File: test_cluster_level.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (435 lines) | stat: -rw-r--r-- 19,600 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import numpy as np
from numpy.testing import (assert_equal, assert_array_equal,
                           assert_array_almost_equal)
from nose.tools import assert_true, assert_raises
from scipy import sparse, linalg, stats
from mne.fixes import partial
import warnings
from mne.parallel import _force_serial
from mne.stats.cluster_level import (permutation_cluster_test,
                                     permutation_cluster_1samp_test,
                                     spatio_temporal_cluster_test,
                                     spatio_temporal_cluster_1samp_test,
                                     ttest_1samp_no_p, summarize_clusters_stc)

warnings.simplefilter('always')  # enable b/c these tests throw warnings


def _get_conditions():
    noise_level = 20

    normfactor = np.hanning(20).sum()
    rng = np.random.RandomState(42)
    condition1_1d = rng.randn(40, 350) * noise_level
    for c in condition1_1d:
        c[:] = np.convolve(c, np.hanning(20), mode="same") / normfactor

    condition2_1d = rng.randn(33, 350) * noise_level
    for c in condition2_1d:
        c[:] = np.convolve(c, np.hanning(20), mode="same") / normfactor

    pseudoekp = 5 * np.hanning(150)[None, :]
    condition1_1d[:, 100:250] += pseudoekp
    condition2_1d[:, 100:250] -= pseudoekp

    condition1_2d = condition1_1d[:, :, np.newaxis]
    condition2_2d = condition2_1d[:, :, np.newaxis]
    return condition1_1d, condition2_1d, condition1_2d, condition2_2d


def test_permutation_step_down_p():
    """Test cluster level permutations with step_down_p
    """
    try:
        try:
            from sklearn.feature_extraction.image import grid_to_graph
        except ImportError:
            from scikits.learn.feature_extraction.image import grid_to_graph
    except ImportError:
        return
    rng = np.random.RandomState(0)
    # subjects, time points, spatial points
    X = rng.randn(9, 2, 10)
    # add some significant points
    X[:, 0:2, 0:2] += 2  # span two time points and two spatial points
    X[:, 1, 5:9] += 0.5  # span four time points with 4x smaller amplitude
    thresh = 2
    # make sure it works when we use ALL points in step-down
    t, clusters, p, H0 = \
            permutation_cluster_1samp_test(X, threshold=thresh,
                                            step_down_p=1.0)
    # make sure using step-down will actually yield improvements sometimes
    t, clusters, p_old, H0 = \
            permutation_cluster_1samp_test(X, threshold=thresh,
                                           step_down_p=0.0)
    assert_equal(np.sum(p_old < 0.05), 1)  # just spatial cluster
    t, clusters, p_new, H0 = \
            permutation_cluster_1samp_test(X, threshold=thresh,
                                           step_down_p=0.05)
    assert_equal(np.sum(p_new < 0.05), 2)  # time one rescued
    assert_true(np.all(p_old >= p_new))


def test_cluster_permutation_test():
    """Test cluster level permutations tests
    """
    condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
        _get_conditions()
    for condition1, condition2 in zip((condition1_1d, condition1_2d),
                                      (condition2_1d, condition2_2d)):
        T_obs, clusters, cluster_p_values, hist = permutation_cluster_test(
                                    [condition1, condition2],
                                    n_permutations=100, tail=1, seed=1,
                                    buffer_size=None)
        assert_equal(np.sum(cluster_p_values < 0.05), 1)

        T_obs, clusters, cluster_p_values, hist = permutation_cluster_test(
                                    [condition1, condition2],
                                    n_permutations=100, tail=0, seed=1,
                                    buffer_size=None)
        assert_equal(np.sum(cluster_p_values < 0.05), 1)

        # test with 2 jobs and buffer_size enabled
        buffer_size = condition1.shape[1] // 10
        T_obs, clusters, cluster_p_values_buff, hist =\
            permutation_cluster_test([condition1, condition2],
                                     n_permutations=100, tail=0, seed=1,
                                     n_jobs=2, buffer_size=buffer_size)
        assert_array_equal(cluster_p_values, cluster_p_values_buff)


def test_cluster_permutation_t_test():
    """Test cluster level permutations T-test
    """
    condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
        _get_conditions()

    # use a very large sigma to make sure Ts are not independent
    stat_funs = [ttest_1samp_no_p,
                 partial(ttest_1samp_no_p, sigma=1e-1)]

    for stat_fun in stat_funs:
        for condition1 in (condition1_1d, condition1_2d):
            # these are so significant we can get away with fewer perms
            T_obs, clusters, cluster_p_values, hist =\
                permutation_cluster_1samp_test(condition1, n_permutations=100,
                                               tail=0, seed=1,
                                               buffer_size=None)
            assert_equal(np.sum(cluster_p_values < 0.05), 1)

            T_obs_pos, c_1, cluster_p_values_pos, _ =\
                permutation_cluster_1samp_test(condition1, n_permutations=100,
                                               tail=1, threshold=1.67, seed=1,
                                               stat_fun=stat_fun,
                                               buffer_size=None)

            T_obs_neg, _, cluster_p_values_neg, _ =\
                permutation_cluster_1samp_test(-condition1, n_permutations=100,
                                               tail=-1, threshold=-1.67,
                                               seed=1, stat_fun=stat_fun,
                                               buffer_size=None)
            assert_array_equal(T_obs_pos, -T_obs_neg)
            assert_array_equal(cluster_p_values_pos < 0.05,
                               cluster_p_values_neg < 0.05)

            # test with 2 jobs and buffer_size enabled
            buffer_size = condition1.shape[1] // 10
            T_obs_neg_buff, _, cluster_p_values_neg_buff, _ = \
                permutation_cluster_1samp_test(-condition1, n_permutations=100,
                                               tail=-1, threshold=-1.67,
                                               seed=1, n_jobs=2,
                                               stat_fun=stat_fun,
                                               buffer_size=buffer_size)

            assert_array_equal(T_obs_neg, T_obs_neg_buff)
            assert_array_equal(cluster_p_values_neg, cluster_p_values_neg_buff)


def test_cluster_permutation_with_connectivity():
    """Test cluster level permutations with connectivity matrix
    """
    try:
        try:
            from sklearn.feature_extraction.image import grid_to_graph
        except ImportError:
            from scikits.learn.feature_extraction.image import grid_to_graph
    except ImportError:
        return
    condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
        _get_conditions()

    n_pts = condition1_1d.shape[1]
    # we don't care about p-values in any of these, so do fewer permutations
    args = dict(seed=None, max_step=1, exclude=None,
                step_down_p=0, t_power=1, threshold=1.67,
                check_disjoint=False, n_permutations=50)

    did_warn = False
    for X1d, X2d, func, spatio_temporal_func in \
                [(condition1_1d, condition1_2d,
                  permutation_cluster_1samp_test,
                  spatio_temporal_cluster_1samp_test),
                 ([condition1_1d, condition2_1d],
                  [condition1_2d, condition2_2d],
                  permutation_cluster_test,
                  spatio_temporal_cluster_test)]:
        out = func(X1d, **args)
        connectivity = grid_to_graph(1, n_pts)
        out_connectivity = func(X1d, connectivity=connectivity, **args)
        assert_array_equal(out[0], out_connectivity[0])
        for a, b in zip(out_connectivity[1], out[1]):
            assert_array_equal(out[0][a], out[0][b])
            assert_true(np.all(a[b]))

        # test spatio-temporal w/o time connectivity (repeat spatial pattern)
        connectivity_2 = sparse.coo_matrix(
            linalg.block_diag(connectivity.asfptype().todense(),
                              connectivity.asfptype().todense()))

        if isinstance(X1d, list):
            X1d_2 = [np.concatenate((x, x), axis=1) for x in X1d]
        else:
            X1d_2 = np.concatenate((X1d, X1d), axis=1)

        out_connectivity_2 = func(X1d_2, connectivity=connectivity_2, **args)
        # make sure we were operating on the same values
        split = len(out[0])
        assert_array_equal(out[0], out_connectivity_2[0][:split])
        assert_array_equal(out[0], out_connectivity_2[0][split:])

        # make sure we really got 2x the number of original clusters
        n_clust_orig = len(out[1])
        assert_true(len(out_connectivity_2[1]) == 2 * n_clust_orig)

        # Make sure that we got the old ones back
        data_1 = set([np.sum(out[0][b[:n_pts]]) for b in out[1]])
        data_2 = set([np.sum(out_connectivity_2[0][a[:n_pts]]) for a in
                     out_connectivity_2[1][:]])
        assert_true(len(data_1.intersection(data_2)) == len(data_1))

        # now use the other algorithm
        if isinstance(X1d, list):
            X1d_3 = [np.reshape(x, (-1, 2, 350)) for x in X1d_2]
        else:
            X1d_3 = np.reshape(X1d_2, (-1, 2, 350))

        out_connectivity_3 = spatio_temporal_func(X1d_3, n_permutations=50,
                                                  connectivity=connectivity,
                                                  max_step=0, threshold=1.67,
                                                  check_disjoint=True)
        # make sure we were operating on the same values
        split = len(out[0])
        assert_array_equal(out[0], out_connectivity_3[0][0])
        assert_array_equal(out[0], out_connectivity_3[0][1])

        # make sure we really got 2x the number of original clusters
        assert_true(len(out_connectivity_3[1]) == 2 * n_clust_orig)

        # Make sure that we got the old ones back
        data_1 = set([np.sum(out[0][b[:n_pts]]) for b in out[1]])
        data_2 = set([np.sum(out_connectivity_3[0][a[0], a[1]]) for a in
                     out_connectivity_3[1]])
        assert_true(len(data_1.intersection(data_2)) == len(data_1))

        # test new versus old method
        out_connectivity_4 = spatio_temporal_func(X1d_3, n_permutations=50,
                                                  connectivity=connectivity,
                                                  max_step=2, threshold=1.67)
        out_connectivity_5 = spatio_temporal_func(X1d_3, n_permutations=50,
                                                  connectivity=connectivity,
                                                  max_step=1, threshold=1.67)

        # clusters could be in a different order
        sums_4 = [np.sum(out_connectivity_4[0][a])
                  for a in out_connectivity_4[1]]
        sums_5 = [np.sum(out_connectivity_4[0][a])
                  for a in out_connectivity_5[1]]
        sums_4 = np.sort(sums_4)
        sums_5 = np.sort(sums_5)
        assert_array_almost_equal(sums_4, sums_5)

        if not _force_serial:
            assert_raises(ValueError, spatio_temporal_func, X1d_3,
                          n_permutations=1, connectivity=connectivity, max_step=1,
                          threshold=1.67, n_jobs=-1000)

        # not enough TFCE params
        assert_raises(KeyError, spatio_temporal_func, X1d_3,
                      connectivity=connectivity, threshold=dict(me='hello'))

        # too extreme a start threshold
        with warnings.catch_warnings(record=True) as w:
            spatio_temporal_func(X1d_3, connectivity=connectivity,
                                 threshold=dict(start=10, step=1))
        if not did_warn:
            assert_true(len(w) == 1)
            did_warn = True

        # too extreme a start threshold
        assert_raises(ValueError, spatio_temporal_func, X1d_3,
                      connectivity=connectivity, tail=-1,
                      threshold=dict(start=1, step=-1))
        assert_raises(ValueError, spatio_temporal_func, X1d_3,
                      connectivity=connectivity, tail=-1,
                      threshold=dict(start=-1, step=1))

        # wrong type for threshold
        assert_raises(TypeError, spatio_temporal_func, X1d_3,
                      connectivity=connectivity, threshold=[])

        # wrong value for tail
        assert_raises(ValueError, spatio_temporal_func, X1d_3,
                      connectivity=connectivity, tail=2)

        # make sure it actually found a significant point
        out_connectivity_6 = spatio_temporal_func(X1d_3, n_permutations=50,
                                                  connectivity=connectivity,
                                                  max_step=1,
                                                  threshold=dict(start=1,
                                                                 step=1))
        assert_true(np.min(out_connectivity_6[2]) < 0.05)


def test_permutation_connectivity_equiv():
    """Test cluster level permutations with and without connectivity
    """
    try:
        try:
            from sklearn.feature_extraction.image import grid_to_graph
        except ImportError:
            from scikits.learn.feature_extraction.image import grid_to_graph
    except ImportError:
        return
    rng = np.random.RandomState(0)
    # subjects, time points, spatial points
    X = rng.randn(7, 2, 10)
    # add some significant points
    X[:, 0:2, 0:2] += 10  # span two time points and two spatial points
    X[:, 1, 5:9] += 10  # span four time points
    max_steps = [1, 1, 1, 2]
    # This will run full algorithm in two ways, then the ST-algorithm in 2 ways
    # All of these should give the same results
    conns = [None, grid_to_graph(2, 10),
             grid_to_graph(1, 10), grid_to_graph(1, 10)]
    stat_map = None
    thresholds = [2, dict(start=0.5, step=0.5)]
    sig_counts = [2, 8]
    sdps = [0, 0.05, 0.05]
    ots = ['mask', 'mask', 'indices']
    for thresh, count in zip(thresholds, sig_counts):
        cs = None
        ps = None
        for max_step, conn in zip(max_steps, conns):
            for stat_fun in [ttest_1samp_no_p,
                             partial(ttest_1samp_no_p, sigma=1e-3)]:
                for sdp, ot in zip(sdps, ots):
                    t, clusters, p, H0 = \
                            permutation_cluster_1samp_test(X,
                                                           threshold=thresh,
                                                           connectivity=conn,
                                                           n_jobs=2,
                                                           max_step=max_step,
                                                           stat_fun=stat_fun,
                                                           step_down_p=sdp,
                                                           out_type=ot)
                    # make sure our output datatype is correct
                    if ot == 'mask':
                        assert_true(isinstance(clusters[0], np.ndarray))
                        assert_true(clusters[0].dtype == bool)
                        assert_array_equal(clusters[0].shape, X.shape[1:])
                    else:  # ot == 'indices'
                        assert_true(isinstance(clusters[0], tuple))

                    # make sure all comparisons were done; for TFCE, no perm
                    # should come up empty
                    if count == 8:
                        assert_true(not np.any(H0 == 0))
                    inds = np.where(p < 0.05)[0]
                    assert_true(len(inds) == count)
                    this_cs = [clusters[ii] for ii in inds]
                    this_ps = p[inds]
                    this_stat_map = np.zeros((2, 10), dtype=bool)
                    for ci, c in enumerate(this_cs):
                        if isinstance(c, tuple):
                            this_c = np.zeros((2, 10), bool)
                            for x, y in zip(c[0], c[1]):
                                this_stat_map[x, y] = True
                                this_c[x, y] = True
                            this_cs[ci] = this_c
                            c = this_c
                        this_stat_map[c] = True
                    if cs is None:
                        ps = this_ps
                        cs = this_cs
                    if stat_map is None:
                        stat_map = this_stat_map
                    assert_array_equal(ps, this_ps)
                    assert_true(len(cs) == len(this_cs))
                    for c1, c2 in zip(cs, this_cs):
                        assert_array_equal(c1, c2)
                    assert_array_equal(stat_map, this_stat_map)


def spatio_temporal_cluster_test_connectivity():
    """Test cluster level permutations with and without connectivity
    """
    try:
        try:
            from sklearn.feature_extraction.image import grid_to_graph
        except ImportError:
            from scikits.learn.feature_extraction.image import grid_to_graph
    except ImportError:
        return
    condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
        _get_conditions()

    rng = np.random.RandomState(0)
    noise1_2d = rng.randn(condition1_2d.shape[0], condition1_2d.shape[1], 10)
    data1_2d = np.transpose(np.dstack((condition1_2d, noise1_2d)), [0, 2, 1])

    noise2_d2 = rng.randn(condition2_2d.shape[0], condition2_2d.shape[1], 10)
    data2_2d = np.transpose(np.dstack((condition2_2d, noise2_d2)), [0, 2, 1])

    conn = grid_to_graph(data1_2d.shape[-1], 1)

    threshold = dict(start=4.0, step=2)
    T_obs, clusters, p_values_conn, hist = \
        spatio_temporal_cluster_test([data1_2d, data2_2d], connectivity=conn,
                                     n_permutations=50, tail=1, seed=1,
                                     threshold=threshold, buffer_size=None)

    buffer_size = data1_2d.size // 10
    T_obs, clusters, p_values_no_conn, hist = \
        spatio_temporal_cluster_test([data1_2d, data2_2d],
                                     n_permutations=50, tail=1, seed=1,
                                     threshold=threshold, n_jobs=2,
                                     buffer_size=buffer_size)

    assert_equal(np.sum(p_values_conn < 0.05), np.sum(p_values_no_conn < 0.05))

    # make sure results are the same without buffer_size
    T_obs, clusters, p_values2, hist2 = \
        spatio_temporal_cluster_test([data1_2d, data2_2d],
                                     n_permutations=50, tail=1, seed=1,
                                     threshold=threshold, n_jobs=2,
                                     buffer_size=None)
    assert_array_equal(p_values_no_conn, p_values2)


def ttest_1samp(X):
    """Returns T-values
    """
    return stats.ttest_1samp(X, 0)[0]


def test_summarize_clusters():
    """Test cluster summary stcs
    """
    clu = (np.random.random([1, 20484]),
           [(np.array([0]), np.array([0, 2, 4]))],
           np.array([0.02, 0.1]),
           np.array([12, -14, 30]))
    stc_sum = summarize_clusters_stc(clu)
    assert_true(stc_sum.data.shape[1] == 2)
    clu[2][0] = 0.3
    assert_raises(RuntimeError, summarize_clusters_stc, clu)