1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)
from .externals.six import string_types
import numpy as np
import os
import os.path as op
from scipy import sparse, linalg
from copy import deepcopy
from .io.constants import FIFF
from .io.tree import dir_tree_find
from .io.tag import find_tag, read_tag
from .io.open import fiff_open
from .io.write import (start_block, end_block, write_int,
write_float_sparse_rcs, write_string,
write_float_matrix, write_int_matrix,
write_coord_trans, start_file, end_file, write_id)
from .surface import (read_surface, _create_surf_spacing, _get_ico_surface,
_tessellate_sphere_surf, read_bem_surfaces,
_read_surface_geom, _normalize_vectors,
_complete_surface_info, _compute_nearest,
fast_cross_3d)
from .source_estimate import mesh_dist
from .utils import (get_subjects_dir, run_subprocess, has_freesurfer,
has_nibabel, check_fname, logger, verbose,
check_scipy_version)
from .fixes import in1d, partial, gzip_open
from .parallel import parallel_func, check_n_jobs
from .transforms import (invert_transform, apply_trans, _print_coord_trans,
combine_transforms)
class SourceSpaces(list):
"""Represent a list of source space
Currently implemented as a list of dictionaries containing the source
space information
Parameters
----------
source_spaces : list
A list of dictionaries containing the source space information.
info : dict
Dictionary with information about the creation of the source space
file. Has keys 'working_dir' and 'command_line'.
Attributes
----------
info : dict
Dictionary with information about the creation of the source space
file. Has keys 'working_dir' and 'command_line'.
"""
def __init__(self, source_spaces, info=None):
super(SourceSpaces, self).__init__(source_spaces)
if info is None:
self.info = dict()
else:
self.info = dict(info)
def __repr__(self):
ss_repr = []
for ss in self:
ss_type = ss['type']
if ss_type == 'vol':
r = ("'vol', shape=%s, n_used=%i"
% (repr(ss['shape']), ss['nuse']))
elif ss_type == 'surf':
r = "'surf', n_vertices=%i, n_used=%i" % (ss['np'], ss['nuse'])
else:
r = "%r" % ss_type
ss_repr.append('<%s>' % r)
ss_repr = ', '.join(ss_repr)
return "<SourceSpaces: [{ss}]>".format(ss=ss_repr)
def copy(self):
"""Make a copy of the source spaces
Returns
-------
src : instance of SourceSpaces
The copied source spaces.
"""
src = deepcopy(self)
return src
def save(self, fname):
"""Save the source spaces to a fif file
Parameters
----------
fname : str
File to write.
"""
write_source_spaces(fname, self)
def _add_patch_info(s):
"""Patch information in a source space
Generate the patch information from the 'nearest' vector in
a source space. For vertex in the source space it provides
the list of neighboring vertices in the high resolution
triangulation.
Parameters
----------
s : dict
The source space.
"""
nearest = s['nearest']
if nearest is None:
s['pinfo'] = None
s['patch_inds'] = None
return
logger.info(' Computing patch statistics...')
indn = np.argsort(nearest)
nearest_sorted = nearest[indn]
steps = np.where(nearest_sorted[1:] != nearest_sorted[:-1])[0] + 1
starti = np.r_[[0], steps]
stopi = np.r_[steps, [len(nearest)]]
pinfo = list()
for start, stop in zip(starti, stopi):
pinfo.append(np.sort(indn[start:stop]))
s['pinfo'] = pinfo
# compute patch indices of the in-use source space vertices
patch_verts = nearest_sorted[steps - 1]
s['patch_inds'] = np.searchsorted(patch_verts, s['vertno'])
logger.info(' Patch information added...')
@verbose
def read_source_spaces_from_tree(fid, tree, add_geom=False, verbose=None):
"""Read the source spaces from a FIF file
Parameters
----------
fid : file descriptor
An open file descriptor.
tree : dict
The FIF tree structure if source is a file id.
add_geom : bool, optional (default False)
Add geometry information to the surfaces.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
src : SourceSpaces
The source spaces.
"""
# Find all source spaces
spaces = dir_tree_find(tree, FIFF.FIFFB_MNE_SOURCE_SPACE)
if len(spaces) == 0:
raise ValueError('No source spaces found')
src = list()
for s in spaces:
logger.info(' Reading a source space...')
this = _read_one_source_space(fid, s)
logger.info(' [done]')
if add_geom:
_complete_source_space_info(this)
src.append(this)
src = SourceSpaces(src)
logger.info(' %d source spaces read' % len(spaces))
return src
@verbose
def read_source_spaces(fname, add_geom=False, verbose=None):
"""Read the source spaces from a FIF file
Parameters
----------
fname : str
The name of the file, which should end with -src.fif or
-src.fif.gz.
add_geom : bool, optional (default False)
Add geometry information to the surfaces.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
src : SourceSpaces
The source spaces.
"""
# be more permissive on read than write (fwd/inv can contain src)
check_fname(fname, 'source space', ('-src.fif', '-src.fif.gz',
'-fwd.fif', '-fwd.fif.gz',
'-inv.fif', '-inv.fif.gz'))
ff, tree, _ = fiff_open(fname)
with ff as fid:
src = read_source_spaces_from_tree(fid, tree, add_geom=add_geom,
verbose=verbose)
src.info['fname'] = fname
node = dir_tree_find(tree, FIFF.FIFFB_MNE_ENV)
if node:
node = node[0]
for p in range(node['nent']):
kind = node['directory'][p].kind
pos = node['directory'][p].pos
tag = read_tag(fid, pos)
if kind == FIFF.FIFF_MNE_ENV_WORKING_DIR:
src.info['working_dir'] = tag.data
elif kind == FIFF.FIFF_MNE_ENV_COMMAND_LINE:
src.info['command_line'] = tag.data
return src
@verbose
def _read_one_source_space(fid, this, verbose=None):
"""Read one source space
"""
FIFF_BEM_SURF_NTRI = 3104
FIFF_BEM_SURF_TRIANGLES = 3106
res = dict()
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_ID)
if tag is None:
res['id'] = int(FIFF.FIFFV_MNE_SURF_UNKNOWN)
else:
res['id'] = int(tag.data)
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_TYPE)
if tag is None:
raise ValueError('Unknown source space type')
else:
src_type = int(tag.data)
if src_type == FIFF.FIFFV_MNE_SPACE_SURFACE:
res['type'] = 'surf'
elif src_type == FIFF.FIFFV_MNE_SPACE_VOLUME:
res['type'] = 'vol'
elif src_type == FIFF.FIFFV_MNE_SPACE_DISCRETE:
res['type'] = 'discrete'
else:
raise ValueError('Unknown source space type (%d)' % src_type)
if res['type'] == 'vol':
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_VOXEL_DIMS)
if tag is not None:
res['shape'] = tuple(tag.data)
tag = find_tag(fid, this, FIFF.FIFF_COORD_TRANS)
if tag is not None:
res['src_mri_t'] = tag.data
parent_mri = dir_tree_find(this, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
if len(parent_mri) == 0:
# MNE 2.7.3 (and earlier) didn't store necessary information
# about volume coordinate translations. Although there is a
# FFIF_COORD_TRANS in the higher level of the FIFF file, this
# doesn't contain all the info we need. Safer to return an
# error unless a user really wants us to add backward compat.
raise ValueError('Can not find parent MRI location. The volume '
'source space may have been made with an MNE '
'version that is too old (<= 2.7.3). Consider '
'updating and regenerating the inverse.')
mri = parent_mri[0]
for d in mri['directory']:
if d.kind == FIFF.FIFF_COORD_TRANS:
tag = read_tag(fid, d.pos)
trans = tag.data
if trans['from'] == FIFF.FIFFV_MNE_COORD_MRI_VOXEL:
res['vox_mri_t'] = tag.data
if trans['to'] == FIFF.FIFFV_MNE_COORD_RAS:
res['mri_ras_t'] = tag.data
tag = find_tag(fid, mri, FIFF.FIFF_MNE_SOURCE_SPACE_INTERPOLATOR)
if tag is not None:
res['interpolator'] = tag.data
else:
logger.info("Interpolation matrix for MRI not found.")
tag = find_tag(fid, mri, FIFF.FIFF_MNE_SOURCE_SPACE_MRI_FILE)
if tag is not None:
res['mri_file'] = tag.data
tag = find_tag(fid, mri, FIFF.FIFF_MRI_WIDTH)
if tag is not None:
res['mri_width'] = int(tag.data)
tag = find_tag(fid, mri, FIFF.FIFF_MRI_HEIGHT)
if tag is not None:
res['mri_height'] = int(tag.data)
tag = find_tag(fid, mri, FIFF.FIFF_MRI_DEPTH)
if tag is not None:
res['mri_depth'] = int(tag.data)
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS)
if tag is None:
raise ValueError('Number of vertices not found')
res['np'] = int(tag.data)
tag = find_tag(fid, this, FIFF_BEM_SURF_NTRI)
if tag is None:
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NTRI)
if tag is None:
res['ntri'] = 0
else:
res['ntri'] = int(tag.data)
else:
res['ntri'] = tag.data
tag = find_tag(fid, this, FIFF.FIFF_MNE_COORD_FRAME)
if tag is None:
raise ValueError('Coordinate frame information not found')
res['coord_frame'] = tag.data
# Vertices, normals, and triangles
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_POINTS)
if tag is None:
raise ValueError('Vertex data not found')
res['rr'] = tag.data.astype(np.float) # double precision for mayavi
if res['rr'].shape[0] != res['np']:
raise ValueError('Vertex information is incorrect')
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS)
if tag is None:
raise ValueError('Vertex normals not found')
res['nn'] = tag.data
if res['nn'].shape[0] != res['np']:
raise ValueError('Vertex normal information is incorrect')
if res['ntri'] > 0:
tag = find_tag(fid, this, FIFF_BEM_SURF_TRIANGLES)
if tag is None:
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_TRIANGLES)
if tag is None:
raise ValueError('Triangulation not found')
else:
res['tris'] = tag.data - 1 # index start at 0 in Python
else:
res['tris'] = tag.data - 1 # index start at 0 in Python
if res['tris'].shape[0] != res['ntri']:
raise ValueError('Triangulation information is incorrect')
else:
res['tris'] = None
# Which vertices are active
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE)
if tag is None:
res['nuse'] = 0
res['inuse'] = np.zeros(res['nuse'], dtype=np.int)
res['vertno'] = None
else:
res['nuse'] = int(tag.data)
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_SELECTION)
if tag is None:
raise ValueError('Source selection information missing')
res['inuse'] = tag.data.astype(np.int).T
if len(res['inuse']) != res['np']:
raise ValueError('Incorrect number of entries in source space '
'selection')
res['vertno'] = np.where(res['inuse'])[0]
# Use triangulation
tag1 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE_TRI)
tag2 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_USE_TRIANGLES)
if tag1 is None or tag2 is None:
res['nuse_tri'] = 0
res['use_tris'] = None
else:
res['nuse_tri'] = tag1.data
res['use_tris'] = tag2.data - 1 # index start at 0 in Python
# Patch-related information
tag1 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST)
tag2 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST_DIST)
if tag1 is None or tag2 is None:
res['nearest'] = None
res['nearest_dist'] = None
else:
res['nearest'] = tag1.data
res['nearest_dist'] = tag2.data.T
_add_patch_info(res)
# Distances
tag1 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_DIST)
tag2 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_DIST_LIMIT)
if tag1 is None or tag2 is None:
res['dist'] = None
res['dist_limit'] = None
else:
res['dist'] = tag1.data
res['dist_limit'] = tag2.data
# Add the upper triangle
res['dist'] = res['dist'] + res['dist'].T
if (res['dist'] is not None):
logger.info(' Distance information added...')
tag = find_tag(fid, this, FIFF.FIFF_SUBJ_HIS_ID)
if tag is not None:
res['subject_his_id'] = tag.data
return res
@verbose
def _complete_source_space_info(this, verbose=None):
"""Add more info on surface
"""
# Main triangulation
logger.info(' Completing triangulation info...')
this['tri_area'] = np.zeros(this['ntri'])
r1 = this['rr'][this['tris'][:, 0], :]
r2 = this['rr'][this['tris'][:, 1], :]
r3 = this['rr'][this['tris'][:, 2], :]
this['tri_cent'] = (r1 + r2 + r3) / 3.0
this['tri_nn'] = fast_cross_3d((r2 - r1), (r3 - r1))
size = np.sqrt(np.sum(this['tri_nn'] ** 2, axis=1))
this['tri_area'] = size / 2.0
this['tri_nn'] /= size[:, None]
logger.info('[done]')
# Selected triangles
logger.info(' Completing selection triangulation info...')
if this['nuse_tri'] > 0:
r1 = this['rr'][this['use_tris'][:, 0], :]
r2 = this['rr'][this['use_tris'][:, 1], :]
r3 = this['rr'][this['use_tris'][:, 2], :]
this['use_tri_cent'] = (r1 + r2 + r3) / 3.0
this['use_tri_nn'] = fast_cross_3d((r2 - r1), (r3 - r1))
this['use_tri_area'] = np.sqrt(np.sum(this['use_tri_nn'] ** 2, axis=1)
) / 2.0
logger.info('[done]')
def find_source_space_hemi(src):
"""Return the hemisphere id for a source space
Parameters
----------
src : dict
The source space to investigate
Returns
-------
hemi : int
Deduced hemisphere id
"""
xave = src['rr'][:, 0].sum()
if xave < 0:
hemi = int(FIFF.FIFFV_MNE_SURF_LEFT_HEMI)
else:
hemi = int(FIFF.FIFFV_MNE_SURF_RIGHT_HEMI)
return hemi
def label_src_vertno_sel(label, src):
""" Find vertex numbers and indices from label
Parameters
----------
label : Label
Source space label
src : dict
Source space
Returns
-------
vertno : list of length 2
Vertex numbers for lh and rh
src_sel : array of int (len(idx) = len(vertno[0]) + len(vertno[1]))
Indices of the selected vertices in sourse space
"""
if src[0]['type'] != 'surf':
return Exception('Label are only supported with surface source spaces')
vertno = [src[0]['vertno'], src[1]['vertno']]
if label.hemi == 'lh':
vertno_sel = np.intersect1d(vertno[0], label.vertices)
src_sel = np.searchsorted(vertno[0], vertno_sel)
vertno[0] = vertno_sel
vertno[1] = np.array([])
elif label.hemi == 'rh':
vertno_sel = np.intersect1d(vertno[1], label.vertices)
src_sel = np.searchsorted(vertno[1], vertno_sel) + len(vertno[0])
vertno[0] = np.array([])
vertno[1] = vertno_sel
elif label.hemi == 'both':
vertno_sel_lh = np.intersect1d(vertno[0], label.lh.vertices)
src_sel_lh = np.searchsorted(vertno[0], vertno_sel_lh)
vertno_sel_rh = np.intersect1d(vertno[1], label.rh.vertices)
src_sel_rh = np.searchsorted(vertno[1], vertno_sel_rh) + len(vertno[0])
src_sel = np.hstack((src_sel_lh, src_sel_rh))
vertno = [vertno_sel_lh, vertno_sel_rh]
else:
raise Exception("Unknown hemisphere type")
return vertno, src_sel
def _get_vertno(src):
return [s['vertno'] for s in src]
###############################################################################
# Write routines
@verbose
def _write_source_spaces_to_fid(fid, src, verbose=None):
"""Write the source spaces to a FIF file
Parameters
----------
fid : file descriptor
An open file descriptor.
src : list
The list of source spaces.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
"""
for s in src:
logger.info(' Write a source space...')
start_block(fid, FIFF.FIFFB_MNE_SOURCE_SPACE)
_write_one_source_space(fid, s, verbose)
end_block(fid, FIFF.FIFFB_MNE_SOURCE_SPACE)
logger.info(' [done]')
logger.info(' %d source spaces written' % len(src))
@verbose
def write_source_spaces(fname, src, verbose=None):
"""Write source spaces to a file
Parameters
----------
fname : str
The name of the file, which should end with -src.fif or
-src.fif.gz.
src : SourceSpaces
The source spaces (as returned by read_source_spaces).
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
"""
check_fname(fname, 'source space', ('-src.fif', '-src.fif.gz'))
fid = start_file(fname)
start_block(fid, FIFF.FIFFB_MNE)
if src.info:
start_block(fid, FIFF.FIFFB_MNE_ENV)
write_id(fid, FIFF.FIFF_BLOCK_ID)
data = src.info.get('working_dir', None)
if data:
write_string(fid, FIFF.FIFF_MNE_ENV_WORKING_DIR, data)
data = src.info.get('command_line', None)
if data:
write_string(fid, FIFF.FIFF_MNE_ENV_COMMAND_LINE, data)
end_block(fid, FIFF.FIFFB_MNE_ENV)
_write_source_spaces_to_fid(fid, src, verbose)
end_block(fid, FIFF.FIFFB_MNE)
end_file(fid)
def _write_one_source_space(fid, this, verbose=None):
"""Write one source space"""
if this['type'] == 'surf':
src_type = FIFF.FIFFV_MNE_SPACE_SURFACE
elif this['type'] == 'vol':
src_type = FIFF.FIFFV_MNE_SPACE_VOLUME
elif this['type'] == 'discrete':
src_type = FIFF.FIFFV_MNE_SPACE_DISCRETE
else:
raise ValueError('Unknown source space type (%s)' % this['type'])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_TYPE, src_type)
if this['id'] >= 0:
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_ID, this['id'])
data = this.get('subject_his_id', None)
if data:
write_string(fid, FIFF.FIFF_SUBJ_HIS_ID, data)
write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, this['coord_frame'])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS, this['np'])
write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_POINTS, this['rr'])
write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS, this['nn'])
# Which vertices are active
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_SELECTION, this['inuse'])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE, this['nuse'])
if this['ntri'] > 0:
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NTRI, this['ntri'])
write_int_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_TRIANGLES,
this['tris'] + 1)
if this['type'] != 'vol' and this['use_tris'] is not None:
# Use triangulation
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE_TRI, this['nuse_tri'])
write_int_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_USE_TRIANGLES,
this['use_tris'] + 1)
if this['type'] == 'vol':
neighbor_vert = this.get('neighbor_vert', None)
if neighbor_vert is not None:
nneighbors = np.array([len(n) for n in neighbor_vert])
neighbors = np.concatenate(neighbor_vert)
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NNEIGHBORS, nneighbors)
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NEIGHBORS, neighbors)
write_coord_trans(fid, this['src_mri_t'])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_VOXEL_DIMS, this['shape'])
start_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
write_coord_trans(fid, this['mri_ras_t'])
write_coord_trans(fid, this['vox_mri_t'])
mri_volume_name = this.get('mri_volume_name', None)
if mri_volume_name is not None:
write_string(fid, FIFF.FIFF_MNE_FILE_NAME, mri_volume_name)
write_float_sparse_rcs(fid, FIFF.FIFF_MNE_SOURCE_SPACE_INTERPOLATOR,
this['interpolator'])
if 'mri_file' in this and this['mri_file'] is not None:
write_string(fid, FIFF.FIFF_MNE_SOURCE_SPACE_MRI_FILE,
this['mri_file'])
write_int(fid, FIFF.FIFF_MRI_WIDTH, this['mri_width'])
write_int(fid, FIFF.FIFF_MRI_HEIGHT, this['mri_height'])
write_int(fid, FIFF.FIFF_MRI_DEPTH, this['mri_depth'])
end_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
# Patch-related information
if this['nearest'] is not None:
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST, this['nearest'])
write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST_DIST,
this['nearest_dist'])
# Distances
if this['dist'] is not None:
# Save only upper triangular portion of the matrix
dists = this['dist'].copy()
dists = sparse.triu(dists, format=dists.format)
write_float_sparse_rcs(fid, FIFF.FIFF_MNE_SOURCE_SPACE_DIST, dists)
write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_DIST_LIMIT,
this['dist_limit'])
##############################################################################
# Surface to MNI conversion
@verbose
def vertex_to_mni(vertices, hemis, subject, subjects_dir=None, mode=None,
verbose=None):
"""Convert the array of vertices for a hemisphere to MNI coordinates
Parameters
----------
vertices : int, or list of int
Vertex number(s) to convert
hemis : int, or list of int
Hemisphere(s) the vertices belong to
subject : string
Name of the subject to load surfaces from.
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
mode : string | None
Either 'nibabel' or 'freesurfer' for the software to use to
obtain the transforms. If None, 'nibabel' is tried first, falling
back to 'freesurfer' if it fails. Results should be equivalent with
either option, but nibabel may be quicker (and more pythonic).
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
coordinates : n_vertices x 3 array of float
The MNI coordinates (in mm) of the vertices
Notes
-----
This function requires either nibabel (in Python) or Freesurfer
(with utility "mri_info") to be correctly installed.
"""
if not has_freesurfer and not has_nibabel():
raise RuntimeError('NiBabel (Python) or Freesurfer (Unix) must be '
'correctly installed and accessible from Python')
if not isinstance(vertices, list) and not isinstance(vertices, np.ndarray):
vertices = [vertices]
if not isinstance(hemis, list) and not isinstance(hemis, np.ndarray):
hemis = [hemis] * len(vertices)
if not len(hemis) == len(vertices):
raise ValueError('hemi and vertices must match in length')
subjects_dir = get_subjects_dir(subjects_dir)
surfs = [op.join(subjects_dir, subject, 'surf', '%s.white' % h)
for h in ['lh', 'rh']]
rr = [read_surface(s)[0] for s in surfs]
# take point locations in RAS space and convert to MNI coordinates
xfm = _read_talxfm(subject, subjects_dir, mode)
data = np.array([np.concatenate((rr[h][v, :], [1]))
for h, v in zip(hemis, vertices)]).T
return np.dot(xfm, data)[:3, :].T.copy()
@verbose
def _read_talxfm(subject, subjects_dir, mode=None, verbose=None):
"""Read MNI transform from FreeSurfer talairach.xfm file
Adapted from freesurfer m-files. Altered to deal with Norig
and Torig correctly.
"""
if mode is not None and not mode in ['nibabel', 'freesurfer']:
raise ValueError('mode must be "nibabel" or "freesurfer"')
fname = op.join(subjects_dir, subject, 'mri', 'transforms',
'talairach.xfm')
with open(fname, 'r') as fid:
logger.debug('Reading FreeSurfer talairach.xfm file:\n%s' % fname)
# read lines until we get the string 'Linear_Transform', which precedes
# the data transformation matrix
got_it = False
comp = 'Linear_Transform'
for line in fid:
if line[:len(comp)] == comp:
# we have the right line, so don't read any more
got_it = True
break
if got_it:
xfm = list()
# read the transformation matrix (3x4)
for ii, line in enumerate(fid):
digs = [float(s) for s in line.strip('\n;').split()]
xfm.append(digs)
if ii == 2:
break
xfm.append([0., 0., 0., 1.])
xfm = np.array(xfm, dtype=float)
else:
raise ValueError('failed to find \'Linear_Transform\' string in '
'xfm file:\n%s' % fname)
# now get Norig and Torig
path = op.join(subjects_dir, subject, 'mri', 'orig.mgz')
if has_nibabel():
use_nibabel = True
else:
use_nibabel = False
if mode == 'nibabel':
raise ImportError('Tried to import nibabel but failed, try using '
'mode=None or mode=Freesurfer')
# note that if mode == None, then we default to using nibabel
if use_nibabel is True and mode == 'freesurfer':
use_nibabel = False
if use_nibabel:
import nibabel as nib
img = nib.load(path)
hdr = img.get_header()
n_orig = hdr.get_vox2ras()
ds = np.array(hdr.get_zooms())
ns = (np.array(hdr.get_data_shape()[:3]) * ds) / 2.0
t_orig = np.array([[-ds[0], 0, 0, ns[0]],
[0, 0, ds[2], -ns[2]],
[0, -ds[1], 0, ns[1]],
[0, 0, 0, 1]], dtype=float)
nt_orig = [n_orig, t_orig]
else:
nt_orig = list()
for conv in ['--vox2ras', '--vox2ras-tkr']:
stdout, stderr = run_subprocess(['mri_info', conv, path])
stdout = np.fromstring(stdout, sep=' ').astype(float)
if not stdout.size == 16:
raise ValueError('Could not parse Freesurfer mri_info output')
nt_orig.append(stdout.reshape(4, 4))
xfm = np.dot(xfm, np.dot(nt_orig[0], linalg.inv(nt_orig[1])))
return xfm
###############################################################################
# Creation and decimation
@verbose
def setup_source_space(subject, fname=True, spacing='oct6', surface='white',
overwrite=False, subjects_dir=None, add_dist=None,
verbose=None):
"""Setup a source space with subsampling
Parameters
----------
subject : str
Subject to process.
fname : str | None | bool
Filename to use. If True, a default name will be used. If None,
the source space will not be saved (only returned).
spacing : str
The spacing to use. Can be ``'ico#'`` for a recursively subdivided
icosahedron, ``'oct#'`` for a recursively subdivided octahedron,
or ``'all'`` for all points.
surface : str
The surface to use.
overwrite: bool
If True, overwrite output file (if it exists).
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
add_dist : bool
Add distance and patch information to the source space. This takes some
time so precomputing it is recommended. The default is currently False
but will change to True in release 0.9.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
src : list
The source space for each hemisphere.
"""
if add_dist is None:
msg = ("The add_dist parameter to mne.setup_source_space currently "
"defaults to False, but the default will change to True in "
"release 0.9. Specify the parameter explicitly to avoid this "
"warning.")
logger.warning(msg)
cmd = ('setup_source_space(%s, fname=%s, spacing=%s, surface=%s, '
'overwrite=%s, subjects_dir=%s, add_dist=%s, verbose=%s)'
% (subject, fname, spacing, surface, overwrite,
subjects_dir, add_dist, verbose))
# check to make sure our parameters are good, parse 'spacing'
space_err = ('"spacing" must be a string with values '
'"ico#", "oct#", or "all", and "ico" and "oct"'
'numbers must be integers')
if not isinstance(spacing, string_types) or len(spacing) < 3:
raise ValueError(space_err)
if spacing == 'all':
stype = 'all'
sval = ''
elif spacing[:3] == 'ico':
stype = 'ico'
sval = spacing[3:]
elif spacing[:3] == 'oct':
stype = 'oct'
sval = spacing[3:]
else:
raise ValueError(space_err)
try:
if stype in ['ico', 'oct']:
sval = int(sval)
elif stype == 'spacing': # spacing
sval = float(sval)
except:
raise ValueError(space_err)
subjects_dir = get_subjects_dir(subjects_dir)
surfs = [op.join(subjects_dir, subject, 'surf', hemi + surface)
for hemi in ['lh.', 'rh.']]
bem_dir = op.join(subjects_dir, subject, 'bem')
for surf, hemi in zip(surfs, ['LH', 'RH']):
if surf is not None and not op.isfile(surf):
raise IOError('Could not find the %s surface %s'
% (hemi, surf))
if not (fname is True or fname is None or isinstance(fname, string_types)):
raise ValueError('"fname" must be a string, True, or None')
if fname is True:
extra = '%s-%s' % (stype, sval) if sval != '' else stype
fname = op.join(bem_dir, '%s-%s-src.fif' % (subject, extra))
if fname is not None and op.isfile(fname) and overwrite is False:
raise IOError('file "%s" exists, use overwrite=True if you want '
'to overwrite the file' % fname)
logger.info('Setting up the source space with the following parameters:\n')
logger.info('SUBJECTS_DIR = %s' % subjects_dir)
logger.info('Subject = %s' % subject)
logger.info('Surface = %s' % surface)
if stype == 'ico':
src_type_str = 'ico = %s' % sval
logger.info('Icosahedron subdivision grade %s\n' % sval)
elif stype == 'oct':
src_type_str = 'oct = %s' % sval
logger.info('Octahedron subdivision grade %s\n' % sval)
else:
src_type_str = 'all'
logger.info('Include all vertices\n')
# Create the fif file
if fname is not None:
logger.info('>>> 1. Creating the source space file %s...' % fname)
else:
logger.info('>>> 1. Creating the source space...\n')
# mne_make_source_space ... actually make the source spaces
src = []
# pre-load ico/oct surf (once) for speed, if necessary
if stype in ['ico', 'oct']:
### from mne_ico_downsample.c ###
if stype == 'ico':
logger.info('Doing the icosahedral vertex picking...')
ico_surf = _get_ico_surface(sval)
else:
logger.info('Doing the octahedral vertex picking...')
ico_surf = _tessellate_sphere_surf(sval)
else:
ico_surf = None
for hemi, surf in zip(['lh', 'rh'], surfs):
logger.info('Loading %s...' % surf)
s = _create_surf_spacing(surf, hemi, subject, stype, sval, ico_surf,
subjects_dir)
logger.info('loaded %s %d/%d selected to source space (%s)'
% (op.split(surf)[1], s['nuse'], s['np'], src_type_str))
src.append(s)
logger.info('') # newline after both subject types are run
# Fill in source space info
hemi_ids = [FIFF.FIFFV_MNE_SURF_LEFT_HEMI, FIFF.FIFFV_MNE_SURF_RIGHT_HEMI]
for s, s_id in zip(src, hemi_ids):
# Add missing fields
s.update(dict(dist=None, dist_limit=None, nearest=None, type='surf',
nearest_dist=None, pinfo=None, patch_inds=None, id=s_id,
coord_frame=np.array((FIFF.FIFFV_COORD_MRI,), np.int32)))
s['rr'] /= 1000.0
del s['tri_area']
del s['tri_cent']
del s['tri_nn']
del s['neighbor_tri']
# upconvert to object format from lists
src = SourceSpaces(src, dict(working_dir=os.getcwd(), command_line=cmd))
if add_dist:
add_source_space_distances(src, verbose=verbose)
# write out if requested, then return the data
if fname is not None:
write_source_spaces(fname, src)
logger.info('Wrote %s' % fname)
logger.info('You are now one step closer to computing the gain matrix')
return src
@verbose
def setup_volume_source_space(subject, fname=None, pos=5.0, mri=None,
sphere=(0.0, 0.0, 0.0, 90.0), bem=None,
surface=None, mindist=5.0, exclude=0.0,
overwrite=False, subjects_dir=None,
verbose=None):
"""Setup a volume source space with grid spacing or discrete source space
Parameters
----------
subject : str
Subject to process.
fname : str | None
Filename to use. If None, the source space will not be saved
(only returned).
pos : float | dict
Positions to use for sources. If float, a grid will be constructed
with the spacing given by `pos` in mm, generating a volume source
space. If dict, pos['rr'] and pos['nn'] will be used as the source
space locations (in meters) and normals, respectively, creating a
discrete source space. NOTE: For a discrete source space (`pos` is
a dict), `mri` must be None.
mri : str | None
The filename of an MRI volume (mgh or mgz) to create the
interpolation matrix over. Source estimates obtained in the
volume source space can then be morphed onto the MRI volume
using this interpolator. If pos is a dict, this can be None.
sphere : array_like (length 4)
Define spherical source space bounds using origin and radius given
by (ox, oy, oz, rad) in mm. Only used if `bem` and `surface` are
both None.
bem : str | None
Define source space bounds using a BEM file (specifically the inner
skull surface).
surface : str | dict | None
Define source space bounds using a FreeSurfer surface file. Can
also be a dictionary with entries `'rr'` and `'tris'`, such as
those returned by `read_surface()`.
mindist : float
Exclude points closer than this distance (mm) to the bounding surface.
exclude : float
Exclude points closer than this distance (mm) from the center of mass
of the bounding surface.
overwrite: bool
If True, overwrite output file (if it exists).
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
src : list
The source space. Note that this list will have length 1 for
compatibility reasons, as most functions expect source spaces
to be provided as lists).
Notes
-----
To create a discrete source space, `pos` must be a dict. To create a
volume source space, `pos` must be a float. Note that if a discrete
source space is created, then `mri` is optional (can be None), whereas
for a volume source space, `mri` must be provided.
"""
if bem is not None and surface is not None:
raise ValueError('Only one of "bem" and "surface" should be '
'specified')
if mri is not None:
if not op.isfile(mri):
raise IOError('mri file "%s" not found' % mri)
if isinstance(pos, dict):
raise ValueError('Cannot create interpolation matrix for '
'discrete source space, mri must be None if '
'pos is a dict')
elif not isinstance(pos, dict):
# "pos" will create a discrete src, so we don't need "mri"
# if "pos" is None, we must have "mri" b/c it will be vol src
raise RuntimeError('"mri" must be provided if "pos" is not a dict '
'(i.e., if a volume instead of discrete source '
'space is desired)')
sphere = np.asarray(sphere)
if sphere.size != 4:
raise ValueError('"sphere" must be array_like with 4 elements')
# triage bounding argument
if bem is not None:
logger.info('BEM file : %s', bem)
elif surface is not None:
if isinstance(surface, dict):
if not all([key in surface for key in ['rr', 'tris']]):
raise KeyError('surface, if dict, must have entries "rr" '
'and "tris"')
# let's make sure we have geom info
surface = _read_surface_geom(surface, verbose=False)
surf_extra = 'dict()'
elif isinstance(surface, string_types):
if not op.isfile(surface):
raise IOError('surface file "%s" not found' % surface)
surf_extra = surface
logger.info('Boundary surface file : %s', surf_extra)
else:
logger.info('Sphere : origin at (%.1f %.1f %.1f) mm'
% (sphere[0], sphere[1], sphere[2]))
logger.info(' radius : %.1f mm' % sphere[3])
# triage pos argument
if isinstance(pos, dict):
if not all([key in pos for key in ['rr', 'nn']]):
raise KeyError('pos, if dict, must contain "rr" and "nn"')
pos_extra = 'dict()'
else: # pos should be float-like
try:
pos = float(pos)
except (TypeError, ValueError):
raise ValueError('pos must be a dict, or something that can be '
'cast to float()')
if not isinstance(pos, float):
logger.info('Source location file : %s', pos_extra)
logger.info('Assuming input in millimeters')
logger.info('Assuming input in MRI coordinates')
logger.info('Output file : %s', fname)
if isinstance(pos, float):
logger.info('grid : %.1f mm' % pos)
logger.info('mindist : %.1f mm' % mindist)
pos /= 1000.0
if exclude > 0.0:
logger.info('Exclude : %.1f mm' % exclude)
if mri is not None:
logger.info('MRI volume : %s' % mri)
exclude /= 1000.0
logger.info('')
# Explicit list of points
if not isinstance(pos, float):
# Make the grid of sources
sp = _make_discrete_source_space(pos)
else:
# Load the brain surface as a template
if bem is not None:
surf = read_bem_surfaces(bem, s_id=FIFF.FIFFV_BEM_SURF_ID_BRAIN,
verbose=False)
logger.info('Loaded inner skull from %s (%d nodes)'
% (bem, surf['np']))
elif surface is not None:
if isinstance(surface, string_types):
surf = _read_surface_geom(surface)
else:
surf = surface
logger.info('Loaded bounding surface from %s (%d nodes)'
% (surface, surf['np']))
surf = deepcopy(surf)
surf['rr'] *= 1e-3 # must be converted to meters
else: # Load an icosahedron and use that as the surface
logger.info('Setting up the sphere...')
surf = _get_ico_surface(3)
# Scale and shift
_normalize_vectors(surf['rr'])
surf['rr'] *= sphere[3] / 1000.0 # scale by radius
surf['rr'] += sphere[:3] / 1000.0 # move by center
_complete_surface_info(surf, True)
# Make the grid of sources
sp = _make_volume_source_space(surf, pos, exclude, mindist)
# Compute an interpolation matrix to show data in an MRI volume
if mri is not None:
_add_interpolator(sp, mri)
if 'vol_dims' in sp:
del sp['vol_dims']
# Save it
sp.update(dict(nearest=None, dist=None, use_tris=None, patch_inds=None,
dist_limit=None, pinfo=None, ntri=0, nearest_dist=None,
nuse_tri=0, tris=None))
sp = SourceSpaces([sp], dict(working_dir=os.getcwd(), command_line='None'))
if fname is not None:
write_source_spaces(fname, sp, verbose=False)
return sp
def _make_voxel_ras_trans(move, ras, voxel_size):
"""Make a transformation for MRI voxel to MRI surface RAS"""
assert voxel_size.ndim == 1
assert voxel_size.size == 3
rot = ras.T * voxel_size[np.newaxis, :]
assert rot.ndim == 2
assert rot.shape[0] == 3
assert rot.shape[1] == 3
trans = np.c_[np.r_[rot, np.zeros((1, 3))], np.r_[move, 1.0]]
t = {'from': FIFF.FIFFV_MNE_COORD_MRI_VOXEL, 'to': FIFF.FIFFV_COORD_MRI,
'trans': trans}
return t
def _make_discrete_source_space(pos):
"""Use a discrete set of source locs/oris to make src space
Parameters
----------
pos : dict
Must have entries "rr" and "nn". Data should be in meters.
Returns
-------
src : dict
The source space.
"""
# process points
rr = pos['rr'].copy()
nn = pos['nn'].copy()
if not (rr.ndim == nn.ndim == 2 and nn.shape[0] == nn.shape[0] and
rr.shape[1] == nn.shape[1]):
raise RuntimeError('"rr" and "nn" must both be 2D arrays with '
'the same number of rows and 3 columns')
npts = rr.shape[0]
_normalize_vectors(nn)
nz = np.sum(np.sum(nn * nn, axis=1) == 0)
if nz != 0:
raise RuntimeError('%d sources have zero length normal' % nz)
logger.info('Positions (in meters) and orientations')
logger.info('%d sources' % npts)
# Ready to make the source space
coord_frame = FIFF.FIFFV_COORD_MRI
sp = dict(coord_frame=coord_frame, type='discrete', nuse=npts, np=npts,
inuse=np.ones(npts, int), vertno=np.arange(npts), rr=rr, nn=nn,
id=-1)
return sp
def _make_volume_source_space(surf, grid, exclude, mindist):
"""Make a source space which covers the volume bounded by surf"""
# Figure out the grid size
mins = np.min(surf['rr'], axis=0)
maxs = np.max(surf['rr'], axis=0)
cm = np.mean(surf['rr'], axis=0) # center of mass
# Define the sphere which fits the surface
maxdist = np.sqrt(np.max(np.sum((surf['rr'] - cm) ** 2, axis=1)))
logger.info('Surface CM = (%6.1f %6.1f %6.1f) mm'
% (1000 * cm[0], 1000 * cm[1], 1000 * cm[2]))
logger.info('Surface fits inside a sphere with radius %6.1f mm'
% (1000 * maxdist))
logger.info('Surface extent:')
for c, mi, ma in zip('xyz', mins, maxs):
logger.info(' %s = %6.1f ... %6.1f mm' % (c, 1000 * mi, 1000 * ma))
maxn = np.zeros(3, int)
minn = np.zeros(3, int)
for c in range(3):
if maxs[c] > 0:
maxn[c] = np.floor(np.abs(maxs[c]) / grid) + 1
else:
maxn[c] = -np.floor(np.abs(maxs[c]) / grid) - 1
if mins[c] > 0:
minn[c] = np.floor(np.abs(mins[c]) / grid) + 1
else:
minn[c] = -np.floor(np.abs(mins[c]) / grid) - 1
logger.info('Grid extent:')
for c, mi, ma in zip('xyz', minn, maxn):
logger.info(' %s = %6.1f ... %6.1f mm'
% (c, 1000 * mi * grid, 1000 * ma * grid))
# Now make the initial grid
ns = maxn - minn + 1
npts = np.prod(ns)
nrow = ns[0]
ncol = ns[1]
nplane = nrow * ncol
sp = dict(np=npts, rr=np.zeros((npts, 3)), nn=np.zeros((npts, 3)),
inuse=np.ones(npts, int), type='vol', nuse=npts,
coord_frame=FIFF.FIFFV_COORD_MRI, id=-1, shape=ns)
sp['nn'][:, 2] = 1.0 # Source orientation is immaterial
x = np.arange(minn[0], maxn[0] + 1)[np.newaxis, np.newaxis, :]
y = np.arange(minn[1], maxn[1] + 1)[np.newaxis, :, np.newaxis]
z = np.arange(minn[2], maxn[2] + 1)[:, np.newaxis, np.newaxis]
z = np.tile(z, (1, ns[1], ns[0])).ravel()
y = np.tile(y, (ns[2], 1, ns[0])).ravel()
x = np.tile(x, (ns[2], ns[1], 1)).ravel()
k = np.arange(npts)
sp['rr'] = np.c_[x, y, z] * grid
neigh = np.empty((26, npts), int)
neigh.fill(-1)
# Figure out each neighborhood:
# 6-neighborhood first
idxs = [z > minn[2], x < maxn[0], y < maxn[1],
x > minn[0], y > minn[1], z < maxn[2]]
offsets = [-nplane, 1, nrow, -1, -nrow, nplane]
for n, idx, offset in zip(neigh[:6], idxs, offsets):
n[idx] = k[idx] + offset
# Then the rest to complete the 26-neighborhood
# First the plane below
idx1 = z > minn[2]
idx2 = np.logical_and(idx1, x < maxn[0])
neigh[6, idx2] = k[idx2] + 1 - nplane
idx3 = np.logical_and(idx2, y < maxn[1])
neigh[7, idx3] = k[idx3] + 1 + nrow - nplane
idx2 = np.logical_and(idx1, y < maxn[1])
neigh[8, idx2] = k[idx2] + nrow - nplane
idx2 = np.logical_and(idx1, x > minn[0])
idx3 = np.logical_and(idx2, y < maxn[1])
neigh[9, idx3] = k[idx3] - 1 + nrow - nplane
neigh[10, idx2] = k[idx2] - 1 - nplane
idx3 = np.logical_and(idx2, y > minn[1])
neigh[11, idx3] = k[idx3] - 1 - nrow - nplane
idx2 = np.logical_and(idx1, y > minn[1])
neigh[12, idx2] = k[idx2] - nrow - nplane
idx3 = np.logical_and(idx2, x < maxn[0])
neigh[13, idx3] = k[idx3] + 1 - nrow - nplane
# Then the same plane
idx1 = np.logical_and(x < maxn[0], y < maxn[1])
neigh[14, idx1] = k[idx1] + 1 + nrow
idx1 = x > minn[0]
idx2 = np.logical_and(idx1, y < maxn[1])
neigh[15, idx2] = k[idx2] - 1 + nrow
idx2 = np.logical_and(idx1, y > minn[1])
neigh[16, idx2] = k[idx2] - 1 - nrow
idx1 = np.logical_and(y > minn[1], x < maxn[0])
neigh[17, idx1] = k[idx1] + 1 - nrow - nplane
# Finally one plane above
idx1 = z < maxn[2]
idx2 = np.logical_and(idx1, x < maxn[0])
neigh[18, idx2] = k[idx2] + 1 + nplane
idx3 = np.logical_and(idx2, y < maxn[1])
neigh[19, idx3] = k[idx3] + 1 + nrow + nplane
idx2 = np.logical_and(idx1, y < maxn[1])
neigh[20, idx2] = k[idx2] + nrow + nplane
idx2 = np.logical_and(idx1, x > minn[0])
idx3 = np.logical_and(idx2, y < maxn[1])
neigh[21, idx3] = k[idx3] - 1 + nrow + nplane
neigh[22, idx2] = k[idx2] - 1 + nplane
idx3 = np.logical_and(idx2, y > minn[1])
neigh[23, idx3] = k[idx3] - 1 - nrow + nplane
idx2 = np.logical_and(idx1, y > minn[1])
neigh[24, idx2] = k[idx2] - nrow + nplane
idx3 = np.logical_and(idx2, x < maxn[0])
neigh[25, idx3] = k[idx3] + 1 - nrow + nplane
logger.info('%d sources before omitting any.', sp['nuse'])
# Exclude infeasible points
dists = np.sqrt(np.sum((sp['rr'] - cm) ** 2, axis=1))
bads = np.where(np.logical_or(dists < exclude, dists > maxdist))[0]
sp['inuse'][bads] = False
sp['nuse'] -= len(bads)
logger.info('%d sources after omitting infeasible sources.', sp['nuse'])
_filter_source_spaces(surf, mindist, None, [sp])
logger.info('%d sources remaining after excluding the sources outside '
'the surface and less than %6.1f mm inside.'
% (sp['nuse'], mindist))
# Omit unused vertices from the neighborhoods
logger.info('Adjusting the neighborhood info...')
# remove non source-space points
log_inuse = sp['inuse'] > 0
neigh[:, np.logical_not(log_inuse)] = -1
# remove these points from neigh
vertno = np.where(log_inuse)[0]
sp['vertno'] = vertno
old_shape = neigh.shape
neigh = neigh.ravel()
checks = np.where(neigh >= 0)[0]
removes = np.logical_not(in1d(checks, vertno))
neigh[checks[removes]] = -1
neigh.shape = old_shape
neigh = neigh.T
# Thought we would need this, but C code keeps -1 vertices, so we will:
#neigh = [n[n >= 0] for n in enumerate(neigh[vertno])]
sp['neighbor_vert'] = neigh
# Set up the volume data (needed for creating the interpolation matrix)
r0 = minn * grid
voxel_size = grid * np.ones(3)
ras = np.eye(3)
sp['src_mri_t'] = _make_voxel_ras_trans(r0, ras, voxel_size)
sp['vol_dims'] = maxn - minn + 1
return sp
def _vol_vertex(width, height, jj, kk, pp):
return jj + width * kk + pp * (width * height)
def _get_mgz_header(fname):
"""Adapted from nibabel to quickly extract header info"""
if not fname.endswith('.mgz'):
raise IOError('Filename must end with .mgz')
header_dtd = [('version', '>i4'), ('dims', '>i4', (4,)),
('type', '>i4'), ('dof', '>i4'), ('goodRASFlag', '>i2'),
('delta', '>f4', (3,)), ('Mdc', '>f4', (3, 3)),
('Pxyz_c', '>f4', (3,))]
header_dtype = np.dtype(header_dtd)
with gzip_open(fname, 'rb') as fid:
hdr_str = fid.read(header_dtype.itemsize)
header = np.ndarray(shape=(), dtype=header_dtype,
buffer=hdr_str)
# dims
dims = header['dims'].astype(int)
dims = dims[:3] if len(dims) == 4 else dims
# vox2ras_tkr
delta = header['delta']
ds = np.array(delta, float)
ns = np.array(dims * ds) / 2.0
v2rtkr = np.array([[-ds[0], 0, 0, ns[0]],
[0, 0, ds[2], -ns[2]],
[0, -ds[1], 0, ns[1]],
[0, 0, 0, 1]], dtype=np.float32)
# ras2vox
d = np.diag(delta)
pcrs_c = dims / 2.0
Mdc = header['Mdc'].T
pxyz_0 = header['Pxyz_c'] - np.dot(Mdc, np.dot(d, pcrs_c))
M = np.eye(4, 4)
M[0:3, 0:3] = np.dot(Mdc, d)
M[0:3, 3] = pxyz_0.T
M = linalg.inv(M)
header = dict(dims=dims, vox2ras_tkr=v2rtkr, ras2vox=M)
return header
def _add_interpolator(s, mri_name):
"""Compute a sparse matrix to interpolate the data into an MRI volume"""
# extract transformation information from mri
logger.info('Reading %s...' % mri_name)
header = _get_mgz_header(mri_name)
mri_width, mri_height, mri_depth = header['dims']
s.update(dict(mri_width=mri_width, mri_height=mri_height,
mri_depth=mri_depth))
trans = header['vox2ras_tkr'].copy()
trans[:3, :] /= 1000.0
s['vox_mri_t'] = {'trans': trans, 'from': FIFF.FIFFV_MNE_COORD_MRI_VOXEL,
'to': FIFF.FIFFV_COORD_MRI} # ras_tkr
trans = linalg.inv(np.dot(header['vox2ras_tkr'], header['ras2vox']))
trans[:3, 3] /= 1000.0
s['mri_ras_t'] = {'trans': trans, 'from': FIFF.FIFFV_COORD_MRI,
'to': FIFF.FIFFV_MNE_COORD_RAS} # ras
_print_coord_trans(s['src_mri_t'], 'Source space : ')
_print_coord_trans(s['vox_mri_t'], 'MRI volume : ')
_print_coord_trans(s['mri_ras_t'], 'MRI volume : ')
#
# Convert MRI voxels from destination (MRI volume) to source (volume
# source space subset) coordinates
#
combo_trans = combine_transforms(s['vox_mri_t'],
invert_transform(s['src_mri_t']),
FIFF.FIFFV_MNE_COORD_MRI_VOXEL,
FIFF.FIFFV_MNE_COORD_MRI_VOXEL)
combo_trans['trans'] = combo_trans['trans'].astype(np.float32)
logger.info('Setting up interpolation...')
# Take *all* MRI vertices...
js = np.arange(mri_width, dtype=np.float32)
js = np.tile(js[np.newaxis, np.newaxis, :],
(mri_depth, mri_height, 1)).ravel()
ks = np.arange(mri_height, dtype=np.float32)
ks = np.tile(ks[np.newaxis, :, np.newaxis],
(mri_depth, 1, mri_width)).ravel()
ps = np.arange(mri_depth, dtype=np.float32)
ps = np.tile(ps[:, np.newaxis, np.newaxis],
(1, mri_height, mri_width)).ravel()
r0 = np.c_[js, ks, ps]
# note we have the correct number of vertices
assert len(r0) == mri_width * mri_height * mri_depth
# ...and transform them from their MRI space into our source space's frame
# (this is labeled as FIFFV_MNE_COORD_MRI_VOXEL, but it's really a subset
# of the entire volume!)
r0 = apply_trans(combo_trans['trans'], r0)
rn = np.floor(r0).astype(int)
maxs = (s['vol_dims'] - 1)[np.newaxis, :]
good = np.logical_and(np.all(rn >= 0, axis=1), np.all(rn < maxs, axis=1))
rn = rn[good]
r0 = r0[good]
# now we take each MRI voxel *in this space*, and figure out how to make
# its value the weighted sum of voxels in the volume source space. This
# is a 3D weighting scheme based (presumably) on the fact that we know
# we're interpolating from one volumetric grid into another.
jj = rn[:, 0]
kk = rn[:, 1]
pp = rn[:, 2]
vss = np.empty((8, len(jj)), int)
width = s['vol_dims'][0]
height = s['vol_dims'][1]
vss[0, :] = _vol_vertex(width, height, jj, kk, pp)
vss[1, :] = _vol_vertex(width, height, jj + 1, kk, pp)
vss[2, :] = _vol_vertex(width, height, jj + 1, kk + 1, pp)
vss[3, :] = _vol_vertex(width, height, jj, kk + 1, pp)
vss[4, :] = _vol_vertex(width, height, jj, kk, pp + 1)
vss[5, :] = _vol_vertex(width, height, jj + 1, kk, pp + 1)
vss[6, :] = _vol_vertex(width, height, jj + 1, kk + 1, pp + 1)
vss[7, :] = _vol_vertex(width, height, jj, kk + 1, pp + 1)
del jj, kk, pp
uses = np.any(s['inuse'][vss], axis=0)
verts = vss[:, uses].ravel() # vertex (col) numbers in csr matrix
row_idx = np.tile(np.where(good)[0][uses], (8, 1)).ravel()
# figure out weights for each vertex
r0 = r0[uses]
rn = rn[uses]
xf = r0[:, 0] - rn[:, 0].astype(np.float32)
yf = r0[:, 1] - rn[:, 1].astype(np.float32)
zf = r0[:, 2] - rn[:, 2].astype(np.float32)
omxf = 1.0 - xf
omyf = 1.0 - yf
omzf = 1.0 - zf
weights = np.concatenate([omxf * omyf * omzf, # correspond to rows of vss
xf * omyf * omzf,
xf * yf * omzf,
omxf * yf * omzf,
omxf * omyf * zf,
xf * omyf * zf,
xf * yf * zf,
omxf * yf * zf])
del xf, yf, zf, omxf, omyf, omzf
# Compose the sparse matrix
ij = (row_idx, verts)
nvox = mri_width * mri_height * mri_depth
interp = sparse.csr_matrix((weights, ij), shape=(nvox, s['np']))
s['interpolator'] = interp
s['mri_volume_name'] = mri_name
logger.info(' %d/%d nonzero values [done]' % (len(weights), nvox))
@verbose
def _filter_source_spaces(surf, limit, mri_head_t, src, n_jobs=1,
verbose=None):
"""Remove all source space points closer than a given limit"""
if src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD and mri_head_t is None:
raise RuntimeError('Source spaces are in head coordinates and no '
'coordinate transform was provided!')
# How close are the source points to the surface?
out_str = 'Source spaces are in '
if src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD:
inv_trans = invert_transform(mri_head_t)
out_str += 'head coordinates.'
elif src[0]['coord_frame'] == FIFF.FIFFV_COORD_MRI:
out_str += 'MRI coordinates.'
else:
out_str += 'unknown (%d) coordinates.' % src[0]['coord_frame']
logger.info(out_str)
out_str = 'Checking that the sources are inside the bounding surface'
if limit > 0.0:
out_str += ' and at least %6.1f mm away' % (limit)
logger.info(out_str + ' (will take a few...)')
for s in src:
vertno = np.where(s['inuse'])[0] # can't trust s['vertno'] this deep
# Convert all points here first to save time
r1s = s['rr'][vertno]
if s['coord_frame'] == FIFF.FIFFV_COORD_HEAD:
r1s = apply_trans(inv_trans['trans'], r1s)
# Check that the source is inside surface (often the inner skull)
x = _sum_solids_div(r1s, surf, n_jobs)
outside = np.abs(x - 1.0) > 1e-5
omit_outside = np.sum(outside)
# vectorized nearest using BallTree (or cdist)
omit = 0
if limit > 0.0:
dists = _compute_nearest(surf['rr'], r1s, return_dists=True)[1]
close = np.logical_and(dists < limit / 1000.0,
np.logical_not(outside))
omit = np.sum(close)
outside = np.logical_or(outside, close)
s['inuse'][vertno[outside]] = False
s['nuse'] -= (omit + omit_outside)
s['vertno'] = np.where(s['inuse'])[0]
if omit_outside > 0:
extras = [omit_outside]
extras += ['s', 'they are'] if omit_outside > 1 else ['', 'it is']
logger.info('%d source space point%s omitted because %s '
'outside the inner skull surface.' % tuple(extras))
if omit > 0:
extras = [omit]
extras += ['s'] if omit_outside > 1 else ['']
extras += [limit]
logger.info('%d source space point%s omitted because of the '
'%6.1f-mm distance limit.' % tuple(extras))
logger.info('Thank you for waiting.')
def _sum_solids_div(fros, surf, n_jobs):
"""Compute sum of solid angles according to van Oosterom for all tris"""
parallel, p_fun, _ = parallel_func(_get_solids, n_jobs)
tot_angles = parallel(p_fun(surf['rr'][tris], fros)
for tris in np.array_split(surf['tris'], n_jobs))
return np.sum(tot_angles, axis=0) / (2 * np.pi)
def _get_solids(tri_rrs, fros):
"""Helper for computing _sum_solids_div total angle in chunks"""
# NOTE: This incorporates the division by 4PI that used to be separate
tot_angle = np.zeros((len(fros)))
for tri_rr in tri_rrs:
v1 = fros - tri_rr[0]
v2 = fros - tri_rr[1]
v3 = fros - tri_rr[2]
triple = np.sum(fast_cross_3d(v1, v2) * v3, axis=1)
l1 = np.sqrt(np.sum(v1 * v1, axis=1))
l2 = np.sqrt(np.sum(v2 * v2, axis=1))
l3 = np.sqrt(np.sum(v3 * v3, axis=1))
s = (l1 * l2 * l3 +
np.sum(v1 * v2, axis=1) * l3 +
np.sum(v1 * v3, axis=1) * l2 +
np.sum(v2 * v3, axis=1) * l1)
tot_angle -= np.arctan2(triple, s)
return tot_angle
@verbose
def add_source_space_distances(src, dist_limit=np.inf, n_jobs=1, verbose=None):
"""Compute inter-source distances along the cortical surface
This function will also try to add patch info for the source space.
It will only occur if the ``dist_limit`` is sufficiently high that all
points on the surface are within ``dist_limit`` of a point in the
source space.
Parameters
----------
src : instance of SourceSpaces
The source spaces to compute distances for.
dist_limit : float
The upper limit of distances to include (in meters).
Note: if limit < np.inf, scipy > 0.13 (bleeding edge as of
10/2013) must be installed.
n_jobs : int
Number of jobs to run in parallel. Will only use (up to) as many
cores as there are source spaces.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
src : instance of SourceSpaces
The original source spaces, with distance information added.
The distances are stored in src[n]['dist'].
Note: this function operates in-place.
Notes
-----
Requires scipy >= 0.11 (> 0.13 for `dist_limit < np.inf`).
This function can be memory- and CPU-intensive. On a high-end machine
(2012) running 6 jobs in parallel, an ico-5 (10242 per hemi) source space
takes about 10 minutes to compute all distances (`dist_limit = np.inf`).
With `dist_limit = 0.007`, computing distances takes about 1 minute.
We recommend computing distances once per source space and then saving
the source space to disk, as the computed distances will automatically be
stored along with the source space data for future use.
"""
n_jobs = check_n_jobs(n_jobs)
if not isinstance(src, SourceSpaces):
raise ValueError('"src" must be an instance of SourceSpaces')
if not np.isscalar(dist_limit):
raise ValueError('limit must be a scalar')
if not check_scipy_version('0.11'):
raise RuntimeError('scipy >= 0.11 must be installed (or > 0.13 '
'if dist_limit < np.inf')
if not all([s['type'] == 'surf' for s in src]):
raise RuntimeError('Currently all source spaces must be of surface '
'type')
if dist_limit < np.inf:
# can't do introspection on dijkstra function because it's Cython,
# so we'll just try quickly here
try:
sparse.csgraph.dijkstra(sparse.csr_matrix(np.zeros((2, 2))),
limit=1.0)
except TypeError:
raise RuntimeError('Cannot use "limit < np.inf" unless scipy '
'> 0.13 is installed')
parallel, p_fun, _ = parallel_func(_do_src_distances, n_jobs)
min_dists = list()
min_idxs = list()
logger.info('Calculating source space distances (limit=%s mm)...'
% (1000 * dist_limit))
for s in src:
connectivity = mesh_dist(s['tris'], s['rr'])
d = parallel(p_fun(connectivity, s['vertno'], r, dist_limit)
for r in np.array_split(np.arange(len(s['vertno'])),
n_jobs))
# deal with indexing so we can add patch info
min_idx = np.array([dd[1] for dd in d])
min_dist = np.array([dd[2] for dd in d])
midx = np.argmin(min_dist, axis=0)
range_idx = np.arange(len(s['rr']))
min_dist = min_dist[midx, range_idx]
min_idx = min_idx[midx, range_idx]
min_dists.append(min_dist)
min_idxs.append(min_idx)
# now actually deal with distances, convert to sparse representation
d = np.concatenate([dd[0] for dd in d], axis=0)
i, j = np.meshgrid(s['vertno'], s['vertno'])
d = d.ravel()
i = i.ravel()
j = j.ravel()
idx = d > 0
d = sparse.csr_matrix((d[idx], (i[idx], j[idx])),
shape=(s['np'], s['np']), dtype=np.float32)
s['dist'] = d
s['dist_limit'] = np.array([dist_limit], np.float32)
# Let's see if our distance was sufficient to allow for patch info
if not any([np.any(np.isinf(md)) for md in min_dists]):
# Patch info can be added!
for s, min_dist, min_idx in zip(src, min_dists, min_idxs):
s['nearest'] = min_idx
s['nearest_dist'] = min_dist
_add_patch_info(s)
else:
logger.info('Not adding patch information, dist_limit too small')
return src
def _do_src_distances(con, vertno, run_inds, limit):
"""Helper to compute source space distances in chunks"""
if limit < np.inf:
func = partial(sparse.csgraph.dijkstra, limit=limit)
else:
func = sparse.csgraph.dijkstra
chunk_size = 100 # save memory by chunking (only a little slower)
lims = np.r_[np.arange(0, len(run_inds), chunk_size), len(run_inds)]
n_chunks = len(lims) - 1
d = np.empty((len(run_inds), len(vertno)))
min_dist = np.empty((n_chunks, con.shape[0]))
min_idx = np.empty((n_chunks, con.shape[0]), np.int32)
range_idx = np.arange(con.shape[0])
for li, (l1, l2) in enumerate(zip(lims[:-1], lims[1:])):
idx = vertno[run_inds[l1:l2]]
out = func(con, indices=idx)
midx = np.argmin(out, axis=0)
min_idx[li] = idx[midx]
min_dist[li] = out[midx, range_idx]
d[l1:l2] = out[:, vertno]
midx = np.argmin(min_dist, axis=0)
min_dist = min_dist[midx, range_idx]
min_idx = min_idx[midx, range_idx]
d[d == np.inf] = 0 # scipy will give us np.inf for uncalc. distances
return d, min_idx, min_dist
|