File: test_cov.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (220 lines) | stat: -rw-r--r-- 9,015 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)

import os.path as op

from nose.tools import assert_true
from numpy.testing import assert_array_almost_equal
from nose.tools import assert_raises
import numpy as np
from scipy import linalg
import warnings

from mne.cov import regularize, whiten_evoked
from mne import (read_cov, write_cov, Epochs, merge_events,
                 find_events, compute_raw_data_covariance,
                 compute_covariance, read_evokeds)
from mne import pick_channels_cov, pick_channels, pick_types
from mne.io import Raw
from mne.utils import _TempDir

warnings.simplefilter('always')  # enable b/c these tests throw warnings

base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data')
cov_fname = op.join(base_dir, 'test-cov.fif')
cov_gz_fname = op.join(base_dir, 'test-cov.fif.gz')
cov_km_fname = op.join(base_dir, 'test-km-cov.fif')
raw_fname = op.join(base_dir, 'test_raw.fif')
ave_fname = op.join(base_dir, 'test-ave.fif')
erm_cov_fname = op.join(base_dir, 'test_erm-cov.fif')

tempdir = _TempDir()


def test_io_cov():
    """Test IO for noise covariance matrices
    """
    cov = read_cov(cov_fname)
    cov.save(op.join(tempdir, 'test-cov.fif'))
    cov2 = read_cov(op.join(tempdir, 'test-cov.fif'))
    assert_array_almost_equal(cov.data, cov2.data)

    cov2 = read_cov(cov_gz_fname)
    assert_array_almost_equal(cov.data, cov2.data)
    cov2.save(op.join(tempdir, 'test-cov.fif.gz'))
    cov2 = read_cov(op.join(tempdir, 'test-cov.fif.gz'))
    assert_array_almost_equal(cov.data, cov2.data)

    cov['bads'] = ['EEG 039']
    cov_sel = pick_channels_cov(cov, exclude=cov['bads'])
    assert_true(cov_sel['dim'] == (len(cov['data']) - len(cov['bads'])))
    assert_true(cov_sel['data'].shape == (cov_sel['dim'], cov_sel['dim']))
    cov_sel.save(op.join(tempdir, 'test-cov.fif'))

    cov2 = read_cov(cov_gz_fname)
    assert_array_almost_equal(cov.data, cov2.data)
    cov2.save(op.join(tempdir, 'test-cov.fif.gz'))
    cov2 = read_cov(op.join(tempdir, 'test-cov.fif.gz'))
    assert_array_almost_equal(cov.data, cov2.data)

    # test warnings on bad filenames
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        cov_badname = op.join(tempdir, 'test-bad-name.fif.gz')
        write_cov(cov_badname, cov)
        read_cov(cov_badname)
    assert_true(len(w) == 2)


def test_cov_estimation_on_raw_segment():
    """Test estimation from raw on continuous recordings (typically empty room)
    """
    raw = Raw(raw_fname, preload=False)
    cov = compute_raw_data_covariance(raw)
    cov_mne = read_cov(erm_cov_fname)
    assert_true(cov_mne.ch_names == cov.ch_names)
    assert_true(linalg.norm(cov.data - cov_mne.data, ord='fro')
                / linalg.norm(cov.data, ord='fro') < 1e-4)

    # test IO when computation done in Python
    cov.save(op.join(tempdir, 'test-cov.fif'))  # test saving
    cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
    assert_true(cov_read.ch_names == cov.ch_names)
    assert_true(cov_read.nfree == cov.nfree)
    assert_array_almost_equal(cov.data, cov_read.data)

    # test with a subset of channels
    picks = pick_channels(raw.ch_names, include=raw.ch_names[:5])
    cov = compute_raw_data_covariance(raw, picks=picks)
    assert_true(cov_mne.ch_names[:5] == cov.ch_names)
    assert_true(linalg.norm(cov.data - cov_mne.data[picks][:, picks],
                ord='fro') / linalg.norm(cov.data, ord='fro') < 1e-4)
    # make sure we get a warning with too short a segment
    raw_2 = raw.crop(0, 1)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        cov = compute_raw_data_covariance(raw_2)
    assert_true(len(w) == 1)


def test_cov_estimation_with_triggers():
    """Test estimation from raw with triggers
    """
    raw = Raw(raw_fname, preload=False)
    events = find_events(raw, stim_channel='STI 014')
    event_ids = [1, 2, 3, 4]
    reject = dict(grad=10000e-13, mag=4e-12, eeg=80e-6, eog=150e-6)

    # cov with merged events and keep_sample_mean=True
    events_merged = merge_events(events, event_ids, 1234)
    epochs = Epochs(raw, events_merged, 1234, tmin=-0.2, tmax=0,
                    baseline=(-0.2, -0.1), proj=True,
                    reject=reject, preload=True)

    cov = compute_covariance(epochs, keep_sample_mean=True)
    cov_mne = read_cov(cov_km_fname)
    assert_true(cov_mne.ch_names == cov.ch_names)
    assert_true((linalg.norm(cov.data - cov_mne.data, ord='fro')
                 / linalg.norm(cov.data, ord='fro')) < 0.005)

    # Test with tmin and tmax (different but not too much)
    cov_tmin_tmax = compute_covariance(epochs, tmin=-0.19, tmax=-0.01)
    assert_true(np.all(cov.data != cov_tmin_tmax.data))
    assert_true((linalg.norm(cov.data - cov_tmin_tmax.data, ord='fro')
                 / linalg.norm(cov_tmin_tmax.data, ord='fro')) < 0.05)

    # cov using a list of epochs and keep_sample_mean=True
    epochs = [Epochs(raw, events, ev_id, tmin=-0.2, tmax=0,
              baseline=(-0.2, -0.1), proj=True, reject=reject)
              for ev_id in event_ids]

    cov2 = compute_covariance(epochs, keep_sample_mean=True)
    assert_array_almost_equal(cov.data, cov2.data)
    assert_true(cov.ch_names == cov2.ch_names)

    # cov with keep_sample_mean=False using a list of epochs
    cov = compute_covariance(epochs, keep_sample_mean=False)
    cov_mne = read_cov(cov_fname)
    assert_true(cov_mne.ch_names == cov.ch_names)
    assert_true((linalg.norm(cov.data - cov_mne.data, ord='fro')
                 / linalg.norm(cov.data, ord='fro')) < 0.005)

    # test IO when computation done in Python
    cov.save(op.join(tempdir, 'test-cov.fif'))  # test saving
    cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
    assert_true(cov_read.ch_names == cov.ch_names)
    assert_true(cov_read.nfree == cov.nfree)
    assert_true((linalg.norm(cov.data - cov_read.data, ord='fro')
                 / linalg.norm(cov.data, ord='fro')) < 1e-5)

    # cov with list of epochs with different projectors
    epochs = [Epochs(raw, events[:4], event_ids[0], tmin=-0.2, tmax=0,
                     baseline=(-0.2, -0.1), proj=True, reject=reject),
              Epochs(raw, events[:4], event_ids[0], tmin=-0.2, tmax=0,
                     baseline=(-0.2, -0.1), proj=False, reject=reject)]
    # these should fail
    assert_raises(ValueError, compute_covariance, epochs)
    assert_raises(ValueError, compute_covariance, epochs, projs=None)
    # these should work, but won't be equal to above
    with warnings.catch_warnings(record=True) as w:  # too few samples warning
        warnings.simplefilter('always')
        cov = compute_covariance(epochs, projs=epochs[0].info['projs'])
        cov = compute_covariance(epochs, projs=[])
    assert_true(len(w) == 2)

    # test new dict support
    epochs = Epochs(raw, events, dict(a=1, b=2, c=3, d=4), tmin=-0.2, tmax=0,
                    baseline=(-0.2, -0.1), proj=True, reject=reject)
    compute_covariance(epochs)


def test_arithmetic_cov():
    """Test arithmetic with noise covariance matrices
    """
    cov = read_cov(cov_fname)
    cov_sum = cov + cov
    assert_array_almost_equal(2 * cov.nfree, cov_sum.nfree)
    assert_array_almost_equal(2 * cov.data, cov_sum.data)
    assert_true(cov.ch_names == cov_sum.ch_names)

    cov += cov
    assert_array_almost_equal(cov_sum.nfree, cov.nfree)
    assert_array_almost_equal(cov_sum.data, cov.data)
    assert_true(cov_sum.ch_names == cov.ch_names)


def test_regularize_cov():
    """Test cov regularization
    """
    raw = Raw(raw_fname, preload=False)
    raw.info['bads'].append(raw.ch_names[0])  # test with bad channels
    noise_cov = read_cov(cov_fname)
    # Regularize noise cov
    reg_noise_cov = regularize(noise_cov, raw.info,
                               mag=0.1, grad=0.1, eeg=0.1, proj=True,
                               exclude='bads')
    assert_true(noise_cov['dim'] == reg_noise_cov['dim'])
    assert_true(noise_cov['data'].shape == reg_noise_cov['data'].shape)
    assert_true(np.mean(noise_cov['data'] < reg_noise_cov['data']) < 0.08)


def test_evoked_whiten():
    """Test whitening of evoked data"""
    evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0),
                          proj=True)
    cov = read_cov(cov_fname)

    ###########################################################################
    # Show result
    picks = pick_types(evoked.info, meg=True, eeg=True, ref_meg=False,
                       exclude='bads')

    noise_cov = regularize(cov, evoked.info, grad=0.1, mag=0.1, eeg=0.1,
                           exclude='bads')

    evoked_white = whiten_evoked(evoked, noise_cov, picks, diag=True)
    whiten_baseline_data = evoked_white.data[picks][:, evoked.times < 0]
    mean_baseline = np.mean(np.abs(whiten_baseline_data), axis=1)
    assert_true(np.all(mean_baseline < 1.))
    assert_true(np.all(mean_baseline > 0.2))