    if not all([s['type'] == 'surf' for s in src]):
        raise RuntimeError('Currently all source spaces must be of surface '
                           'type')

    if dist_limit < np.inf:
        # can't do introspection on dijkstra function because it's Cython,
        # so we'll just try quickly here
        try:
            sparse.csgraph.dijkstra(sparse.csr_matrix(np.zeros((2, 2))),
                                    limit=1.0)
        except TypeError:
            raise RuntimeError('Cannot use "limit < np.inf" unless scipy '
                               '> 0.13 is installed')

    parallel, p_fun, _ = parallel_func(_do_src_distances, n_jobs)
    min_dists = list()
    min_idxs = list()
    logger.info('Calculating source space distances (limit=%s mm)...'
                % (1000 * dist_limit))
    for s in src:
        connectivity = mesh_dist(s['tris'], s['rr'])
        d = parallel(p_fun(connectivity, s['vertno'], r, dist_limit)
                     for r in np.array_split(np.arange(len(s['vertno'])),
                                             n_jobs))
        # deal with indexing so we can add patch info
        min_idx = np.array([dd[1] for dd in d])
        min_dist = np.array([dd[2] for dd in d])
        midx = np.argmin(min_dist, axis=0)
        range_idx = np.arange(len(s['rr']))
        min_dist = min_dist[midx, range_idx]
        min_idx = min_idx[midx, range_idx]
        min_dists.append(min_dist)
        min_idxs.append(min_idx)
        # now actually deal with distances, convert to sparse representation
        d = np.concatenate([dd[0] for dd in d], axis=0)
        i, j = np.meshgrid(s['vertno'], s['vertno'])
        d = d.ravel()
        i = i.ravel()
        j = j.ravel()
        idx = d > 0
        d = sparse.csr_matrix((d[idx], (i[idx], j[idx])),
                              shape=(s['np'], s['np']), dtype=np.float32)
        s['dist'] = d
        s['dist_limit'] = np.array([dist_limit], np.float32)

    # Let's see if our distance was sufficient to allow for patch info
    if not any([np.any(np.isinf(md)) for md in min_dists]):
        # Patch info can be added!
        for s, min_dist, min_idx in zip(src, min_dists, min_idxs):
            s['nearest'] = min_idx
            s['nearest_dist'] = min_dist
            _add_patch_info(s)
    else:
        logger.info('Not adding patch information, dist_limit too small')
    return src


def _do_src_distances(con, vertno, run_inds, limit):
    """Helper to compute source space distances in chunks"""
    if limit < np.inf:
        func = partial(sparse.csgraph.dijkstra, limit=limit)
    else:
        func = sparse.csgraph.dijkstra
    chunk_size = 100  # save memory by chunking (only a little slower)
    lims = np.r_[np.arange(0, len(run_inds), chunk_size), len(run_inds)]
    n_chunks = len(lims) - 1
    d = np.empty((len(run_inds), len(vertno)))
    min_dist = np.empty((n_chunks, con.shape[0]))
    min_idx = np.empty((n_chunks, con.shape[0]), np.int32)
    range_idx = np.arange(con.shape[0])
    for li, (l1, l2) in enumerate(zip(lims[:-1], lims[1:])):
        idx = vertno[run_inds[l1:l2]]
        out = func(con, indices=idx)
        midx = np.argmin(out, axis=0)
        min_idx[li] = idx[midx]
        min_dist[li] = out[midx, range_idx]
        d[l1:l2] = out[:, vertno]
    midx = np.argmin(min_dist, axis=0)
    min_dist = min_dist[midx, range_idx]
    min_idx = min_idx[midx, range_idx]
    d[d == np.inf] = 0  # scipy will give us np.inf for uncalc. distances
    return d, min_idx, min_dist