1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
import os
import os.path as op
from ..externals.six.moves import cPickle as pickle
import glob
import warnings
import numpy as np
from numpy.testing import assert_array_equal, assert_array_almost_equal
from nose.tools import assert_equal, assert_true, assert_raises
from mne.datasets import sample
from mne import (label_time_courses, read_label, stc_to_label,
read_source_estimate, read_source_spaces, grow_labels,
read_labels_from_annot, write_labels_to_annot, split_label)
from mne.label import Label, _blend_colors
from mne.utils import requires_mne, run_subprocess, _TempDir, requires_sklearn
from mne.fixes import digitize, in1d, assert_is, assert_is_not
warnings.simplefilter('always') # enable b/c these tests throw warnings
data_path = sample.data_path(download=False)
subjects_dir = op.join(data_path, 'subjects')
src_fname = op.join(subjects_dir, 'sample', 'bem', 'sample-oct-6-src.fif')
stc_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis-meg-lh.stc')
real_label_fname = op.join(data_path, 'MEG', 'sample', 'labels',
'Aud-lh.label')
real_label_rh_fname = op.join(data_path, 'MEG', 'sample', 'labels',
'Aud-rh.label')
v1_label_fname = op.join(subjects_dir, 'sample', 'label', 'lh.V1.label')
fwd_fname = op.join(data_path, 'MEG', 'sample',
'sample_audvis-eeg-oct-6p-fwd.fif')
src_bad_fname = op.join(data_path, 'subjects', 'fsaverage', 'bem',
'fsaverage-ico-5-src.fif')
test_path = op.join(op.split(__file__)[0], '..', 'io', 'tests', 'data')
label_fname = op.join(test_path, 'test-lh.label')
label_rh_fname = op.join(test_path, 'test-rh.label')
tempdir = _TempDir()
# This code was used to generate the "fake" test labels:
# for hemi in ['lh', 'rh']:
# label = Label(np.unique((np.random.rand(100) * 10242).astype(int)),
# hemi=hemi, comment='Test ' + hemi, subject='fsaverage')
# label.save(op.join(test_path, 'test-%s.label' % hemi))
def assert_labels_equal(l0, l1, decimal=5):
for attr in ['comment', 'hemi', 'subject', 'color']:
attr0 = getattr(l0, attr)
attr1 = getattr(l1, attr)
msg = "label.%s: %r != %r" % (attr, attr0, attr1)
assert_equal(attr0, attr1, msg)
for attr in ['vertices', 'pos', 'values']:
a0 = getattr(l0, attr)
a1 = getattr(l1, attr)
assert_array_almost_equal(a0, a1, decimal)
def test_label_subject():
"""Test label subject name extraction
"""
label = read_label(label_fname)
assert_is(label.subject, None)
assert_true('unknown' in repr(label))
label = read_label(label_fname, subject='fsaverage')
assert_true(label.subject == 'fsaverage')
assert_true('fsaverage' in repr(label))
def test_label_addition():
"""Test label addition
"""
pos = np.random.rand(10, 3)
values = np.arange(10.) / 10
idx0 = list(range(7))
idx1 = list(range(7, 10)) # non-overlapping
idx2 = list(range(5, 10)) # overlapping
l0 = Label(idx0, pos[idx0], values[idx0], 'lh', color='red')
l1 = Label(idx1, pos[idx1], values[idx1], 'lh')
l2 = Label(idx2, pos[idx2], values[idx2], 'lh', color=(0, 1, 0, .5))
assert_equal(len(l0), len(idx0))
# adding non-overlapping labels
l01 = l0 + l1
assert_equal(len(l01), len(l0) + len(l1))
assert_array_equal(l01.values[:len(l0)], l0.values)
assert_equal(l01.color, l0.color)
# adding overlappig labels
l = l0 + l2
i0 = np.where(l0.vertices == 6)[0][0]
i2 = np.where(l2.vertices == 6)[0][0]
i = np.where(l.vertices == 6)[0][0]
assert_equal(l.values[i], l0.values[i0] + l2.values[i2])
assert_equal(l.values[0], l0.values[0])
assert_array_equal(np.unique(l.vertices), np.unique(idx0 + idx2))
assert_equal(l.color, _blend_colors(l0.color, l2.color))
# adding lh and rh
l2.hemi = 'rh'
# this now has deprecated behavior
bhl = l0 + l2
assert_equal(bhl.hemi, 'both')
assert_equal(len(bhl), len(l0) + len(l2))
assert_equal(bhl.color, l.color)
bhl2 = l1 + bhl
assert_labels_equal(bhl2.lh, l01)
assert_equal(bhl2.color, _blend_colors(l1.color, bhl.color))
@sample.requires_sample_data
def test_label_in_src():
"""Test label in src"""
src = read_source_spaces(src_fname)
label = read_label(v1_label_fname)
# construct label from source space vertices
vert_in_src = np.intersect1d(label.vertices, src[0]['vertno'], True)
where = in1d(label.vertices, vert_in_src)
pos_in_src = label.pos[where]
values_in_src = label.values[where]
label_src = Label(vert_in_src, pos_in_src, values_in_src,
hemi='lh').fill(src)
# check label vertices
vertices_status = in1d(src[0]['nearest'], label.vertices)
vertices_in = np.nonzero(vertices_status)[0]
vertices_out = np.nonzero(np.logical_not(vertices_status))[0]
assert_array_equal(label_src.vertices, vertices_in)
assert_array_equal(in1d(vertices_out, label_src.vertices), False)
# check values
value_idx = digitize(src[0]['nearest'][vertices_in], vert_in_src, True)
assert_array_equal(label_src.values, values_in_src[value_idx])
# test exception
vertices = np.append([-1], vert_in_src)
assert_raises(ValueError, Label(vertices, hemi='lh').fill, src)
@sample.requires_sample_data
def test_label_io_and_time_course_estimates():
"""Test IO for label + stc files
"""
values, times, vertices = label_time_courses(real_label_fname, stc_fname)
assert_true(len(times) == values.shape[1])
assert_true(len(vertices) == values.shape[0])
def test_label_io():
"""Test IO of label files
"""
label = read_label(label_fname)
# label attributes
assert_equal(label.name, 'test-lh')
assert_is(label.subject, None)
assert_is(label.color, None)
# save and reload
label.save(op.join(tempdir, 'foo'))
label2 = read_label(op.join(tempdir, 'foo-lh.label'))
assert_labels_equal(label, label2)
# pickling
dest = op.join(tempdir, 'foo.pickled')
with open(dest, 'wb') as fid:
pickle.dump(label, fid, pickle.HIGHEST_PROTOCOL)
with open(dest, 'rb') as fid:
label2 = pickle.load(fid)
assert_labels_equal(label, label2)
def _assert_labels_equal(labels_a, labels_b, ignore_pos=False):
"""Make sure two sets of labels are equal"""
for label_a, label_b in zip(labels_a, labels_b):
assert_array_equal(label_a.vertices, label_b.vertices)
assert_true(label_a.name == label_b.name)
assert_true(label_a.hemi == label_b.hemi)
if not ignore_pos:
assert_array_equal(label_a.pos, label_b.pos)
@sample.requires_sample_data
def test_read_labels_from_annot():
"""Test reading labels from FreeSurfer parcellation
"""
# test some invalid inputs
assert_raises(ValueError, read_labels_from_annot, 'sample', hemi='bla',
subjects_dir=subjects_dir)
assert_raises(ValueError, read_labels_from_annot, 'sample',
annot_fname='bla.annot', subjects_dir=subjects_dir)
# read labels using hemi specification
labels_lh = read_labels_from_annot('sample', hemi='lh',
subjects_dir=subjects_dir)
for label in labels_lh:
assert_true(label.name.endswith('-lh'))
assert_true(label.hemi == 'lh')
assert_is_not(label.color, None)
# read labels using annot_fname
annot_fname = op.join(subjects_dir, 'sample', 'label', 'rh.aparc.annot')
labels_rh = read_labels_from_annot('sample', annot_fname=annot_fname,
subjects_dir=subjects_dir)
for label in labels_rh:
assert_true(label.name.endswith('-rh'))
assert_true(label.hemi == 'rh')
assert_is_not(label.color, None)
# combine the lh, rh, labels and sort them
labels_lhrh = list()
labels_lhrh.extend(labels_lh)
labels_lhrh.extend(labels_rh)
names = [label.name for label in labels_lhrh]
labels_lhrh = [label for (name, label) in sorted(zip(names, labels_lhrh))]
# read all labels at once
labels_both = read_labels_from_annot('sample', subjects_dir=subjects_dir)
# we have the same result
_assert_labels_equal(labels_lhrh, labels_both)
# aparc has 68 cortical labels
assert_true(len(labels_both) == 68)
# test regexp
label = read_labels_from_annot('sample', parc='aparc.a2009s',
regexp='Angu', subjects_dir=subjects_dir)[0]
assert_true(label.name == 'G_pariet_inf-Angular-lh')
# silly, but real regexp:
label = read_labels_from_annot('sample', 'aparc.a2009s',
regexp='.*-.{4,}_.{3,3}-L',
subjects_dir=subjects_dir)[0]
assert_true(label.name == 'G_oc-temp_med-Lingual-lh')
assert_raises(RuntimeError, read_labels_from_annot, 'sample', parc='aparc',
annot_fname=annot_fname, regexp='JackTheRipper',
subjects_dir=subjects_dir)
@sample.requires_sample_data
@requires_mne
def test_read_labels_from_annot_annot2labels():
"""Test reading labels from parc. by comparing with mne_annot2labels
"""
def _mne_annot2labels(subject, subjects_dir, parc):
"""Get labels using mne_annot2lables"""
label_dir = _TempDir()
cwd = os.getcwd()
try:
os.chdir(label_dir)
env = os.environ.copy()
env['SUBJECTS_DIR'] = subjects_dir
cmd = ['mne_annot2labels', '--subject', subject, '--parc', parc]
run_subprocess(cmd, env=env)
label_fnames = glob.glob(label_dir + '/*.label')
label_fnames.sort()
labels = [read_label(fname) for fname in label_fnames]
finally:
del label_dir
os.chdir(cwd)
return labels
labels = read_labels_from_annot('sample', subjects_dir=subjects_dir)
labels_mne = _mne_annot2labels('sample', subjects_dir, 'aparc')
# we have the same result, mne does not fill pos, so ignore it
_assert_labels_equal(labels, labels_mne, ignore_pos=True)
@sample.requires_sample_data
def test_write_labels_to_annot():
"""Test writing FreeSurfer parcellation from labels"""
labels = read_labels_from_annot('sample', subjects_dir=subjects_dir)
# write left and right hemi labels:
fnames = ['%s/%s-myparc' % (tempdir, hemi) for hemi in ['lh', 'rh']]
for fname in fnames:
write_labels_to_annot(labels, annot_fname=fname)
# read it back
labels2 = read_labels_from_annot('sample', subjects_dir=subjects_dir,
annot_fname=fnames[0])
labels22 = read_labels_from_annot('sample', subjects_dir=subjects_dir,
annot_fname=fnames[1])
labels2.extend(labels22)
names = [label.name for label in labels2]
for label in labels:
idx = names.index(label.name)
assert_labels_equal(label, labels2[idx])
# same with label-internal colors
for fname in fnames:
write_labels_to_annot(labels, annot_fname=fname, overwrite=True)
labels3 = read_labels_from_annot('sample', subjects_dir=subjects_dir,
annot_fname=fnames[0])
labels33 = read_labels_from_annot('sample', subjects_dir=subjects_dir,
annot_fname=fnames[1])
labels3.extend(labels33)
names3 = [label.name for label in labels3]
for label in labels:
idx = names3.index(label.name)
assert_labels_equal(label, labels3[idx])
# make sure we can't overwrite things
assert_raises(ValueError, write_labels_to_annot, labels,
annot_fname=fnames[0])
# however, this works
write_labels_to_annot(labels, annot_fname=fnames[0], overwrite=True)
# label without color
labels_ = labels[:]
labels_[0] = labels_[0].copy()
labels_[0].color = None
write_labels_to_annot(labels_, annot_fname=fnames[0], overwrite=True)
# duplicate color
labels_[0].color = labels_[2].color
assert_raises(ValueError, write_labels_to_annot, labels_,
annot_fname=fnames[0], overwrite=True)
# invalid color inputs
labels_[0].color = (1.1, 1., 1., 1.)
assert_raises(ValueError, write_labels_to_annot, labels_,
annot_fname=fnames[0], overwrite=True)
# overlapping labels
labels_ = labels[:]
cuneus_lh = labels[6]
precuneus_lh = labels[50]
labels_.append(precuneus_lh + cuneus_lh)
assert_raises(ValueError, write_labels_to_annot, labels_,
annot_fname=fnames[0], overwrite=True)
# unlabeled vertices
labels_lh = [label for label in labels if label.name.endswith('lh')]
write_labels_to_annot(labels_lh[1:], 'sample', annot_fname=fnames[0],
overwrite=True, subjects_dir=subjects_dir)
labels_reloaded = read_labels_from_annot('sample', annot_fname=fnames[0],
subjects_dir=subjects_dir)
assert_equal(len(labels_lh), len(labels_reloaded))
label0 = labels_lh[0]
label1 = labels_reloaded[-1]
assert_equal(label1.name, "unknown-lh")
assert_true(np.all(in1d(label0.vertices, label1.vertices)))
@sample.requires_sample_data
def test_split_label():
"""Test splitting labels"""
aparc = read_labels_from_annot('fsaverage', 'aparc', 'lh',
regexp='lingual', subjects_dir=subjects_dir)
lingual = aparc[0]
# split with names
parts = ('lingual_post', 'lingual_ant')
post, ant = split_label(lingual, parts, subjects_dir=subjects_dir)
# check output names
assert_equal(post.name, parts[0])
assert_equal(ant.name, parts[1])
# check vertices add up
lingual_reconst = post + ant
lingual_reconst.name = lingual.name
lingual_reconst.comment = lingual.comment
lingual_reconst.color = lingual.color
assert_labels_equal(lingual_reconst, lingual)
# compare output of Label.split() method
post1, ant1 = lingual.split(parts, subjects_dir=subjects_dir)
assert_labels_equal(post1, post)
assert_labels_equal(ant1, ant)
# compare fs_like split with freesurfer split
antmost = split_label(lingual, 40, None, subjects_dir, True)[-1]
fs_vert = [210, 4401, 7405, 12079, 16276, 18956, 26356, 32713, 32716,
32719, 36047, 36050, 42797, 42798, 42799, 59281, 59282, 59283,
71864, 71865, 71866, 71874, 71883, 79901, 79903, 79910, 103024,
107849, 107850, 122928, 139356, 139357, 139373, 139374, 139375,
139376, 139377, 139378, 139381, 149117, 149118, 149120, 149127]
assert_array_equal(antmost.vertices, fs_vert)
# check default label name
assert_equal(antmost.name, "lingual_div40-lh")
@sample.requires_sample_data
@requires_sklearn
def test_stc_to_label():
"""Test stc_to_label
"""
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
src = read_source_spaces(fwd_fname)
src_bad = read_source_spaces(src_bad_fname)
stc = read_source_estimate(stc_fname, 'sample')
os.environ['SUBJECTS_DIR'] = op.join(data_path, 'subjects')
with warnings.catch_warnings(record=True) as w: # connectedness warning
warnings.simplefilter('always')
labels1 = stc_to_label(stc, src='sample', smooth=3)
labels2 = stc_to_label(stc, src=src, smooth=3)
assert_true(len(w) > 0)
assert_equal(len(labels1), len(labels2))
for l1, l2 in zip(labels1, labels2):
assert_labels_equal(l1, l2, decimal=4)
with warnings.catch_warnings(record=True) as w: # connectedness warning
warnings.simplefilter('always')
labels_lh, labels_rh = stc_to_label(stc, src=src, smooth=True,
connected=True)
assert_true(len(w) > 0)
assert_raises(ValueError, stc_to_label, stc, 'sample', smooth=True,
connected=True)
assert_raises(RuntimeError, stc_to_label, stc, smooth=True, src=src_bad,
connected=True)
assert_equal(len(labels_lh), 1)
assert_equal(len(labels_rh), 1)
# with smooth='patch'
with warnings.catch_warnings(record=True) as w: # connectedness warning
warnings.simplefilter('always')
labels_patch = stc_to_label(stc, src=src, smooth=True)
assert_equal(len(w), 1)
assert_equal(len(labels_patch), len(labels1))
for l1, l2 in zip(labels1, labels2):
assert_labels_equal(l1, l2, decimal=4)
@sample.requires_sample_data
def test_morph():
"""Test inter-subject label morphing
"""
label_orig = read_label(real_label_fname)
label_orig.subject = 'sample'
# should work for specifying vertices for both hemis, or just the
# hemi of the given label
vals = list()
for grade in [5, [np.arange(10242), np.arange(10242)], np.arange(10242)]:
label = label_orig.copy()
# this should throw an error because the label has all zero values
assert_raises(ValueError, label.morph, 'sample', 'fsaverage')
label.values.fill(1)
label.morph(None, 'fsaverage', 5, grade, subjects_dir, 2,
copy=False)
label.morph('fsaverage', 'sample', 5, None, subjects_dir, 2,
copy=False)
assert_true(np.mean(in1d(label_orig.vertices, label.vertices)) == 1.0)
assert_true(len(label.vertices) < 3 * len(label_orig.vertices))
vals.append(label.vertices)
assert_array_equal(vals[0], vals[1])
# make sure label smoothing can run
label.morph(label.subject, 'fsaverage', 5,
[np.arange(10242), np.arange(10242)], subjects_dir, 2,
copy=False)
# subject name should be inferred now
label.smooth(subjects_dir=subjects_dir)
@sample.requires_sample_data
def test_grow_labels():
"""Test generation of circular source labels"""
seeds = [0, 50000]
# these were chosen manually in mne_analyze
should_be_in = [[49, 227], [51207, 48794]]
hemis = [0, 1]
names = ['aneurism', 'tumor']
labels = grow_labels('sample', seeds, 3, hemis, subjects_dir, n_jobs=2,
names=names)
tgt_names = ['aneurism-lh', 'tumor-rh']
tgt_hemis = ['lh', 'rh']
for label, seed, hemi, sh, name in zip(labels, seeds, tgt_hemis,
should_be_in, tgt_names):
assert_true(np.any(label.vertices == seed))
assert_true(np.all(in1d(sh, label.vertices)))
assert_equal(label.hemi, hemi)
assert_equal(label.name, name)
# grow labels with and without overlap
seeds = [57532, [58887, 6304]]
l01, l02 = grow_labels('fsaverage', seeds, 20, [0, 0], subjects_dir)
seeds = [57532, [58887, 6304]]
l11, l12 = grow_labels('fsaverage', seeds, 20, [0, 0], subjects_dir,
overlap=False)
# test label naming
assert_equal(l01.name, 'Label_0-lh')
assert_equal(l02.name, 'Label_1-lh')
assert_equal(l11.name, 'Label_0-lh')
assert_equal(l12.name, 'Label_1-lh')
# make sure set 1 does not overlap
overlap = np.intersect1d(l11.vertices, l12.vertices, True)
assert_array_equal(overlap, [])
# make sure both sets cover the same vertices
l0 = l01 + l02
l1 = l11 + l12
assert_array_equal(l1.vertices, l0.vertices)
@sample.requires_sample_data
def test_label_time_course():
"""Test extracting label data from SourceEstimate"""
values, times, vertices = label_time_courses(real_label_fname, stc_fname)
stc = read_source_estimate(stc_fname)
label_lh = read_label(real_label_fname)
stc_lh = stc.in_label(label_lh)
assert_array_almost_equal(stc_lh.data, values)
assert_array_almost_equal(stc_lh.times, times)
assert_array_almost_equal(stc_lh.vertno[0], vertices)
label_rh = read_label(real_label_rh_fname)
stc_rh = stc.in_label(label_rh)
label_bh = label_rh + label_lh
stc_bh = stc.in_label(label_bh)
assert_array_equal(stc_bh.data, np.vstack((stc_lh.data, stc_rh.data)))
|