File: test_label.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (529 lines) | stat: -rw-r--r-- 20,199 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import os
import os.path as op
from ..externals.six.moves import cPickle as pickle
import glob
import warnings

import numpy as np
from numpy.testing import assert_array_equal, assert_array_almost_equal
from nose.tools import assert_equal, assert_true, assert_raises

from mne.datasets import sample
from mne import (label_time_courses, read_label, stc_to_label,
                 read_source_estimate, read_source_spaces, grow_labels,
                 read_labels_from_annot, write_labels_to_annot, split_label)
from mne.label import Label, _blend_colors
from mne.utils import requires_mne, run_subprocess, _TempDir, requires_sklearn
from mne.fixes import digitize, in1d, assert_is, assert_is_not

warnings.simplefilter('always')  # enable b/c these tests throw warnings

data_path = sample.data_path(download=False)
subjects_dir = op.join(data_path, 'subjects')
src_fname = op.join(subjects_dir, 'sample', 'bem', 'sample-oct-6-src.fif')
stc_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis-meg-lh.stc')
real_label_fname = op.join(data_path, 'MEG', 'sample', 'labels',
                           'Aud-lh.label')
real_label_rh_fname = op.join(data_path, 'MEG', 'sample', 'labels',
                              'Aud-rh.label')
v1_label_fname = op.join(subjects_dir, 'sample', 'label', 'lh.V1.label')

fwd_fname = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis-eeg-oct-6p-fwd.fif')
src_bad_fname = op.join(data_path, 'subjects', 'fsaverage', 'bem',
                        'fsaverage-ico-5-src.fif')

test_path = op.join(op.split(__file__)[0], '..', 'io', 'tests', 'data')
label_fname = op.join(test_path, 'test-lh.label')
label_rh_fname = op.join(test_path, 'test-rh.label')
tempdir = _TempDir()

# This code was used to generate the "fake" test labels:
# for hemi in ['lh', 'rh']:
#    label = Label(np.unique((np.random.rand(100) * 10242).astype(int)),
#                  hemi=hemi, comment='Test ' + hemi, subject='fsaverage')
#    label.save(op.join(test_path, 'test-%s.label' % hemi))


def assert_labels_equal(l0, l1, decimal=5):
    for attr in ['comment', 'hemi', 'subject', 'color']:
        attr0 = getattr(l0, attr)
        attr1 = getattr(l1, attr)
        msg = "label.%s: %r != %r" % (attr, attr0, attr1)
        assert_equal(attr0, attr1, msg)
    for attr in ['vertices', 'pos', 'values']:
        a0 = getattr(l0, attr)
        a1 = getattr(l1, attr)
        assert_array_almost_equal(a0, a1, decimal)


def test_label_subject():
    """Test label subject name extraction
    """
    label = read_label(label_fname)
    assert_is(label.subject, None)
    assert_true('unknown' in repr(label))
    label = read_label(label_fname, subject='fsaverage')
    assert_true(label.subject == 'fsaverage')
    assert_true('fsaverage' in repr(label))


def test_label_addition():
    """Test label addition
    """
    pos = np.random.rand(10, 3)
    values = np.arange(10.) / 10
    idx0 = list(range(7))
    idx1 = list(range(7, 10))  # non-overlapping
    idx2 = list(range(5, 10))  # overlapping
    l0 = Label(idx0, pos[idx0], values[idx0], 'lh', color='red')
    l1 = Label(idx1, pos[idx1], values[idx1], 'lh')
    l2 = Label(idx2, pos[idx2], values[idx2], 'lh', color=(0, 1, 0, .5))

    assert_equal(len(l0), len(idx0))

    # adding non-overlapping labels
    l01 = l0 + l1
    assert_equal(len(l01), len(l0) + len(l1))
    assert_array_equal(l01.values[:len(l0)], l0.values)
    assert_equal(l01.color, l0.color)

    # adding overlappig labels
    l = l0 + l2
    i0 = np.where(l0.vertices == 6)[0][0]
    i2 = np.where(l2.vertices == 6)[0][0]
    i = np.where(l.vertices == 6)[0][0]
    assert_equal(l.values[i], l0.values[i0] + l2.values[i2])
    assert_equal(l.values[0], l0.values[0])
    assert_array_equal(np.unique(l.vertices), np.unique(idx0 + idx2))
    assert_equal(l.color, _blend_colors(l0.color, l2.color))

    # adding lh and rh
    l2.hemi = 'rh'
    # this now has deprecated behavior
    bhl = l0 + l2
    assert_equal(bhl.hemi, 'both')
    assert_equal(len(bhl), len(l0) + len(l2))
    assert_equal(bhl.color, l.color)

    bhl2 = l1 + bhl
    assert_labels_equal(bhl2.lh, l01)
    assert_equal(bhl2.color, _blend_colors(l1.color, bhl.color))


@sample.requires_sample_data
def test_label_in_src():
    """Test label in src"""
    src = read_source_spaces(src_fname)
    label = read_label(v1_label_fname)

    # construct label from source space vertices
    vert_in_src = np.intersect1d(label.vertices, src[0]['vertno'], True)
    where = in1d(label.vertices, vert_in_src)
    pos_in_src = label.pos[where]
    values_in_src = label.values[where]
    label_src = Label(vert_in_src, pos_in_src, values_in_src,
                      hemi='lh').fill(src)

    # check label vertices
    vertices_status = in1d(src[0]['nearest'], label.vertices)
    vertices_in = np.nonzero(vertices_status)[0]
    vertices_out = np.nonzero(np.logical_not(vertices_status))[0]
    assert_array_equal(label_src.vertices, vertices_in)
    assert_array_equal(in1d(vertices_out, label_src.vertices), False)

    # check values
    value_idx = digitize(src[0]['nearest'][vertices_in], vert_in_src, True)
    assert_array_equal(label_src.values, values_in_src[value_idx])

    # test exception
    vertices = np.append([-1], vert_in_src)
    assert_raises(ValueError, Label(vertices, hemi='lh').fill, src)


@sample.requires_sample_data
def test_label_io_and_time_course_estimates():
    """Test IO for label + stc files
    """
    values, times, vertices = label_time_courses(real_label_fname, stc_fname)
    assert_true(len(times) == values.shape[1])
    assert_true(len(vertices) == values.shape[0])


def test_label_io():
    """Test IO of label files
    """
    label = read_label(label_fname)

    # label attributes
    assert_equal(label.name, 'test-lh')
    assert_is(label.subject, None)
    assert_is(label.color, None)

    # save and reload
    label.save(op.join(tempdir, 'foo'))
    label2 = read_label(op.join(tempdir, 'foo-lh.label'))
    assert_labels_equal(label, label2)

    # pickling
    dest = op.join(tempdir, 'foo.pickled')
    with open(dest, 'wb') as fid:
        pickle.dump(label, fid, pickle.HIGHEST_PROTOCOL)
    with open(dest, 'rb') as fid:
        label2 = pickle.load(fid)
    assert_labels_equal(label, label2)


def _assert_labels_equal(labels_a, labels_b, ignore_pos=False):
    """Make sure two sets of labels are equal"""
    for label_a, label_b in zip(labels_a, labels_b):
        assert_array_equal(label_a.vertices, label_b.vertices)
        assert_true(label_a.name == label_b.name)
        assert_true(label_a.hemi == label_b.hemi)
        if not ignore_pos:
            assert_array_equal(label_a.pos, label_b.pos)


@sample.requires_sample_data
def test_read_labels_from_annot():
    """Test reading labels from FreeSurfer parcellation
    """
    # test some invalid inputs
    assert_raises(ValueError, read_labels_from_annot, 'sample', hemi='bla',
                  subjects_dir=subjects_dir)
    assert_raises(ValueError, read_labels_from_annot, 'sample',
                  annot_fname='bla.annot', subjects_dir=subjects_dir)

    # read labels using hemi specification
    labels_lh = read_labels_from_annot('sample', hemi='lh',
                                       subjects_dir=subjects_dir)
    for label in labels_lh:
        assert_true(label.name.endswith('-lh'))
        assert_true(label.hemi == 'lh')
        assert_is_not(label.color, None)

    # read labels using annot_fname
    annot_fname = op.join(subjects_dir, 'sample', 'label', 'rh.aparc.annot')
    labels_rh = read_labels_from_annot('sample', annot_fname=annot_fname,
                                       subjects_dir=subjects_dir)
    for label in labels_rh:
        assert_true(label.name.endswith('-rh'))
        assert_true(label.hemi == 'rh')
        assert_is_not(label.color, None)

    # combine the lh, rh, labels and sort them
    labels_lhrh = list()
    labels_lhrh.extend(labels_lh)
    labels_lhrh.extend(labels_rh)

    names = [label.name for label in labels_lhrh]
    labels_lhrh = [label for (name, label) in sorted(zip(names, labels_lhrh))]

    # read all labels at once
    labels_both = read_labels_from_annot('sample', subjects_dir=subjects_dir)

    # we have the same result
    _assert_labels_equal(labels_lhrh, labels_both)

    # aparc has 68 cortical labels
    assert_true(len(labels_both) == 68)

    # test regexp
    label = read_labels_from_annot('sample', parc='aparc.a2009s',
                                   regexp='Angu', subjects_dir=subjects_dir)[0]
    assert_true(label.name == 'G_pariet_inf-Angular-lh')
    # silly, but real regexp:
    label = read_labels_from_annot('sample', 'aparc.a2009s',
                                   regexp='.*-.{4,}_.{3,3}-L',
                                   subjects_dir=subjects_dir)[0]
    assert_true(label.name == 'G_oc-temp_med-Lingual-lh')
    assert_raises(RuntimeError, read_labels_from_annot, 'sample', parc='aparc',
                  annot_fname=annot_fname, regexp='JackTheRipper',
                  subjects_dir=subjects_dir)


@sample.requires_sample_data
@requires_mne
def test_read_labels_from_annot_annot2labels():
    """Test reading labels from parc. by comparing with mne_annot2labels
    """

    def _mne_annot2labels(subject, subjects_dir, parc):
        """Get labels using mne_annot2lables"""
        label_dir = _TempDir()
        cwd = os.getcwd()
        try:
            os.chdir(label_dir)
            env = os.environ.copy()
            env['SUBJECTS_DIR'] = subjects_dir
            cmd = ['mne_annot2labels', '--subject', subject, '--parc', parc]
            run_subprocess(cmd, env=env)
            label_fnames = glob.glob(label_dir + '/*.label')
            label_fnames.sort()
            labels = [read_label(fname) for fname in label_fnames]
        finally:
            del label_dir
            os.chdir(cwd)

        return labels

    labels = read_labels_from_annot('sample', subjects_dir=subjects_dir)
    labels_mne = _mne_annot2labels('sample', subjects_dir, 'aparc')

    # we have the same result, mne does not fill pos, so ignore it
    _assert_labels_equal(labels, labels_mne, ignore_pos=True)


@sample.requires_sample_data
def test_write_labels_to_annot():
    """Test writing FreeSurfer parcellation from labels"""

    labels = read_labels_from_annot('sample', subjects_dir=subjects_dir)

    # write left and right hemi labels:
    fnames = ['%s/%s-myparc' % (tempdir, hemi) for hemi in ['lh', 'rh']]

    for fname in fnames:
        write_labels_to_annot(labels, annot_fname=fname)

    # read it back
    labels2 = read_labels_from_annot('sample', subjects_dir=subjects_dir,
                                     annot_fname=fnames[0])
    labels22 = read_labels_from_annot('sample', subjects_dir=subjects_dir,
                                      annot_fname=fnames[1])
    labels2.extend(labels22)

    names = [label.name for label in labels2]

    for label in labels:
        idx = names.index(label.name)
        assert_labels_equal(label, labels2[idx])

    # same with label-internal colors
    for fname in fnames:
        write_labels_to_annot(labels, annot_fname=fname, overwrite=True)
    labels3 = read_labels_from_annot('sample', subjects_dir=subjects_dir,
                                     annot_fname=fnames[0])
    labels33 = read_labels_from_annot('sample', subjects_dir=subjects_dir,
                                      annot_fname=fnames[1])
    labels3.extend(labels33)
    names3 = [label.name for label in labels3]
    for label in labels:
        idx = names3.index(label.name)
        assert_labels_equal(label, labels3[idx])

    # make sure we can't overwrite things
    assert_raises(ValueError, write_labels_to_annot, labels,
                  annot_fname=fnames[0])

    # however, this works
    write_labels_to_annot(labels, annot_fname=fnames[0], overwrite=True)

    # label without color
    labels_ = labels[:]
    labels_[0] = labels_[0].copy()
    labels_[0].color = None
    write_labels_to_annot(labels_, annot_fname=fnames[0], overwrite=True)

    # duplicate color
    labels_[0].color = labels_[2].color
    assert_raises(ValueError, write_labels_to_annot, labels_,
                  annot_fname=fnames[0], overwrite=True)

    # invalid color inputs
    labels_[0].color = (1.1, 1., 1., 1.)
    assert_raises(ValueError, write_labels_to_annot, labels_,
                  annot_fname=fnames[0], overwrite=True)

    # overlapping labels
    labels_ = labels[:]
    cuneus_lh = labels[6]
    precuneus_lh = labels[50]
    labels_.append(precuneus_lh + cuneus_lh)
    assert_raises(ValueError, write_labels_to_annot, labels_,
                  annot_fname=fnames[0], overwrite=True)

    # unlabeled vertices
    labels_lh = [label for label in labels if label.name.endswith('lh')]
    write_labels_to_annot(labels_lh[1:], 'sample', annot_fname=fnames[0],
                          overwrite=True, subjects_dir=subjects_dir)
    labels_reloaded = read_labels_from_annot('sample', annot_fname=fnames[0],
                                             subjects_dir=subjects_dir)
    assert_equal(len(labels_lh), len(labels_reloaded))
    label0 = labels_lh[0]
    label1 = labels_reloaded[-1]
    assert_equal(label1.name, "unknown-lh")
    assert_true(np.all(in1d(label0.vertices, label1.vertices)))


@sample.requires_sample_data
def test_split_label():
    """Test splitting labels"""
    aparc = read_labels_from_annot('fsaverage', 'aparc', 'lh',
                                   regexp='lingual', subjects_dir=subjects_dir)
    lingual = aparc[0]

    # split with names
    parts = ('lingual_post', 'lingual_ant')
    post, ant = split_label(lingual, parts, subjects_dir=subjects_dir)

    # check output names
    assert_equal(post.name, parts[0])
    assert_equal(ant.name, parts[1])

    # check vertices add up
    lingual_reconst = post + ant
    lingual_reconst.name = lingual.name
    lingual_reconst.comment = lingual.comment
    lingual_reconst.color = lingual.color
    assert_labels_equal(lingual_reconst, lingual)

    # compare output of Label.split() method
    post1, ant1 = lingual.split(parts, subjects_dir=subjects_dir)
    assert_labels_equal(post1, post)
    assert_labels_equal(ant1, ant)

    # compare fs_like split with freesurfer split
    antmost = split_label(lingual, 40, None, subjects_dir, True)[-1]
    fs_vert = [210, 4401, 7405, 12079, 16276, 18956, 26356, 32713, 32716,
               32719, 36047, 36050, 42797, 42798, 42799, 59281, 59282, 59283,
               71864, 71865, 71866, 71874, 71883, 79901, 79903, 79910, 103024,
               107849, 107850, 122928, 139356, 139357, 139373, 139374, 139375,
               139376, 139377, 139378, 139381, 149117, 149118, 149120, 149127]
    assert_array_equal(antmost.vertices, fs_vert)

    # check default label name
    assert_equal(antmost.name, "lingual_div40-lh")


@sample.requires_sample_data
@requires_sklearn
def test_stc_to_label():
    """Test stc_to_label
    """
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        src = read_source_spaces(fwd_fname)
    src_bad = read_source_spaces(src_bad_fname)
    stc = read_source_estimate(stc_fname, 'sample')
    os.environ['SUBJECTS_DIR'] = op.join(data_path, 'subjects')
    with warnings.catch_warnings(record=True) as w:  # connectedness warning
        warnings.simplefilter('always')
        labels1 = stc_to_label(stc, src='sample', smooth=3)
        labels2 = stc_to_label(stc, src=src, smooth=3)
    assert_true(len(w) > 0)
    assert_equal(len(labels1), len(labels2))
    for l1, l2 in zip(labels1, labels2):
        assert_labels_equal(l1, l2, decimal=4)

    with warnings.catch_warnings(record=True) as w:  # connectedness warning
        warnings.simplefilter('always')
        labels_lh, labels_rh = stc_to_label(stc, src=src, smooth=True,
                                            connected=True)
    assert_true(len(w) > 0)
    assert_raises(ValueError, stc_to_label, stc, 'sample', smooth=True,
                  connected=True)
    assert_raises(RuntimeError, stc_to_label, stc, smooth=True, src=src_bad,
                  connected=True)
    assert_equal(len(labels_lh), 1)
    assert_equal(len(labels_rh), 1)

    # with smooth='patch'
    with warnings.catch_warnings(record=True) as w:  # connectedness warning
        warnings.simplefilter('always')
        labels_patch = stc_to_label(stc, src=src, smooth=True)
    assert_equal(len(w), 1)
    assert_equal(len(labels_patch), len(labels1))
    for l1, l2 in zip(labels1, labels2):
        assert_labels_equal(l1, l2, decimal=4)


@sample.requires_sample_data
def test_morph():
    """Test inter-subject label morphing
    """
    label_orig = read_label(real_label_fname)
    label_orig.subject = 'sample'
    # should work for specifying vertices for both hemis, or just the
    # hemi of the given label
    vals = list()
    for grade in [5, [np.arange(10242), np.arange(10242)], np.arange(10242)]:
        label = label_orig.copy()
        # this should throw an error because the label has all zero values
        assert_raises(ValueError, label.morph, 'sample', 'fsaverage')
        label.values.fill(1)
        label.morph(None, 'fsaverage', 5, grade, subjects_dir, 2,
                    copy=False)
        label.morph('fsaverage', 'sample', 5, None, subjects_dir, 2,
                    copy=False)
        assert_true(np.mean(in1d(label_orig.vertices, label.vertices)) == 1.0)
        assert_true(len(label.vertices) < 3 * len(label_orig.vertices))
        vals.append(label.vertices)
    assert_array_equal(vals[0], vals[1])
    # make sure label smoothing can run
    label.morph(label.subject, 'fsaverage', 5,
                [np.arange(10242), np.arange(10242)], subjects_dir, 2,
                copy=False)
    # subject name should be inferred now
    label.smooth(subjects_dir=subjects_dir)


@sample.requires_sample_data
def test_grow_labels():
    """Test generation of circular source labels"""
    seeds = [0, 50000]
    # these were chosen manually in mne_analyze
    should_be_in = [[49, 227], [51207, 48794]]
    hemis = [0, 1]
    names = ['aneurism', 'tumor']
    labels = grow_labels('sample', seeds, 3, hemis, subjects_dir, n_jobs=2,
                         names=names)

    tgt_names = ['aneurism-lh', 'tumor-rh']
    tgt_hemis = ['lh', 'rh']
    for label, seed, hemi, sh, name in zip(labels, seeds, tgt_hemis,
                                           should_be_in, tgt_names):
        assert_true(np.any(label.vertices == seed))
        assert_true(np.all(in1d(sh, label.vertices)))
        assert_equal(label.hemi, hemi)
        assert_equal(label.name, name)

    # grow labels with and without overlap
    seeds = [57532, [58887, 6304]]
    l01, l02 = grow_labels('fsaverage', seeds, 20, [0, 0], subjects_dir)
    seeds = [57532, [58887, 6304]]
    l11, l12 = grow_labels('fsaverage', seeds, 20, [0, 0], subjects_dir,
                           overlap=False)

    # test label naming
    assert_equal(l01.name, 'Label_0-lh')
    assert_equal(l02.name, 'Label_1-lh')
    assert_equal(l11.name, 'Label_0-lh')
    assert_equal(l12.name, 'Label_1-lh')

    # make sure set 1 does not overlap
    overlap = np.intersect1d(l11.vertices, l12.vertices, True)
    assert_array_equal(overlap, [])

    # make sure both sets cover the same vertices
    l0 = l01 + l02
    l1 = l11 + l12
    assert_array_equal(l1.vertices, l0.vertices)


@sample.requires_sample_data
def test_label_time_course():
    """Test extracting label data from SourceEstimate"""
    values, times, vertices = label_time_courses(real_label_fname, stc_fname)
    stc = read_source_estimate(stc_fname)
    label_lh = read_label(real_label_fname)
    stc_lh = stc.in_label(label_lh)
    assert_array_almost_equal(stc_lh.data, values)
    assert_array_almost_equal(stc_lh.times, times)
    assert_array_almost_equal(stc_lh.vertno[0], vertices)

    label_rh = read_label(real_label_rh_fname)
    stc_rh = stc.in_label(label_rh)
    label_bh = label_rh + label_lh
    stc_bh = stc.in_label(label_bh)
    assert_array_equal(stc_bh.data, np.vstack((stc_lh.data, stc_rh.data)))