File: test_coreg.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (166 lines) | stat: -rw-r--r-- 6,875 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os

from nose.tools import assert_raises, assert_true, assert_equal
import numpy as np
from numpy.testing import (assert_array_equal, assert_array_almost_equal,
                           assert_array_less)

from mne.transforms import apply_trans, rotation, translation, scaling
from mne.coreg import (fit_matched_points, fit_point_cloud,
                       _point_cloud_error, _decimate_points,
                       create_default_subject, scale_mri,
                       _is_mri_subject, scale_labels, scale_source_space,
                       read_elp)
from mne.io.kit.tests import data_dir as kit_data_dir
from mne.utils import requires_mne_fs_in_env, _TempDir, run_subprocess
from functools import reduce


tempdir = _TempDir()


def test_read_elp():
    """Test reading an ELP file"""
    path = os.path.join(kit_data_dir, 'test_elp.txt')
    points = read_elp(path)
    assert_equal(points.shape, (8, 3))
    assert_array_equal(points[0], [1.3930, 13.1613, -4.6967])


@requires_mne_fs_in_env
def test_scale_mri():
    """Test creating fsaverage and scaling it"""
    # create fsaverage
    create_default_subject(subjects_dir=tempdir)
    is_mri = _is_mri_subject('fsaverage', tempdir)
    assert_true(is_mri, "Creating fsaverage failed")

    fid_path = os.path.join(tempdir, 'fsaverage', 'bem',
                            'fsaverage-fiducials.fif')
    os.remove(fid_path)
    create_default_subject(update=True, subjects_dir=tempdir)
    assert_true(os.path.exists(fid_path), "Updating fsaverage")

    # create source space
    path = os.path.join(tempdir, 'fsaverage', 'bem', 'fsaverage-ico-6-src.fif')
    if not os.path.exists(path):
        cmd = ['mne_setup_source_space', '--subject', 'fsaverage', '--ico',
               '6']
        env = os.environ.copy()
        env['SUBJECTS_DIR'] = tempdir
        run_subprocess(cmd, env=env)

    # scale fsaverage
    scale_mri('fsaverage', 'flachkopf', [1, .2, .8], True, subjects_dir=tempdir)
    is_mri = _is_mri_subject('flachkopf', tempdir)
    assert_true(is_mri, "Scaling fsaverage failed")
    src_path = os.path.join(tempdir, 'flachkopf', 'bem',
                            'flachkopf-ico-6-src.fif')
    assert_true(os.path.exists(src_path), "Source space was not scaled")
    scale_labels('flachkopf', subjects_dir=tempdir)

    # scale source space separately
    os.remove(src_path)
    scale_source_space('flachkopf', 'ico-6', subjects_dir=tempdir)
    assert_true(os.path.exists(src_path), "Source space was not scaled")



def test_fit_matched_points():
    """Test fit_matched_points: fitting two matching sets of points"""
    tgt_pts = np.random.uniform(size=(6, 3))

    # rotation only
    trans = rotation(2, 6, 3)
    src_pts = apply_trans(trans, tgt_pts)
    trans_est = fit_matched_points(src_pts, tgt_pts, translate=False,
                                   out='trans')
    est_pts = apply_trans(trans_est, src_pts)
    assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with "
                              "rotation")

    # rotation & scaling
    trans = np.dot(rotation(2, 6, 3), scaling(.5, .5, .5))
    src_pts = apply_trans(trans, tgt_pts)
    trans_est = fit_matched_points(src_pts, tgt_pts, translate=False, scale=1,
                                out='trans')
    est_pts = apply_trans(trans_est, src_pts)
    assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with "
                              "rotation and scaling.")

    # rotation & translation
    trans = np.dot(translation(2, -6, 3), rotation(2, 6, 3))
    src_pts = apply_trans(trans, tgt_pts)
    trans_est = fit_matched_points(src_pts, tgt_pts, out='trans')
    est_pts = apply_trans(trans_est, src_pts)
    assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with "
                              "rotation and translation.")

    # rotation & translation & scaling
    trans = reduce(np.dot, (translation(2, -6, 3), rotation(1.5, .3, 1.4),
                            scaling(.5, .5, .5)))
    src_pts = apply_trans(trans, tgt_pts)
    trans_est = fit_matched_points(src_pts, tgt_pts, scale=1, out='trans')
    est_pts = apply_trans(trans_est, src_pts)
    assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with "
                              "rotation, translation and scaling.")

    # test exceeding tolerance
    tgt_pts[0, :] += 20
    assert_raises(RuntimeError, fit_matched_points, tgt_pts, src_pts, tol=10)


def test_fit_point_cloud():
    """Test fit_point_cloud: fitting a set of points to a point cloud"""
    # evenly spaced target points on a sphere
    u = np.linspace(0, np.pi, 150)
    v = np.linspace(0, np.pi, 150)

    x = np.outer(np.cos(u), np.sin(v)).reshape((-1, 1))
    y = np.outer(np.sin(u), np.sin(v)).reshape((-1, 1))
    z = np.outer(np.ones(np.size(u)), np.cos(v)).reshape((-1, 1)) * 3

    tgt_pts = np.hstack((x, y, z))
    tgt_pts = _decimate_points(tgt_pts, .05)

    # pick some points to fit
    some_tgt_pts = tgt_pts[::362]

    # rotation only
    trans = rotation(1.5, .3, -0.4)
    src_pts = apply_trans(trans, some_tgt_pts)
    trans_est = fit_point_cloud(src_pts, tgt_pts, rotate=True, translate=False,
                                scale=0, out='trans')
    est_pts = apply_trans(trans_est, src_pts)
    err = _point_cloud_error(est_pts, tgt_pts)
    assert_array_less(err, .1, "fit_point_cloud with rotation.")

    # rotation and translation
    trans = np.dot(rotation(0.5, .3, -0.4), translation(.3, .2, -.2))
    src_pts = apply_trans(trans, some_tgt_pts)
    trans_est = fit_point_cloud(src_pts, tgt_pts, rotate=True, translate=True,
                                scale=0, out='trans')
    est_pts = apply_trans(trans_est, src_pts)
    err = _point_cloud_error(est_pts, tgt_pts)
    assert_array_less(err, .1, "fit_point_cloud with rotation and "
                      "translation.")

    # rotation and 1 scale parameter
    trans = np.dot(rotation(0.5, .3, -0.4), scaling(1.5, 1.5, 1.5))
    src_pts = apply_trans(trans, some_tgt_pts)
    trans_est = fit_point_cloud(src_pts, tgt_pts, rotate=True, translate=False,
                                scale=1, out='trans')
    est_pts = apply_trans(trans_est, src_pts)
    err = _point_cloud_error(est_pts, tgt_pts)
    assert_array_less(err, .1, "fit_point_cloud with rotation and 1 scaling "
                      "parameter.")

    # rotation and 3 scale parameter
    trans = np.dot(rotation(0.5, .3, -0.4), scaling(1.5, 1.7, 1.1))
    src_pts = apply_trans(trans, some_tgt_pts)
    trans_est = fit_point_cloud(src_pts, tgt_pts, rotate=True, translate=False,
                                scale=3, out='trans')
    est_pts = apply_trans(trans_est, src_pts)
    err = _point_cloud_error(est_pts, tgt_pts)
    assert_array_less(err, .1, "fit_point_cloud with rotation and 3 scaling "
                      "parameters.")