File: surface.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (1317 lines) | stat: -rw-r--r-- 47,507 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#          Denis A. Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)

from .externals.six import string_types
import os
from os import path as op
import sys
from struct import pack
import numpy as np
from scipy.spatial.distance import cdist
from scipy import sparse
from fnmatch import fnmatch

from .io.constants import FIFF
from .io.open import fiff_open
from .io.tree import dir_tree_find
from .io.tag import find_tag
from .io.write import (write_int, write_float, write_float_matrix,
                       write_int_matrix, start_file, end_block,
                       start_block, end_file, write_string,
                       write_float_sparse_rcs)
from .channels import _get_meg_system
from .transforms import transform_surface_to
from .utils import logger, verbose, get_subjects_dir


##############################################################################
# BEM

@verbose
def read_bem_surfaces(fname, add_geom=False, s_id=None, verbose=None):
    """Read the BEM surfaces from a FIF file

    Parameters
    ----------
    fname : string
        The name of the file containing the surfaces.
    add_geom : bool, optional (default False)
        If True add geometry information to the surfaces.
    s_id : int | None
        If int, only read and return the surface with the given s_id.
        An error will be raised if it doesn't exist. If None, all
        surfaces are read and returned.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    surf: list | dict
        A list of dictionaries that each contain a surface. If s_id
        is not None, only the requested surface will be returned.
    """
    #
    #   Default coordinate frame
    #
    coord_frame = FIFF.FIFFV_COORD_MRI
    #
    #   Open the file, create directory
    #
    fid, tree, _ = fiff_open(fname)
    #
    #   Find BEM
    #
    bem = dir_tree_find(tree, FIFF.FIFFB_BEM)
    if bem is None:
        fid.close()
        raise ValueError('BEM data not found')

    bem = bem[0]
    #
    #   Locate all surfaces
    #
    bemsurf = dir_tree_find(bem, FIFF.FIFFB_BEM_SURF)
    if bemsurf is None:
        fid.close()
        raise ValueError('BEM surface data not found')

    logger.info('    %d BEM surfaces found' % len(bemsurf))
    #
    #   Coordinate frame possibly at the top level
    #
    tag = find_tag(fid, bem, FIFF.FIFF_BEM_COORD_FRAME)
    if tag is not None:
        coord_frame = tag.data
    #
    #   Read all surfaces
    #
    if s_id is not None:
        surfs = [_read_bem_surface(fid, bsurf, coord_frame, s_id)
                 for bsurf in bemsurf]
        surfs = [s for s in surfs if s is not None]
        if not len(surfs) == 1:
            raise ValueError('surface with id %d not found' % s_id)
        fid.close()
        return surfs[0]

    surf = []
    for bsurf in bemsurf:
        logger.info('    Reading a surface...')
        this = _read_bem_surface(fid, bsurf, coord_frame)
        logger.info('[done]')
        if add_geom:
            _complete_surface_info(this)
        surf.append(this)

    logger.info('    %d BEM surfaces read' % len(surf))

    fid.close()

    return surf


def _read_bem_surface(fid, this, def_coord_frame, s_id=None):
    """Read one bem surface
    """
    res = dict()
    #
    #   Read all the interesting stuff
    #
    tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_ID)

    if tag is None:
        res['id'] = FIFF.FIFFV_BEM_SURF_ID_UNKNOWN
    else:
        res['id'] = int(tag.data)

    if s_id is not None:
        if res['id'] != s_id:
            return None

    tag = find_tag(fid, this, FIFF.FIFF_BEM_SIGMA)
    if tag is None:
        res['sigma'] = 1.0
    else:
        res['sigma'] = float(tag.data)

    tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NNODE)
    if tag is None:
        fid.close()
        raise ValueError('Number of vertices not found')

    res['np'] = int(tag.data)

    tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NTRI)
    if tag is None:
        fid.close()
        raise ValueError('Number of triangles not found')
    else:
        res['ntri'] = int(tag.data)

    tag = find_tag(fid, this, FIFF.FIFF_MNE_COORD_FRAME)
    if tag is None:
        tag = find_tag(fid, this, FIFF.FIFF_BEM_COORD_FRAME)
        if tag is None:
            res['coord_frame'] = def_coord_frame
        else:
            res['coord_frame'] = tag.data
    else:
        res['coord_frame'] = tag.data
    #
    #   Vertices, normals, and triangles
    #
    tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NODES)
    if tag is None:
        fid.close()
        raise ValueError('Vertex data not found')

    res['rr'] = tag.data.astype(np.float)  # XXX : double because of mayavi bug
    if res['rr'].shape[0] != res['np']:
        fid.close()
        raise ValueError('Vertex information is incorrect')

    tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS)
    if tag is None:
        tag = tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NORMALS)
    if tag is None:
        res['nn'] = []
    else:
        res['nn'] = tag.data
        if res['nn'].shape[0] != res['np']:
            fid.close()
            raise ValueError('Vertex normal information is incorrect')

    tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_TRIANGLES)
    if tag is None:
        fid.close()
        raise ValueError('Triangulation not found')

    res['tris'] = tag.data - 1  # index start at 0 in Python
    if res['tris'].shape[0] != res['ntri']:
        fid.close()
        raise ValueError('Triangulation information is incorrect')

    return res


@verbose
def read_bem_solution(fname, verbose=None):
    """Read the BEM solution from a file

    Parameters
    ----------
    fname : string
        The file containing the BEM solution.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    bem : dict
        The BEM solution.
    """
    logger.info('Loading surfaces...')
    bem_surfs = read_bem_surfaces(fname, add_geom=True, verbose=False)
    if len(bem_surfs) == 3:
        logger.info('Three-layer model surfaces loaded.')
        needed = np.array([FIFF.FIFFV_BEM_SURF_ID_HEAD,
                           FIFF.FIFFV_BEM_SURF_ID_SKULL,
                           FIFF.FIFFV_BEM_SURF_ID_BRAIN])
        if not all([x['id'] in needed for x in bem_surfs]):
            raise RuntimeError('Could not find necessary BEM surfaces')
        # reorder surfaces as necessary (shouldn't need to?)
        reorder = [None] * 3
        for x in bem_surfs:
            reorder[np.where(x['id'] == needed)[0][0]] = x
        bem_surfs = reorder
    elif len(bem_surfs) == 1:
        if not bem_surfs[0]['id'] == FIFF.FIFFV_BEM_SURF_ID_BRAIN:
            raise RuntimeError('BEM Surfaces not found')
        logger.info('Homogeneous model surface loaded.')

    # convert from surfaces to solution
    bem = dict(surfs=bem_surfs)
    logger.info('\nLoading the solution matrix...\n')
    f, tree, _ = fiff_open(fname)
    with f as fid:
        # Find the BEM data
        nodes = dir_tree_find(tree, FIFF.FIFFB_BEM)
        if len(nodes) == 0:
            raise RuntimeError('No BEM data in %s' % fname)
        bem_node = nodes[0]

        # Approximation method
        tag = find_tag(f, bem_node, FIFF.FIFF_BEM_APPROX)
        method = tag.data[0]
        if method == FIFF.FIFFV_BEM_APPROX_CONST:
            method = 'constant collocation'
        elif method == FIFF.FIFFV_BEM_APPROX_LINEAR:
            method = 'linear collocation'
        else:
            raise RuntimeError('Cannot handle BEM approximation method : %d'
                               % method)

        tag = find_tag(fid, bem_node, FIFF.FIFF_BEM_POT_SOLUTION)
        dims = tag.data.shape
        if len(dims) != 2:
            raise RuntimeError('Expected a two-dimensional solution matrix '
                               'instead of a %d dimensional one' % dims[0])

        dim = 0
        for surf in bem['surfs']:
            if method == 'linear collocation':
                dim += surf['np']
            else:
                dim += surf['ntri']

        if dims[0] != dim or dims[1] != dim:
            raise RuntimeError('Expected a %d x %d solution matrix instead of '
                               'a %d x %d one' % (dim, dim, dims[1], dims[0]))
        sol = tag.data
        nsol = dims[0]

    # Gamma factors and multipliers
    bem['sigma'] = np.array([surf['sigma'] for surf in bem['surfs']])
    # Dirty trick for the zero conductivity outside
    sigma = np.r_[0.0, bem['sigma']]
    bem['source_mult'] = 2.0 / (sigma[1:] + sigma[:-1])
    bem['field_mult'] = sigma[1:] - sigma[:-1]
    # make sure subsequent "zip"s work correctly
    assert len(bem['surfs']) == len(bem['field_mult'])
    bem['gamma'] = ((sigma[1:] - sigma[:-1])[np.newaxis, :] /
                    (sigma[1:] + sigma[:-1])[:, np.newaxis])
    bem['sol_name'] = fname
    bem['solution'] = sol
    bem['nsol'] = nsol
    bem['bem_method'] = method
    logger.info('Loaded %s BEM solution from %s', bem['bem_method'], fname)
    return bem


###############################################################################
# AUTOMATED SURFACE FINDING

def get_head_surf(subject, source='bem', subjects_dir=None):
    """Load the subject head surface

    Parameters
    ----------
    subject : str
        Subject name.
    source : str
        Type to load. Common choices would be `'bem'` or `'head'`. We first
        try loading `'$SUBJECTS_DIR/$SUBJECT/bem/$SUBJECT-$SOURCE.fif'`, and
        then look for `'$SUBJECT*$SOURCE.fif'` in the same directory.
    subjects_dir : str, or None
        Path to the SUBJECTS_DIR. If None, the path is obtained by using
        the environment variable SUBJECTS_DIR.

    Returns
    -------
    surf : dict
        The head surface.
    """
    # Load the head surface from the BEM
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    # use realpath to allow for linked surfaces (c.f. MNE manual 196-197)
    this_head = op.realpath(op.join(subjects_dir, subject, 'bem',
                                    '%s-%s.fif' % (subject, source)))
    if not op.isfile(this_head):
        # let's do a more sophisticated search
        this_head = None
        path = op.join(subjects_dir, subject, 'bem')
        if not op.isdir(path):
            raise IOError('Subject bem directory "%s" does not exist'
                          % path)
        files = os.listdir(path)
        for fname in files:
            if fnmatch(fname, '%s*%s.fif' % (subject, source)):
                this_head = op.join(path, fname)
                break
        if this_head is None:
            raise IOError('No file matching "%s*%s" found'
                          % (subject, source))
    surf = read_bem_surfaces(this_head, True,
                             FIFF.FIFFV_BEM_SURF_ID_HEAD)
    return surf


def get_meg_helmet_surf(info, trans=None):
    """Load the MEG helmet associated with the MEG sensors

    Parameters
    ----------
    info : instance of io.meas_info.Info
        Measurement info.
    trans : dict
        The head<->MRI transformation, usually obtained using
        read_trans(). Can be None, in which case the surface will
        be in head coordinates instead of MRI coordinates.

    Returns
    -------
    surf : dict
        The MEG helmet as a surface.
    """
    system = _get_meg_system(info)
    fname = op.join(op.split(__file__)[0], 'data', 'helmets',
                    system + '.fif.gz')
    surf = read_bem_surfaces(fname, False, FIFF.FIFFV_MNE_SURF_MEG_HELMET)

    # Ignore what the file says, it's in device coords and we want MRI coords
    surf['coord_frame'] = FIFF.FIFFV_COORD_DEVICE
    transform_surface_to(surf, 'head', info['dev_head_t'])
    if trans is not None:
        transform_surface_to(surf, 'mri', trans)
    return surf


###############################################################################
# EFFICIENCY UTILITIES

def fast_cross_3d(x, y):
    """Compute cross product between list of 3D vectors

    Much faster than np.cross() when the number of cross products
    becomes large (>500). This is because np.cross() methods become
    less memory efficient at this stage.

    Parameters
    ----------
    x : array
        Input array 1.
    y : array
        Input array 2.

    Returns
    -------
    z : array
        Cross product of x and y.

    Notes
    -----
    x and y must both be 2D row vectors. One must have length 1, or both
    lengths must match.
    """
    assert x.ndim == 2
    assert y.ndim == 2
    assert x.shape[1] == 3
    assert y.shape[1] == 3
    assert (x.shape[0] == 1 or y.shape[0] == 1) or x.shape[0] == y.shape[0]
    if max([x.shape[0], y.shape[0]]) >= 500:
        return np.c_[x[:, 1] * y[:, 2] - x[:, 2] * y[:, 1],
                     x[:, 2] * y[:, 0] - x[:, 0] * y[:, 2],
                     x[:, 0] * y[:, 1] - x[:, 1] * y[:, 0]]
    else:
        return np.cross(x, y)


def _accumulate_normals(tris, tri_nn, npts):
    """Efficiently accumulate triangle normals"""
    # this code replaces the following, but is faster (vectorized):
    #
    # this['nn'] = np.zeros((this['np'], 3))
    # for p in xrange(this['ntri']):
    #     verts = this['tris'][p]
    #     this['nn'][verts, :] += this['tri_nn'][p, :]
    #
    nn = np.zeros((npts, 3))
    for verts in tris.T:  # note this only loops 3x (number of verts per tri)
        for idx in range(3):  # x, y, z
            nn[:, idx] += np.bincount(verts, weights=tri_nn[:, idx],
                                      minlength=npts)
    return nn


def _triangle_neighbors(tris, npts):
    """Efficiently compute vertex neighboring triangles"""
    # this code replaces the following, but is faster (vectorized):
    #
    # this['neighbor_tri'] = [list() for _ in xrange(this['np'])]
    # for p in xrange(this['ntri']):
    #     verts = this['tris'][p]
    #     this['neighbor_tri'][verts[0]].append(p)
    #     this['neighbor_tri'][verts[1]].append(p)
    #     this['neighbor_tri'][verts[2]].append(p)
    # this['neighbor_tri'] = [np.array(nb, int) for nb in this['neighbor_tri']]
    #
    verts = tris.ravel()
    counts = np.bincount(verts, minlength=npts)
    reord = np.argsort(verts)
    tri_idx = np.unravel_index(reord, (len(tris), 3))[0]
    idx = np.cumsum(np.r_[0, counts])
    # the sort below slows it down a bit, but is needed for equivalence
    neighbor_tri = [np.sort(tri_idx[v1:v2])
                    for v1, v2 in zip(idx[:-1], idx[1:])]
    return neighbor_tri


def _triangle_coords(r, geom, best):
    """Get coordinates of a vertex projected to a triangle"""
    r1 = geom['r1'][best]
    tri_nn = geom['nn'][best]
    r12 = geom['r12'][best]
    r13 = geom['r13'][best]
    a = geom['a'][best]
    b = geom['b'][best]
    c = geom['c'][best]
    rr = r - r1
    z = np.sum(rr * tri_nn)
    v1 = np.sum(rr * r12)
    v2 = np.sum(rr * r13)
    det = a * b - c * c
    x = (b * v1 - c * v2) / det
    y = (a * v2 - c * v1) / det
    return x, y, z


def _complete_surface_info(this, do_neighbor_vert=False):
    """Complete surface info"""
    # based on mne_source_space_add_geometry_info() in mne_add_geometry_info.c

    #   Main triangulation [mne_add_triangle_data()]
    this['tri_area'] = np.zeros(this['ntri'])
    r1 = this['rr'][this['tris'][:, 0], :]
    r2 = this['rr'][this['tris'][:, 1], :]
    r3 = this['rr'][this['tris'][:, 2], :]
    this['tri_cent'] = (r1 + r2 + r3) / 3.0
    this['tri_nn'] = fast_cross_3d((r2 - r1), (r3 - r1))

    #   Triangle normals and areas
    size = np.sqrt(np.sum(this['tri_nn'] ** 2, axis=1))
    this['tri_area'] = size / 2.0
    zidx = np.where(size == 0)[0]
    for idx in zidx:
        logger.info('    Warning: zero size triangle # %s' % idx)
    size[zidx] = 1.0  # prevent ugly divide-by-zero
    this['tri_nn'] /= size[:, None]

    #    Find neighboring triangles, accumulate vertex normals, normalize
    logger.info('    Triangle neighbors and vertex normals...')
    this['neighbor_tri'] = _triangle_neighbors(this['tris'], this['np'])
    this['nn'] = _accumulate_normals(this['tris'], this['tri_nn'], this['np'])
    _normalize_vectors(this['nn'])

    #   Check for topological defects
    idx = np.where([len(n) == 0 for n in this['neighbor_tri']])[0]
    if len(idx) > 0:
        logger.info('    Vertices [%s] do not have any neighboring'
                    'triangles!' % ','.join([str(ii) for ii in idx]))
    idx = np.where([len(n) < 3 for n in this['neighbor_tri']])[0]
    if len(idx) > 0:
        logger.info('    Vertices [%s] have fewer than three neighboring '
                    'tris, omitted' % ','.join([str(ii) for ii in idx]))
    for k in idx:
        this['neighbor_tri'] = np.array([], int)

    #   Determine the neighboring vertices and fix errors
    if do_neighbor_vert is True:
        this['neighbor_vert'] = [_get_surf_neighbors(this, k)
                                 for k in range(this['np'])]

    return this


def _get_surf_neighbors(surf, k):
    """Calculate the surface neighbors based on triangulation"""
    verts = np.concatenate([surf['tris'][nt]
                            for nt in surf['neighbor_tri'][k]])
    verts = np.setdiff1d(verts, [k], assume_unique=False)
    if np.any(verts >= surf['np']):
        raise RuntimeError
    nneighbors = len(verts)
    nneigh_max = len(surf['neighbor_tri'][k])
    if nneighbors > nneigh_max:
        raise RuntimeError('Too many neighbors for vertex %d' % k)
    elif nneighbors != nneigh_max:
        logger.info('    Incorrect number of distinct neighbors for vertex'
                    ' %d (%d instead of %d) [fixed].' % (k, nneighbors,
                                                         nneigh_max))
    return verts


def _normalize_vectors(rr):
    """Normalize surface vertices"""
    size = np.sqrt(np.sum(rr * rr, axis=1))
    size[size == 0] = 1.0  # avoid divide-by-zero
    rr /= size[:, np.newaxis]  # operate in-place


def _compute_nearest(xhs, rr, use_balltree=True, return_dists=False):
    """Find nearest neighbors

    Note: The rows in xhs and rr must all be unit-length vectors, otherwise
    the result will be incorrect.

    Parameters
    ----------
    xhs : array, shape=(n_samples, n_dim)
        Points of data set.
    rr : array, shape=(n_query, n_dim)
        Points to find nearest neighbors for.
    use_balltree : bool
        Use fast BallTree based search from scikit-learn. If scikit-learn
        is not installed it will fall back to the slow brute force search.

    Returns
    -------
    nearest : array, shape=(n_query,)
        Index of nearest neighbor in xhs for every point in rr.
    """
    if use_balltree:
        try:
            from sklearn.neighbors import BallTree
        except ImportError:
            logger.info('Nearest-neighbor searches will be significantly '
                        'faster if scikit-learn is installed.')
            use_balltree = False

    if use_balltree is True:
        ball_tree = BallTree(xhs)
        if return_dists:
            out = ball_tree.query(rr, k=1, return_distance=True)
            return out[1][:, 0], out[0][:, 0]
        else:
            nearest = ball_tree.query(rr, k=1, return_distance=False)[:, 0]
            return nearest
    else:
        if return_dists:
            nearest = list()
            dists = list()
            for r in rr:
                d = cdist(r[np.newaxis, :], xhs)
                idx = np.argmin(d)
                nearest.append(idx)
                dists.append(d[0, idx])
            return (np.array(nearest), np.array(dists))
        else:
            nearest = np.array([np.argmin(cdist(r[np.newaxis, :], xhs))
                                for r in rr])
            return nearest


###############################################################################
# Handle freesurfer

def _fread3(fobj):
    """Docstring"""
    b1, b2, b3 = np.fromfile(fobj, ">u1", 3)
    return (b1 << 16) + (b2 << 8) + b3


def _fread3_many(fobj, n):
    """Read 3-byte ints from an open binary file object."""
    b1, b2, b3 = np.fromfile(fobj, ">u1",
                             3 * n).reshape(-1, 3).astype(np.int).T
    return (b1 << 16) + (b2 << 8) + b3


def read_curvature(filepath):
    """Load in curavature values from the ?h.curv file."""
    with open(filepath, "rb") as fobj:
        magic = _fread3(fobj)
        if magic == 16777215:
            vnum = np.fromfile(fobj, ">i4", 3)[0]
            curv = np.fromfile(fobj, ">f4", vnum)
        else:
            vnum = magic
            _fread3(fobj)
            curv = np.fromfile(fobj, ">i2", vnum) / 100
        bin_curv = 1 - np.array(curv != 0, np.int)
    return bin_curv


@verbose
def read_surface(fname, verbose=None):
    """Load a Freesurfer surface mesh in triangular format

    Parameters
    ----------
    fname : str
        The name of the file containing the surface.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    rr : array, shape=(n_vertices, 3)
        Coordinate points.
    tris : int array, shape=(n_faces, 3)
        Triangulation (each line contains indexes for three points which
        together form a face).
    """
    TRIANGLE_MAGIC = 16777214
    QUAD_MAGIC = 16777215
    NEW_QUAD_MAGIC = 16777213
    with open(fname, "rb", buffering=0) as fobj:  # buffering=0 for np bug
        magic = _fread3(fobj)
        if (magic == QUAD_MAGIC) or (magic == NEW_QUAD_MAGIC):  # Quad file or new quad
            create_stamp = ''
            nvert = _fread3(fobj)
            nquad = _fread3(fobj)
            if magic == QUAD_MAGIC:
                coords = np.fromfile(fobj, ">i2", nvert * 3).astype(np.float) / 100.
            else:
                coords = np.fromfile(fobj, ">f4", nvert * 3).astype(np.float)

            coords = coords.reshape(-1, 3)
            quads = _fread3_many(fobj, nquad * 4)
            quads = quads.reshape(nquad, 4)
            #
            #   Face splitting follows
            #
            faces = np.zeros((2 * nquad, 3), dtype=np.int)
            nface = 0
            for quad in quads:
                if (quad[0] % 2) == 0:
                    faces[nface] = quad[0], quad[1], quad[3]
                    nface += 1
                    faces[nface] = quad[2], quad[3], quad[1]
                    nface += 1
                else:
                    faces[nface] = quad[0], quad[1], quad[2]
                    nface += 1
                    faces[nface] = quad[0], quad[2], quad[3]
                    nface += 1

        elif magic == TRIANGLE_MAGIC:  # Triangle file
            create_stamp = fobj.readline()
            _ = fobj.readline()  # analysis:ignore
            vnum = np.fromfile(fobj, ">i4", 1)[0]
            fnum = np.fromfile(fobj, ">i4", 1)[0]
            #raise RuntimeError
            coords = np.fromfile(fobj, ">f4", vnum * 3).reshape(vnum, 3)
            faces = np.fromfile(fobj, ">i4", fnum * 3).reshape(fnum, 3)
        else:
            raise ValueError("%s does not appear to be a Freesurfer surface"
                             % fname)
        logger.info('Triangle file: %s nvert = %s ntri = %s'
                    % (create_stamp.strip(), len(coords), len(faces)))

    coords = coords.astype(np.float)  # XXX: due to mayavi bug on mac 32bits
    return coords, faces


@verbose
def _read_surface_geom(fname, add_geom=True, norm_rr=False, verbose=None):
    """Load the surface as dict, optionally add the geometry information"""
    # based on mne_load_surface_geom() in mne_surface_io.c
    if isinstance(fname, string_types):
        rr, tris = read_surface(fname)  # mne_read_triangle_file()
        nvert = len(rr)
        ntri = len(tris)
        s = dict(rr=rr, tris=tris, use_tris=tris, ntri=ntri,
                 np=nvert)
    elif isinstance(fname, dict):
        s = fname
    else:
        raise RuntimeError('fname cannot be understood as str or dict')
    if add_geom is True:
        s = _complete_surface_info(s)
    if norm_rr is True:
        _normalize_vectors(s['rr'])
    return s


##############################################################################
# SURFACE CREATION

def _get_ico_surface(grade):
    """Return an icosahedral surface of the desired grade"""
    # always use verbose=False since users don't need to know we're pulling
    # these from a file
    ico_file_name = op.join(op.dirname(__file__), 'data',
                            'icos.fif.gz')
    ico = read_bem_surfaces(ico_file_name, s_id=9000 + grade, verbose=False)
    return ico


def _tessellate_sphere_surf(level, rad=1.0):
    """Return a surface structure instead of the details"""
    rr, tris = _tessellate_sphere(level)
    npt = len(rr)  # called "npt" instead of "np" because of numpy...
    ntri = len(tris)
    nn = rr.copy()
    rr *= rad
    s = dict(rr=rr, np=npt, tris=tris, use_tris=tris, ntri=ntri, nuse=np,
             nn=nn, inuse=np.ones(npt, int))
    return s


def _norm_midpt(ai, bi, rr):
    a = np.array([rr[aii] for aii in ai])
    b = np.array([rr[bii] for bii in bi])
    c = (a + b) / 2.
    return c / np.sqrt(np.sum(c ** 2, 1))[:, np.newaxis]


def _tessellate_sphere(mylevel):
    """Create a tessellation of a unit sphere"""
    # Vertices of a unit octahedron
    rr = np.array([[1, 0, 0], [-1, 0, 0],  # xplus, xminus
                   [0, 1, 0], [0, -1, 0],  # yplus, yminus
                   [0, 0, 1], [0, 0, -1]], float)  # zplus, zminus
    tris = np.array([[0, 4, 2], [2, 4, 1], [1, 4, 3], [3, 4, 0],
                     [0, 2, 5], [2, 1, 5], [1, 3, 5], [3, 0, 5]], int)

    # A unit octahedron
    if mylevel < 1:
        raise ValueError('# of levels must be >= 1')

    # Reverse order of points in each triangle
    # for counter-clockwise ordering
    tris = tris[:, [2, 1, 0]]

    # Subdivide each starting triangle (mylevel - 1) times
    for _ in range(1, mylevel):
        """
        Subdivide each triangle in the old approximation and normalize
        the new points thus generated to lie on the surface of the unit
        sphere.

        Each input triangle with vertices labelled [0,1,2] as shown
        below will be turned into four new triangles:

                             Make new points
                             a = (0+2)/2
                             b = (0+1)/2
                             c = (1+2)/2
                 1
                /\           Normalize a, b, c
               /  \
             b/____\c        Construct new triangles
             /\    /\	       [0,b,a]
            /  \  /  \       [b,1,c]
           /____\/____\      [a,b,c]
          0     a      2     [a,c,2]

        """
        # use new method: first make new points (rr)
        a = _norm_midpt(tris[:, 0], tris[:, 2], rr)
        b = _norm_midpt(tris[:, 0], tris[:, 1], rr)
        c = _norm_midpt(tris[:, 1], tris[:, 2], rr)
        lims = np.cumsum([len(rr), len(a), len(b), len(c)])
        aidx = np.arange(lims[0], lims[1])
        bidx = np.arange(lims[1], lims[2])
        cidx = np.arange(lims[2], lims[3])
        rr = np.concatenate((rr, a, b, c))

        # now that we have our points, make new triangle definitions
        tris = np.array((np.c_[tris[:, 0], bidx, aidx],
                         np.c_[bidx, tris[:, 1], cidx],
                         np.c_[aidx, bidx, cidx],
                         np.c_[aidx, cidx, tris[:, 2]]), int).swapaxes(0, 1)
        tris = np.reshape(tris, (np.prod(tris.shape[:2]), 3))

    # Copy the resulting approximation into standard table
    rr_orig = rr
    rr = np.empty_like(rr)
    nnode = 0
    for k, tri in enumerate(tris):
        for j in range(3):
            coord = rr_orig[tri[j]]
            # this is faster than cdist (no need for sqrt)
            similarity = np.dot(rr[:nnode], coord)
            idx = np.where(similarity > 0.99999)[0]
            if len(idx) > 0:
                tris[k, j] = idx[0]
            else:
                rr[nnode] = coord
                tris[k, j] = nnode
                nnode += 1
    rr = rr[:nnode].copy()
    return rr, tris


def _create_surf_spacing(surf, hemi, subject, stype, sval, ico_surf,
                         subjects_dir):
    """Load a surf and use the subdivided icosahedron to get points"""
    # Based on load_source_space_surf_spacing() in load_source_space.c
    surf = _read_surface_geom(surf)

    if stype in ['ico', 'oct']:
        ### from mne_ico_downsample.c ###
        surf_name = op.join(subjects_dir, subject, 'surf', hemi + '.sphere')
        logger.info('Loading geometry from %s...' % surf_name)
        from_surf = _read_surface_geom(surf_name, norm_rr=True, add_geom=False)
        if not len(from_surf['rr']) == surf['np']:
            raise RuntimeError('Mismatch between number of surface vertices, '
                               'possible parcellation error?')
        _normalize_vectors(ico_surf['rr'])

        # Make the maps
        logger.info('Mapping %s %s -> %s (%d) ...'
                    % (hemi, subject, stype, sval))
        mmap = _compute_nearest(from_surf['rr'], ico_surf['rr'])
        nmap = len(mmap)
        surf['inuse'] = np.zeros(surf['np'], int)
        for k in range(nmap):
            if surf['inuse'][mmap[k]]:
                # Try the nearest neighbors
                neigh = _get_surf_neighbors(surf, mmap[k])
                was = mmap[k]
                inds = np.where(np.logical_not(surf['inuse'][neigh]))[0]
                if len(inds) == 0:
                    raise RuntimeError('Could not find neighbor for vertex '
                                       '%d / %d' % (k, nmap))
                else:
                    mmap[k] = neigh[inds[-1]]
                logger.info('    Source space vertex moved from %d to %d '
                            'because of double occupation', was, mmap[k])
            elif mmap[k] < 0 or mmap[k] > surf['np']:
                raise RuntimeError('Map number out of range (%d), this is '
                                   'probably due to inconsistent surfaces. '
                                   'Parts of the FreeSurfer reconstruction '
                                   'need to be redone.' % mmap[k])
            surf['inuse'][mmap[k]] = True

        logger.info('Setting up the triangulation for the decimated '
                    'surface...')
        surf['use_tris'] = np.array([mmap[ist] for ist in ico_surf['tris']],
                                    np.int32)
    else:  # use_all is True
        surf['inuse'] = np.ones(surf['np'], int)
        surf['use_tris'] = None
    if surf['use_tris'] is not None:
        surf['nuse_tri'] = len(surf['use_tris'])
    else:
        surf['nuse_tri'] = 0
    surf['nuse'] = np.sum(surf['inuse'])
    surf['vertno'] = np.where(surf['inuse'])[0]

    # set some final params
    inds = np.arange(surf['np'])
    sizes = np.sqrt(np.sum(surf['nn'] ** 2, axis=1))
    surf['nn'][inds] = surf['nn'][inds] / sizes[:, np.newaxis]
    surf['inuse'][sizes <= 0] = False
    surf['nuse'] = np.sum(surf['inuse'])
    surf['subject_his_id'] = subject
    return surf


def write_surface(fname, coords, faces, create_stamp=''):
    """Write a triangular Freesurfer surface mesh

    Accepts the same data format as is returned by read_surface().

    Parameters
    ----------
    fname : str
        File to write.
    coords : array, shape=(n_vertices, 3)
        Coordinate points.
    faces : int array, shape=(n_faces, 3)
        Triangulation (each line contains indexes for three points which
        together form a face).
    create_stamp : str
        Comment that is written to the beginning of the file. Can not contain
        line breaks.
    """
    if len(create_stamp.splitlines()) > 1:
        raise ValueError("create_stamp can only contain one line")

    with open(fname, 'wb') as fid:
        fid.write(pack('>3B', 255, 255, 254))
        strs = ['%s\n' % create_stamp, '\n']
        strs = [s.encode('utf-8') for s in strs]
        fid.writelines(strs)
        vnum = len(coords)
        fnum = len(faces)
        fid.write(pack('>2i', vnum, fnum))
        fid.write(np.array(coords, dtype='>f4').tostring())
        fid.write(np.array(faces, dtype='>i4').tostring())


###############################################################################
# Write

def write_bem_surface(fname, surf):
    """Write one bem surface

    Parameters
    ----------
    fname : string
        File to write
    surf : dict
        A surface structured as obtained with read_bem_surfaces
    """

    # Create the file and save the essentials
    fid = start_file(fname)

    start_block(fid, FIFF.FIFFB_BEM)
    start_block(fid, FIFF.FIFFB_BEM_SURF)

    write_int(fid, FIFF.FIFF_BEM_SURF_ID, surf['id'])
    write_float(fid, FIFF.FIFF_BEM_SIGMA, surf['sigma'])
    write_int(fid, FIFF.FIFF_BEM_SURF_NNODE, surf['np'])
    write_int(fid, FIFF.FIFF_BEM_SURF_NTRI, surf['ntri'])
    write_int(fid, FIFF.FIFF_BEM_COORD_FRAME, surf['coord_frame'])
    write_float_matrix(fid, FIFF.FIFF_BEM_SURF_NODES, surf['rr'])

    if 'nn' in surf and surf['nn'] is not None and len(surf['nn']) > 0:
        write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS, surf['nn'])

    # index start at 0 in Python
    write_int_matrix(fid, FIFF.FIFF_BEM_SURF_TRIANGLES, surf['tris'] + 1)

    end_block(fid, FIFF.FIFFB_BEM_SURF)
    end_block(fid, FIFF.FIFFB_BEM)

    end_file(fid)


def _decimate_surface(points, triangles, reduction):
    """Aux function"""
    if 'DISPLAY' not in os.environ and sys.platform != 'win32':
        os.environ['ETS_TOOLKIT'] = 'null'
    try:
        from tvtk.api import tvtk
    except ImportError:
        raise ValueError('This function requires the TVTK package to be '
                         'installed')
    if triangles.max() > len(points) - 1:
        raise ValueError('The triangles refer to undefined points. '
                         'Please check your mesh.')
    src = tvtk.PolyData(points=points, polys=triangles)
    decimate = tvtk.QuadricDecimation(input=src, target_reduction=reduction)
    decimate.update()
    out = decimate.output
    tris = out.polys.to_array()
    # n-tuples + interleaved n-next -- reshape trick
    return out.points.to_array(), tris.reshape(tris.size / 4, 4)[:, 1:]


def decimate_surface(points, triangles, n_triangles):
    """ Decimate surface data

    Note. Requires TVTK to be installed for this to function.

    Note. If an if an odd target number was requested,
    the ``quadric decimation`` algorithm used results in the
    next even number of triangles. For example a reduction request to 30001
    triangles will result in 30000 triangles.

    Parameters
    ----------
    points : ndarray
        The surface to be decimated, a 3 x number of points array.
    triangles : ndarray
        The surface to be decimated, a 3 x number of triangles array.
    n_triangles : int
        The desired number of triangles.

    Returns
    -------
    points : ndarray
        The decimated points.
    triangles : ndarray
        The decimated triangles.
    """

    reduction = 1 - (float(n_triangles) / len(triangles))
    return _decimate_surface(points, triangles, reduction)


###############################################################################
# Morph maps

@verbose
def read_morph_map(subject_from, subject_to, subjects_dir=None,
                   verbose=None):
    """Read morph map

    Morph maps can be generated with mne_make_morph_maps. If one isn't
    available, it will be generated automatically and saved to the
    ``subjects_dir/morph_maps`` directory.

    Parameters
    ----------
    subject_from : string
        Name of the original subject as named in the SUBJECTS_DIR.
    subject_to : string
        Name of the subject on which to morph as named in the SUBJECTS_DIR.
    subjects_dir : string
        Path to SUBJECTS_DIR is not set in the environment.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    left_map, right_map : sparse matrix
        The morph maps for the 2 hemispheres.
    """
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)

    # First check for morph-map dir existence
    mmap_dir = op.join(subjects_dir, 'morph-maps')
    if not op.isdir(mmap_dir):
        try:
            os.mkdir(mmap_dir)
        except:
            logger.warning('Could not find or make morph map directory "%s"'
                           % mmap_dir)

    # Does the file exist
    fname = op.join(mmap_dir, '%s-%s-morph.fif' % (subject_from, subject_to))
    if not op.exists(fname):
        fname = op.join(mmap_dir, '%s-%s-morph.fif'
                        % (subject_to, subject_from))
        if not op.exists(fname):
            logger.warning('Morph map "%s" does not exist, '
                           'creating it and saving it to disk (this may take '
                           'a few minutes)' % fname)
            logger.info('Creating morph map %s -> %s'
                        % (subject_from, subject_to))
            mmap_1 = _make_morph_map(subject_from, subject_to, subjects_dir)
            logger.info('Creating morph map %s -> %s'
                        % (subject_to, subject_from))
            mmap_2 = _make_morph_map(subject_to, subject_from, subjects_dir)
            try:
                _write_morph_map(fname, subject_from, subject_to,
                                 mmap_1, mmap_2)
            except Exception as exp:
                logger.warning('Could not write morph-map file "%s" '
                               '(error: %s)' % (fname, exp))
            return mmap_1

    f, tree, _ = fiff_open(fname)
    with f as fid:
        # Locate all maps
        maps = dir_tree_find(tree, FIFF.FIFFB_MNE_MORPH_MAP)
        if len(maps) == 0:
            raise ValueError('Morphing map data not found')

        # Find the correct ones
        left_map = None
        right_map = None
        for m in maps:
            tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP_FROM)
            if tag.data == subject_from:
                tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP_TO)
                if tag.data == subject_to:
                    #  Names match: which hemishere is this?
                    tag = find_tag(fid, m, FIFF.FIFF_MNE_HEMI)
                    if tag.data == FIFF.FIFFV_MNE_SURF_LEFT_HEMI:
                        tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP)
                        left_map = tag.data
                        logger.info('    Left-hemisphere map read.')
                    elif tag.data == FIFF.FIFFV_MNE_SURF_RIGHT_HEMI:
                        tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP)
                        right_map = tag.data
                        logger.info('    Right-hemisphere map read.')

    if left_map is None:
        raise ValueError('Left hemisphere map not found in %s' % fname)

    if right_map is None:
        raise ValueError('Left hemisphere map not found in %s' % fname)

    return left_map, right_map


def _write_morph_map(fname, subject_from, subject_to, mmap_1, mmap_2):
    """Write a morph map to disk"""
    fid = start_file(fname)
    assert len(mmap_1) == 2
    assert len(mmap_2) == 2
    hemis = [FIFF.FIFFV_MNE_SURF_LEFT_HEMI, FIFF.FIFFV_MNE_SURF_RIGHT_HEMI]
    for m, hemi in zip(mmap_1, hemis):
        start_block(fid, FIFF.FIFFB_MNE_MORPH_MAP)
        write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_FROM, subject_from)
        write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_TO, subject_to)
        write_int(fid, FIFF.FIFF_MNE_HEMI, hemi)
        write_float_sparse_rcs(fid, FIFF.FIFF_MNE_MORPH_MAP, m)
        end_block(fid, FIFF.FIFFB_MNE_MORPH_MAP)
    for m, hemi in zip(mmap_2, hemis):
        start_block(fid, FIFF.FIFFB_MNE_MORPH_MAP)
        write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_FROM, subject_to)
        write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_TO, subject_from)
        write_int(fid, FIFF.FIFF_MNE_HEMI, hemi)
        write_float_sparse_rcs(fid, FIFF.FIFF_MNE_MORPH_MAP, m)
        end_block(fid, FIFF.FIFFB_MNE_MORPH_MAP)
    end_file(fid)


def _get_tri_dist(p, q, p0, q0, a, b, c, dist):
    """Auxiliary function for getting the distance to a triangle edge"""
    return np.sqrt((p - p0) * (p - p0) * a +
                   (q - q0) * (q - q0) * b +
                   (p - p0) * (q - q0) * c +
                   dist * dist)


def _get_tri_supp_geom(tris, rr):
    """Create supplementary geometry information using tris and rrs"""
    r1 = rr[tris[:, 0], :]
    r12 = rr[tris[:, 1], :] - r1
    r13 = rr[tris[:, 2], :] - r1
    r1213 = np.array([r12, r13]).swapaxes(0, 1)
    a = np.sum(r12 * r12, axis=1)
    b = np.sum(r13 * r13, axis=1)
    c = np.sum(r12 * r13, axis=1)
    mat = np.rollaxis(np.array([[b, -c], [-c, a]]), 2)
    mat /= (a * b - c * c)[:, np.newaxis, np.newaxis]
    nn = fast_cross_3d(r12, r13)
    _normalize_vectors(nn)
    return dict(r1=r1, r12=r12, r13=r13, r1213=r1213,
                a=a, b=b, c=c, mat=mat, nn=nn)


@verbose
def _make_morph_map(subject_from, subject_to, subjects_dir=None):
    """Construct morph map from one subject to another

    Note that this is close, but not exactly like the C version.
    For example, parts are more accurate due to double precision,
    so expect some small morph-map differences!

    Note: This seems easily parallelizable, but the overhead
    of pickling all the data structures makes it less efficient
    than just running on a single core :(
    """
    subjects_dir = get_subjects_dir(subjects_dir)
    morph_maps = list()

    # add speedy short-circuit for self-maps
    if subject_from == subject_to:
        for hemi in ['lh', 'rh']:
            fname = op.join(subjects_dir, subject_from, 'surf',
                            '%s.sphere.reg' % hemi)
            from_pts = read_surface(fname, verbose=False)[0]
            n_pts = len(from_pts)
            morph_maps.append(sparse.eye(n_pts, n_pts, format='csr'))
        return morph_maps

    for hemi in ['lh', 'rh']:
        # load surfaces and normalize points to be on unit sphere
        fname = op.join(subjects_dir, subject_from, 'surf',
                        '%s.sphere.reg' % hemi)
        from_pts, from_tris = read_surface(fname, verbose=False)
        n_from_pts = len(from_pts)
        _normalize_vectors(from_pts)
        tri_geom = _get_tri_supp_geom(from_tris, from_pts)

        fname = op.join(subjects_dir, subject_to, 'surf',
                        '%s.sphere.reg' % hemi)
        to_pts = read_surface(fname, verbose=False)[0]
        n_to_pts = len(to_pts)
        _normalize_vectors(to_pts)

        # from surface: get nearest neighbors, find triangles for each vertex
        nn_pts_idx = _compute_nearest(from_pts, to_pts)
        from_pt_tris = _triangle_neighbors(from_tris, len(from_pts))
        from_pt_tris = [from_pt_tris[pt_idx] for pt_idx in nn_pts_idx]

        # find triangle in which point lies and assoc. weights
        nn_tri_inds = []
        nn_tris_weights = []
        for pt_tris, to_pt in zip(from_pt_tris, to_pts):
            p, q, idx, dist = _find_nearest_tri_pt(pt_tris, to_pt, tri_geom)
            nn_tri_inds.append(idx)
            nn_tris_weights.extend([1. - (p + q), p, q])

        nn_tris = from_tris[nn_tri_inds]
        row_ind = np.repeat(np.arange(n_to_pts), 3)
        this_map = sparse.csr_matrix((nn_tris_weights,
                                     (row_ind, nn_tris.ravel())),
                                     shape=(n_to_pts, n_from_pts))
        morph_maps.append(this_map)

    return morph_maps


def _find_nearest_tri_pt(pt_tris, to_pt, tri_geom, run_all=False):
    """Find nearest point mapping to a set of triangles

    If run_all is False, if the point lies within a triangle, it stops.
    If run_all is True, edges of other triangles are checked in case
    those (somehow) are closer.
    """
    # The following dense code is equivalent to the following:
    #   rr = r1[pt_tris] - to_pts[ii]
    #   v1s = np.sum(rr * r12[pt_tris], axis=1)
    #   v2s = np.sum(rr * r13[pt_tris], axis=1)
    #   aas = a[pt_tris]
    #   bbs = b[pt_tris]
    #   ccs = c[pt_tris]
    #   dets = aas * bbs - ccs * ccs
    #   pp = (bbs * v1s - ccs * v2s) / dets
    #   qq = (aas * v2s - ccs * v1s) / dets
    #   pqs = np.array(pp, qq)

    # This einsum is equivalent to doing:
    # pqs = np.array([np.dot(x, y) for x, y in zip(r1213, r1-to_pt)])
    r1 = tri_geom['r1'][pt_tris]
    rrs = to_pt - r1
    tri_nn = tri_geom['nn'][pt_tris]
    vect = np.einsum('ijk,ik->ij', tri_geom['r1213'][pt_tris], rrs)
    mats = tri_geom['mat'][pt_tris]
    # This einsum is equivalent to doing:
    # pqs = np.array([np.dot(m, v) for m, v in zip(mats, vect)]).T
    pqs = np.einsum('ijk,ik->ji', mats, vect)
    found = False
    dists = np.sum(rrs * tri_nn, axis=1)

    # There can be multiple (sadness), find closest
    idx = np.where(np.all(pqs >= 0., axis=0))[0]
    idx = idx[np.where(np.all(pqs[:, idx] <= 1., axis=0))[0]]
    idx = idx[np.where(np.sum(pqs[:, idx], axis=0) < 1.)[0]]
    dist = np.inf
    if len(idx) > 0:
        found = True
        pt = idx[np.argmin(np.abs(dists[idx]))]
        p, q = pqs[:, pt]
        dist = dists[pt]
        # re-reference back to original numbers
        pt = pt_tris[pt]

    if found is False or run_all is True:
        # don't include ones that we might have found before
        s = np.setdiff1d(np.arange(len(pt_tris)), idx)  # ones to check sides
        # Tough: must investigate the sides
        pp, qq, ptt, distt = _nearest_tri_edge(pt_tris[s], to_pt, pqs[:, s],
                                               dists[s], tri_geom)
        if np.abs(distt) < np.abs(dist):
            p, q, pt, dist = pp, qq, ptt, distt
    return p, q, pt, dist


def _nearest_tri_edge(pt_tris, to_pt, pqs, dist, tri_geom):
    """Get nearest location from a point to the edge of a set of triangles"""
    # We might do something intelligent here. However, for now
    # it is ok to do it in the hard way
    aa = tri_geom['a'][pt_tris]
    bb = tri_geom['b'][pt_tris]
    cc = tri_geom['c'][pt_tris]
    pp = pqs[0]
    qq = pqs[1]
    # Find the nearest point from a triangle:
    #   Side 1 -> 2
    p0 = np.minimum(np.maximum(pp + 0.5 * (qq * cc) / aa,
                               0.0), 1.0)
    q0 = np.zeros_like(p0)
    #   Side 2 -> 3
    t1 = (0.5 * ((2.0 * aa - cc) * (1.0 - pp)
                 + (2.0 * bb - cc) * qq) / (aa + bb - cc))
    t1 = np.minimum(np.maximum(t1, 0.0), 1.0)
    p1 = 1.0 - t1
    q1 = t1
    #   Side 1 -> 3
    q2 = np.minimum(np.maximum(qq + 0.5 * (pp * cc)
                               / bb, 0.0), 1.0)
    p2 = np.zeros_like(q2)

    # figure out which one had the lowest distance
    dist0 = _get_tri_dist(pp, qq, p0, q0, aa, bb, cc, dist)
    dist1 = _get_tri_dist(pp, qq, p1, q1, aa, bb, cc, dist)
    dist2 = _get_tri_dist(pp, qq, p2, q2, aa, bb, cc, dist)
    pp = np.r_[p0, p1, p2]
    qq = np.r_[q0, q1, q2]
    dists = np.r_[dist0, dist1, dist2]
    ii = np.argmin(np.abs(dists))
    p, q, pt, dist = pp[ii], qq[ii], pt_tris[ii % len(pt_tris)], dists[ii]
    return p, q, pt, dist