1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
import numpy as np
from numpy.testing import (assert_equal, assert_array_equal,
assert_array_almost_equal)
from nose.tools import assert_true, assert_raises
from scipy import sparse, linalg, stats
from mne.fixes import partial
import warnings
from mne.parallel import _force_serial
from mne.stats.cluster_level import (permutation_cluster_test,
permutation_cluster_1samp_test,
spatio_temporal_cluster_test,
spatio_temporal_cluster_1samp_test,
ttest_1samp_no_p, summarize_clusters_stc)
warnings.simplefilter('always') # enable b/c these tests throw warnings
def _get_conditions():
noise_level = 20
normfactor = np.hanning(20).sum()
rng = np.random.RandomState(42)
condition1_1d = rng.randn(40, 350) * noise_level
for c in condition1_1d:
c[:] = np.convolve(c, np.hanning(20), mode="same") / normfactor
condition2_1d = rng.randn(33, 350) * noise_level
for c in condition2_1d:
c[:] = np.convolve(c, np.hanning(20), mode="same") / normfactor
pseudoekp = 5 * np.hanning(150)[None, :]
condition1_1d[:, 100:250] += pseudoekp
condition2_1d[:, 100:250] -= pseudoekp
condition1_2d = condition1_1d[:, :, np.newaxis]
condition2_2d = condition2_1d[:, :, np.newaxis]
return condition1_1d, condition2_1d, condition1_2d, condition2_2d
def test_permutation_step_down_p():
"""Test cluster level permutations with step_down_p
"""
try:
try:
from sklearn.feature_extraction.image import grid_to_graph
except ImportError:
from scikits.learn.feature_extraction.image import grid_to_graph
except ImportError:
return
rng = np.random.RandomState(0)
# subjects, time points, spatial points
X = rng.randn(9, 2, 10)
# add some significant points
X[:, 0:2, 0:2] += 2 # span two time points and two spatial points
X[:, 1, 5:9] += 0.5 # span four time points with 4x smaller amplitude
thresh = 2
# make sure it works when we use ALL points in step-down
t, clusters, p, H0 = \
permutation_cluster_1samp_test(X, threshold=thresh,
step_down_p=1.0)
# make sure using step-down will actually yield improvements sometimes
t, clusters, p_old, H0 = \
permutation_cluster_1samp_test(X, threshold=thresh,
step_down_p=0.0)
assert_equal(np.sum(p_old < 0.05), 1) # just spatial cluster
t, clusters, p_new, H0 = \
permutation_cluster_1samp_test(X, threshold=thresh,
step_down_p=0.05)
assert_equal(np.sum(p_new < 0.05), 2) # time one rescued
assert_true(np.all(p_old >= p_new))
def test_cluster_permutation_test():
"""Test cluster level permutations tests
"""
condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
_get_conditions()
for condition1, condition2 in zip((condition1_1d, condition1_2d),
(condition2_1d, condition2_2d)):
T_obs, clusters, cluster_p_values, hist = permutation_cluster_test(
[condition1, condition2],
n_permutations=100, tail=1, seed=1,
buffer_size=None)
assert_equal(np.sum(cluster_p_values < 0.05), 1)
T_obs, clusters, cluster_p_values, hist = permutation_cluster_test(
[condition1, condition2],
n_permutations=100, tail=0, seed=1,
buffer_size=None)
assert_equal(np.sum(cluster_p_values < 0.05), 1)
# test with 2 jobs and buffer_size enabled
buffer_size = condition1.shape[1] // 10
T_obs, clusters, cluster_p_values_buff, hist =\
permutation_cluster_test([condition1, condition2],
n_permutations=100, tail=0, seed=1,
n_jobs=2, buffer_size=buffer_size)
assert_array_equal(cluster_p_values, cluster_p_values_buff)
def test_cluster_permutation_t_test():
"""Test cluster level permutations T-test
"""
condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
_get_conditions()
# use a very large sigma to make sure Ts are not independent
stat_funs = [ttest_1samp_no_p,
partial(ttest_1samp_no_p, sigma=1e-1)]
for stat_fun in stat_funs:
for condition1 in (condition1_1d, condition1_2d):
# these are so significant we can get away with fewer perms
T_obs, clusters, cluster_p_values, hist =\
permutation_cluster_1samp_test(condition1, n_permutations=100,
tail=0, seed=1,
buffer_size=None)
assert_equal(np.sum(cluster_p_values < 0.05), 1)
T_obs_pos, c_1, cluster_p_values_pos, _ =\
permutation_cluster_1samp_test(condition1, n_permutations=100,
tail=1, threshold=1.67, seed=1,
stat_fun=stat_fun,
buffer_size=None)
T_obs_neg, _, cluster_p_values_neg, _ =\
permutation_cluster_1samp_test(-condition1, n_permutations=100,
tail=-1, threshold=-1.67,
seed=1, stat_fun=stat_fun,
buffer_size=None)
assert_array_equal(T_obs_pos, -T_obs_neg)
assert_array_equal(cluster_p_values_pos < 0.05,
cluster_p_values_neg < 0.05)
# test with 2 jobs and buffer_size enabled
buffer_size = condition1.shape[1] // 10
T_obs_neg_buff, _, cluster_p_values_neg_buff, _ = \
permutation_cluster_1samp_test(-condition1, n_permutations=100,
tail=-1, threshold=-1.67,
seed=1, n_jobs=2,
stat_fun=stat_fun,
buffer_size=buffer_size)
assert_array_equal(T_obs_neg, T_obs_neg_buff)
assert_array_equal(cluster_p_values_neg, cluster_p_values_neg_buff)
def test_cluster_permutation_with_connectivity():
"""Test cluster level permutations with connectivity matrix
"""
try:
try:
from sklearn.feature_extraction.image import grid_to_graph
except ImportError:
from scikits.learn.feature_extraction.image import grid_to_graph
except ImportError:
return
condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
_get_conditions()
n_pts = condition1_1d.shape[1]
# we don't care about p-values in any of these, so do fewer permutations
args = dict(seed=None, max_step=1, exclude=None,
step_down_p=0, t_power=1, threshold=1.67,
check_disjoint=False, n_permutations=50)
did_warn = False
for X1d, X2d, func, spatio_temporal_func in \
[(condition1_1d, condition1_2d,
permutation_cluster_1samp_test,
spatio_temporal_cluster_1samp_test),
([condition1_1d, condition2_1d],
[condition1_2d, condition2_2d],
permutation_cluster_test,
spatio_temporal_cluster_test)]:
out = func(X1d, **args)
connectivity = grid_to_graph(1, n_pts)
out_connectivity = func(X1d, connectivity=connectivity, **args)
assert_array_equal(out[0], out_connectivity[0])
for a, b in zip(out_connectivity[1], out[1]):
assert_array_equal(out[0][a], out[0][b])
assert_true(np.all(a[b]))
# test spatio-temporal w/o time connectivity (repeat spatial pattern)
connectivity_2 = sparse.coo_matrix(
linalg.block_diag(connectivity.asfptype().todense(),
connectivity.asfptype().todense()))
if isinstance(X1d, list):
X1d_2 = [np.concatenate((x, x), axis=1) for x in X1d]
else:
X1d_2 = np.concatenate((X1d, X1d), axis=1)
out_connectivity_2 = func(X1d_2, connectivity=connectivity_2, **args)
# make sure we were operating on the same values
split = len(out[0])
assert_array_equal(out[0], out_connectivity_2[0][:split])
assert_array_equal(out[0], out_connectivity_2[0][split:])
# make sure we really got 2x the number of original clusters
n_clust_orig = len(out[1])
assert_true(len(out_connectivity_2[1]) == 2 * n_clust_orig)
# Make sure that we got the old ones back
data_1 = set([np.sum(out[0][b[:n_pts]]) for b in out[1]])
data_2 = set([np.sum(out_connectivity_2[0][a[:n_pts]]) for a in
out_connectivity_2[1][:]])
assert_true(len(data_1.intersection(data_2)) == len(data_1))
# now use the other algorithm
if isinstance(X1d, list):
X1d_3 = [np.reshape(x, (-1, 2, 350)) for x in X1d_2]
else:
X1d_3 = np.reshape(X1d_2, (-1, 2, 350))
out_connectivity_3 = spatio_temporal_func(X1d_3, n_permutations=50,
connectivity=connectivity,
max_step=0, threshold=1.67,
check_disjoint=True)
# make sure we were operating on the same values
split = len(out[0])
assert_array_equal(out[0], out_connectivity_3[0][0])
assert_array_equal(out[0], out_connectivity_3[0][1])
# make sure we really got 2x the number of original clusters
assert_true(len(out_connectivity_3[1]) == 2 * n_clust_orig)
# Make sure that we got the old ones back
data_1 = set([np.sum(out[0][b[:n_pts]]) for b in out[1]])
data_2 = set([np.sum(out_connectivity_3[0][a[0], a[1]]) for a in
out_connectivity_3[1]])
assert_true(len(data_1.intersection(data_2)) == len(data_1))
# test new versus old method
out_connectivity_4 = spatio_temporal_func(X1d_3, n_permutations=50,
connectivity=connectivity,
max_step=2, threshold=1.67)
out_connectivity_5 = spatio_temporal_func(X1d_3, n_permutations=50,
connectivity=connectivity,
max_step=1, threshold=1.67)
# clusters could be in a different order
sums_4 = [np.sum(out_connectivity_4[0][a])
for a in out_connectivity_4[1]]
sums_5 = [np.sum(out_connectivity_4[0][a])
for a in out_connectivity_5[1]]
sums_4 = np.sort(sums_4)
sums_5 = np.sort(sums_5)
assert_array_almost_equal(sums_4, sums_5)
if not _force_serial:
assert_raises(ValueError, spatio_temporal_func, X1d_3,
n_permutations=1, connectivity=connectivity, max_step=1,
threshold=1.67, n_jobs=-1000)
# not enough TFCE params
assert_raises(KeyError, spatio_temporal_func, X1d_3,
connectivity=connectivity, threshold=dict(me='hello'))
# too extreme a start threshold
with warnings.catch_warnings(record=True) as w:
spatio_temporal_func(X1d_3, connectivity=connectivity,
threshold=dict(start=10, step=1))
if not did_warn:
assert_true(len(w) == 1)
did_warn = True
# too extreme a start threshold
assert_raises(ValueError, spatio_temporal_func, X1d_3,
connectivity=connectivity, tail=-1,
threshold=dict(start=1, step=-1))
assert_raises(ValueError, spatio_temporal_func, X1d_3,
connectivity=connectivity, tail=-1,
threshold=dict(start=-1, step=1))
# wrong type for threshold
assert_raises(TypeError, spatio_temporal_func, X1d_3,
connectivity=connectivity, threshold=[])
# wrong value for tail
assert_raises(ValueError, spatio_temporal_func, X1d_3,
connectivity=connectivity, tail=2)
# make sure it actually found a significant point
out_connectivity_6 = spatio_temporal_func(X1d_3, n_permutations=50,
connectivity=connectivity,
max_step=1,
threshold=dict(start=1,
step=1))
assert_true(np.min(out_connectivity_6[2]) < 0.05)
def test_permutation_connectivity_equiv():
"""Test cluster level permutations with and without connectivity
"""
try:
try:
from sklearn.feature_extraction.image import grid_to_graph
except ImportError:
from scikits.learn.feature_extraction.image import grid_to_graph
except ImportError:
return
rng = np.random.RandomState(0)
# subjects, time points, spatial points
X = rng.randn(7, 2, 10)
# add some significant points
X[:, 0:2, 0:2] += 10 # span two time points and two spatial points
X[:, 1, 5:9] += 10 # span four time points
max_steps = [1, 1, 1, 2]
# This will run full algorithm in two ways, then the ST-algorithm in 2 ways
# All of these should give the same results
conns = [None, grid_to_graph(2, 10),
grid_to_graph(1, 10), grid_to_graph(1, 10)]
stat_map = None
thresholds = [2, dict(start=0.5, step=0.5)]
sig_counts = [2, 8]
sdps = [0, 0.05, 0.05]
ots = ['mask', 'mask', 'indices']
for thresh, count in zip(thresholds, sig_counts):
cs = None
ps = None
for max_step, conn in zip(max_steps, conns):
for stat_fun in [ttest_1samp_no_p,
partial(ttest_1samp_no_p, sigma=1e-3)]:
for sdp, ot in zip(sdps, ots):
t, clusters, p, H0 = \
permutation_cluster_1samp_test(X,
threshold=thresh,
connectivity=conn,
n_jobs=2,
max_step=max_step,
stat_fun=stat_fun,
step_down_p=sdp,
out_type=ot)
# make sure our output datatype is correct
if ot == 'mask':
assert_true(isinstance(clusters[0], np.ndarray))
assert_true(clusters[0].dtype == bool)
assert_array_equal(clusters[0].shape, X.shape[1:])
else: # ot == 'indices'
assert_true(isinstance(clusters[0], tuple))
# make sure all comparisons were done; for TFCE, no perm
# should come up empty
if count == 8:
assert_true(not np.any(H0 == 0))
inds = np.where(p < 0.05)[0]
assert_true(len(inds) == count)
this_cs = [clusters[ii] for ii in inds]
this_ps = p[inds]
this_stat_map = np.zeros((2, 10), dtype=bool)
for ci, c in enumerate(this_cs):
if isinstance(c, tuple):
this_c = np.zeros((2, 10), bool)
for x, y in zip(c[0], c[1]):
this_stat_map[x, y] = True
this_c[x, y] = True
this_cs[ci] = this_c
c = this_c
this_stat_map[c] = True
if cs is None:
ps = this_ps
cs = this_cs
if stat_map is None:
stat_map = this_stat_map
assert_array_equal(ps, this_ps)
assert_true(len(cs) == len(this_cs))
for c1, c2 in zip(cs, this_cs):
assert_array_equal(c1, c2)
assert_array_equal(stat_map, this_stat_map)
def spatio_temporal_cluster_test_connectivity():
"""Test cluster level permutations with and without connectivity
"""
try:
try:
from sklearn.feature_extraction.image import grid_to_graph
except ImportError:
from scikits.learn.feature_extraction.image import grid_to_graph
except ImportError:
return
condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
_get_conditions()
rng = np.random.RandomState(0)
noise1_2d = rng.randn(condition1_2d.shape[0], condition1_2d.shape[1], 10)
data1_2d = np.transpose(np.dstack((condition1_2d, noise1_2d)), [0, 2, 1])
noise2_d2 = rng.randn(condition2_2d.shape[0], condition2_2d.shape[1], 10)
data2_2d = np.transpose(np.dstack((condition2_2d, noise2_d2)), [0, 2, 1])
conn = grid_to_graph(data1_2d.shape[-1], 1)
threshold = dict(start=4.0, step=2)
T_obs, clusters, p_values_conn, hist = \
spatio_temporal_cluster_test([data1_2d, data2_2d], connectivity=conn,
n_permutations=50, tail=1, seed=1,
threshold=threshold, buffer_size=None)
buffer_size = data1_2d.size // 10
T_obs, clusters, p_values_no_conn, hist = \
spatio_temporal_cluster_test([data1_2d, data2_2d],
n_permutations=50, tail=1, seed=1,
threshold=threshold, n_jobs=2,
buffer_size=buffer_size)
assert_equal(np.sum(p_values_conn < 0.05), np.sum(p_values_no_conn < 0.05))
# make sure results are the same without buffer_size
T_obs, clusters, p_values2, hist2 = \
spatio_temporal_cluster_test([data1_2d, data2_2d],
n_permutations=50, tail=1, seed=1,
threshold=threshold, n_jobs=2,
buffer_size=None)
assert_array_equal(p_values_no_conn, p_values2)
def ttest_1samp(X):
"""Returns T-values
"""
return stats.ttest_1samp(X, 0)[0]
def test_summarize_clusters():
"""Test cluster summary stcs
"""
clu = (np.random.random([1, 20484]),
[(np.array([0]), np.array([0, 2, 4]))],
np.array([0.02, 0.1]),
np.array([12, -14, 30]))
stc_sum = summarize_clusters_stc(clu)
assert_true(stc_sum.data.shape[1] == 2)
clu[2][0] = 0.3
assert_raises(RuntimeError, summarize_clusters_stc, clu)
|