1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)
import os.path as op
from nose.tools import assert_true
from numpy.testing import assert_array_almost_equal
from nose.tools import assert_raises
import numpy as np
from scipy import linalg
import warnings
from mne.cov import regularize, whiten_evoked
from mne import (read_cov, write_cov, Epochs, merge_events,
find_events, compute_raw_data_covariance,
compute_covariance, read_evokeds)
from mne import pick_channels_cov, pick_channels, pick_types
from mne.io import Raw
from mne.utils import _TempDir
warnings.simplefilter('always') # enable b/c these tests throw warnings
base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data')
cov_fname = op.join(base_dir, 'test-cov.fif')
cov_gz_fname = op.join(base_dir, 'test-cov.fif.gz')
cov_km_fname = op.join(base_dir, 'test-km-cov.fif')
raw_fname = op.join(base_dir, 'test_raw.fif')
ave_fname = op.join(base_dir, 'test-ave.fif')
erm_cov_fname = op.join(base_dir, 'test_erm-cov.fif')
tempdir = _TempDir()
def test_io_cov():
"""Test IO for noise covariance matrices
"""
cov = read_cov(cov_fname)
cov.save(op.join(tempdir, 'test-cov.fif'))
cov2 = read_cov(op.join(tempdir, 'test-cov.fif'))
assert_array_almost_equal(cov.data, cov2.data)
cov2 = read_cov(cov_gz_fname)
assert_array_almost_equal(cov.data, cov2.data)
cov2.save(op.join(tempdir, 'test-cov.fif.gz'))
cov2 = read_cov(op.join(tempdir, 'test-cov.fif.gz'))
assert_array_almost_equal(cov.data, cov2.data)
cov['bads'] = ['EEG 039']
cov_sel = pick_channels_cov(cov, exclude=cov['bads'])
assert_true(cov_sel['dim'] == (len(cov['data']) - len(cov['bads'])))
assert_true(cov_sel['data'].shape == (cov_sel['dim'], cov_sel['dim']))
cov_sel.save(op.join(tempdir, 'test-cov.fif'))
cov2 = read_cov(cov_gz_fname)
assert_array_almost_equal(cov.data, cov2.data)
cov2.save(op.join(tempdir, 'test-cov.fif.gz'))
cov2 = read_cov(op.join(tempdir, 'test-cov.fif.gz'))
assert_array_almost_equal(cov.data, cov2.data)
# test warnings on bad filenames
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
cov_badname = op.join(tempdir, 'test-bad-name.fif.gz')
write_cov(cov_badname, cov)
read_cov(cov_badname)
assert_true(len(w) == 2)
def test_cov_estimation_on_raw_segment():
"""Test estimation from raw on continuous recordings (typically empty room)
"""
raw = Raw(raw_fname, preload=False)
cov = compute_raw_data_covariance(raw)
cov_mne = read_cov(erm_cov_fname)
assert_true(cov_mne.ch_names == cov.ch_names)
assert_true(linalg.norm(cov.data - cov_mne.data, ord='fro')
/ linalg.norm(cov.data, ord='fro') < 1e-4)
# test IO when computation done in Python
cov.save(op.join(tempdir, 'test-cov.fif')) # test saving
cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
assert_true(cov_read.ch_names == cov.ch_names)
assert_true(cov_read.nfree == cov.nfree)
assert_array_almost_equal(cov.data, cov_read.data)
# test with a subset of channels
picks = pick_channels(raw.ch_names, include=raw.ch_names[:5])
cov = compute_raw_data_covariance(raw, picks=picks)
assert_true(cov_mne.ch_names[:5] == cov.ch_names)
assert_true(linalg.norm(cov.data - cov_mne.data[picks][:, picks],
ord='fro') / linalg.norm(cov.data, ord='fro') < 1e-4)
# make sure we get a warning with too short a segment
raw_2 = raw.crop(0, 1)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
cov = compute_raw_data_covariance(raw_2)
assert_true(len(w) == 1)
def test_cov_estimation_with_triggers():
"""Test estimation from raw with triggers
"""
raw = Raw(raw_fname, preload=False)
events = find_events(raw, stim_channel='STI 014')
event_ids = [1, 2, 3, 4]
reject = dict(grad=10000e-13, mag=4e-12, eeg=80e-6, eog=150e-6)
# cov with merged events and keep_sample_mean=True
events_merged = merge_events(events, event_ids, 1234)
epochs = Epochs(raw, events_merged, 1234, tmin=-0.2, tmax=0,
baseline=(-0.2, -0.1), proj=True,
reject=reject, preload=True)
cov = compute_covariance(epochs, keep_sample_mean=True)
cov_mne = read_cov(cov_km_fname)
assert_true(cov_mne.ch_names == cov.ch_names)
assert_true((linalg.norm(cov.data - cov_mne.data, ord='fro')
/ linalg.norm(cov.data, ord='fro')) < 0.005)
# Test with tmin and tmax (different but not too much)
cov_tmin_tmax = compute_covariance(epochs, tmin=-0.19, tmax=-0.01)
assert_true(np.all(cov.data != cov_tmin_tmax.data))
assert_true((linalg.norm(cov.data - cov_tmin_tmax.data, ord='fro')
/ linalg.norm(cov_tmin_tmax.data, ord='fro')) < 0.05)
# cov using a list of epochs and keep_sample_mean=True
epochs = [Epochs(raw, events, ev_id, tmin=-0.2, tmax=0,
baseline=(-0.2, -0.1), proj=True, reject=reject)
for ev_id in event_ids]
cov2 = compute_covariance(epochs, keep_sample_mean=True)
assert_array_almost_equal(cov.data, cov2.data)
assert_true(cov.ch_names == cov2.ch_names)
# cov with keep_sample_mean=False using a list of epochs
cov = compute_covariance(epochs, keep_sample_mean=False)
cov_mne = read_cov(cov_fname)
assert_true(cov_mne.ch_names == cov.ch_names)
assert_true((linalg.norm(cov.data - cov_mne.data, ord='fro')
/ linalg.norm(cov.data, ord='fro')) < 0.005)
# test IO when computation done in Python
cov.save(op.join(tempdir, 'test-cov.fif')) # test saving
cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
assert_true(cov_read.ch_names == cov.ch_names)
assert_true(cov_read.nfree == cov.nfree)
assert_true((linalg.norm(cov.data - cov_read.data, ord='fro')
/ linalg.norm(cov.data, ord='fro')) < 1e-5)
# cov with list of epochs with different projectors
epochs = [Epochs(raw, events[:4], event_ids[0], tmin=-0.2, tmax=0,
baseline=(-0.2, -0.1), proj=True, reject=reject),
Epochs(raw, events[:4], event_ids[0], tmin=-0.2, tmax=0,
baseline=(-0.2, -0.1), proj=False, reject=reject)]
# these should fail
assert_raises(ValueError, compute_covariance, epochs)
assert_raises(ValueError, compute_covariance, epochs, projs=None)
# these should work, but won't be equal to above
with warnings.catch_warnings(record=True) as w: # too few samples warning
warnings.simplefilter('always')
cov = compute_covariance(epochs, projs=epochs[0].info['projs'])
cov = compute_covariance(epochs, projs=[])
assert_true(len(w) == 2)
# test new dict support
epochs = Epochs(raw, events, dict(a=1, b=2, c=3, d=4), tmin=-0.2, tmax=0,
baseline=(-0.2, -0.1), proj=True, reject=reject)
compute_covariance(epochs)
def test_arithmetic_cov():
"""Test arithmetic with noise covariance matrices
"""
cov = read_cov(cov_fname)
cov_sum = cov + cov
assert_array_almost_equal(2 * cov.nfree, cov_sum.nfree)
assert_array_almost_equal(2 * cov.data, cov_sum.data)
assert_true(cov.ch_names == cov_sum.ch_names)
cov += cov
assert_array_almost_equal(cov_sum.nfree, cov.nfree)
assert_array_almost_equal(cov_sum.data, cov.data)
assert_true(cov_sum.ch_names == cov.ch_names)
def test_regularize_cov():
"""Test cov regularization
"""
raw = Raw(raw_fname, preload=False)
raw.info['bads'].append(raw.ch_names[0]) # test with bad channels
noise_cov = read_cov(cov_fname)
# Regularize noise cov
reg_noise_cov = regularize(noise_cov, raw.info,
mag=0.1, grad=0.1, eeg=0.1, proj=True,
exclude='bads')
assert_true(noise_cov['dim'] == reg_noise_cov['dim'])
assert_true(noise_cov['data'].shape == reg_noise_cov['data'].shape)
assert_true(np.mean(noise_cov['data'] < reg_noise_cov['data']) < 0.08)
def test_evoked_whiten():
"""Test whitening of evoked data"""
evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0),
proj=True)
cov = read_cov(cov_fname)
###########################################################################
# Show result
picks = pick_types(evoked.info, meg=True, eeg=True, ref_meg=False,
exclude='bads')
noise_cov = regularize(cov, evoked.info, grad=0.1, mag=0.1, eeg=0.1,
exclude='bads')
evoked_white = whiten_evoked(evoked, noise_cov, picks, diag=True)
whiten_baseline_data = evoked_white.data[picks][:, evoked.times < 0]
mean_baseline = np.mean(np.abs(whiten_baseline_data), axis=1)
assert_true(np.all(mean_baseline < 1.))
assert_true(np.all(mean_baseline > 0.2))
|