File: test_source_estimate.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (616 lines) | stat: -rw-r--r-- 24,908 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
from __future__ import print_function
import os.path as op
from nose.tools import assert_true, assert_raises
import warnings
from copy import deepcopy

import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
                           assert_allclose, assert_equal)

from scipy.fftpack import fft

from mne.datasets import sample
from mne import (stats, SourceEstimate, VolSourceEstimate, Label,
                 read_source_spaces)
from mne import read_source_estimate, morph_data, extract_label_time_course
from mne.source_estimate import (spatio_temporal_tris_connectivity,
                                 spatio_temporal_src_connectivity,
                                 compute_morph_matrix, grade_to_vertices)

from mne.minimum_norm import read_inverse_operator
from mne.label import read_labels_from_annot, label_sign_flip
from mne.utils import (_TempDir, requires_pandas, requires_sklearn,
                       requires_pytables)

warnings.simplefilter('always')  # enable b/c these tests throw warnings

data_path = sample.data_path(download=False)
subjects_dir = op.join(data_path, 'subjects')
fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis-meg-lh.stc')
fname_inv = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis-meg-oct-6-meg-inv.fif')
fname_vol = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis-grad-vol-7-fwd-sensmap-vol.w')
fname_vsrc = op.join(data_path, 'MEG', 'sample',
                     'sample_audvis-meg-vol-7-fwd.fif')
fname_t1 = op.join(data_path, 'subjects', 'sample', 'mri', 'T1.mgz')

tempdir = _TempDir()


@sample.requires_sample_data
def test_volume_stc():
    """Test volume STCs
    """
    N = 100
    data = np.arange(N)[:, np.newaxis]
    datas = [data, data, np.arange(2)[:, np.newaxis]]
    vertno = np.arange(N)
    vertnos = [vertno, vertno[:, np.newaxis], np.arange(2)[:, np.newaxis]]
    vertno_reads = [vertno, vertno, np.arange(2)]
    for data, vertno, vertno_read in zip(datas, vertnos, vertno_reads):
        stc = VolSourceEstimate(data, vertno, 0, 1)
        fname_temp = op.join(tempdir, 'temp-vl.stc')
        stc_new = stc
        for _ in range(2):
            stc_new.save(fname_temp)
            stc_new = read_source_estimate(fname_temp)
            assert_true(isinstance(stc_new, VolSourceEstimate))
            assert_array_equal(vertno_read, stc_new.vertno)
            assert_array_almost_equal(stc.data, stc_new.data)

    # now let's actually read a MNE-C processed file
    stc = read_source_estimate(fname_vol, 'sample')
    assert_true(isinstance(stc, VolSourceEstimate))

    assert_true('sample' in repr(stc))
    stc_new = stc
    assert_raises(ValueError, stc.save, fname_vol, ftype='whatever')
    for _ in range(2):
        fname_temp = op.join(tempdir, 'temp-vol.w')
        stc_new.save(fname_temp, ftype='w')
        stc_new = read_source_estimate(fname_temp)
        assert_true(isinstance(stc_new, VolSourceEstimate))
        assert_array_equal(stc.vertno, stc_new.vertno)
        assert_array_almost_equal(stc.data, stc_new.data)

    # save the stc as a nifti file and export
    try:
        import nibabel as nib
        with warnings.catch_warnings(record=True):
            warnings.simplefilter('always')
            src = read_source_spaces(fname_vsrc)
        vol_fname = op.join(tempdir, 'stc.nii.gz')
        stc.save_as_volume(vol_fname, src,
                           dest='surf', mri_resolution=False)
        with warnings.catch_warnings(record=True):  # nib<->numpy
            img = nib.load(vol_fname)
        assert_true(img.shape == src[0]['shape'] + (len(stc.times),))

        with warnings.catch_warnings(record=True):  # nib<->numpy
            t1_img = nib.load(fname_t1)
        stc.save_as_volume(op.join(tempdir, 'stc.nii.gz'), src,
                           dest='mri', mri_resolution=True)
        with warnings.catch_warnings(record=True):  # nib<->numpy
            img = nib.load(vol_fname)
        assert_true(img.shape == t1_img.shape + (len(stc.times),))
        assert_array_almost_equal(img.get_affine(), t1_img.get_affine(),
                                  decimal=5)

        # export without saving
        img = stc.as_volume(src, dest='mri', mri_resolution=True)
        assert_true(img.shape == t1_img.shape + (len(stc.times),))
        assert_array_almost_equal(img.get_affine(), t1_img.get_affine(),
                                  decimal=5)

    except ImportError:
        print('Save as nifti test skipped, needs NiBabel')


@sample.requires_sample_data
def test_expand():
    """Test stc expansion
    """
    stc = read_source_estimate(fname, 'sample')
    assert_true('sample' in repr(stc))
    labels_lh = read_labels_from_annot('sample', 'aparc', 'lh',
                                       subjects_dir=subjects_dir)
    stc_limited = stc.in_label(labels_lh[0] + labels_lh[1])
    stc_new = stc_limited.copy()
    stc_new.data.fill(0)
    for label in labels_lh[:2]:
        stc_new += stc.in_label(label).expand(stc_limited.vertno)
    # make sure we can't add unless vertno agree
    assert_raises(ValueError, stc.__add__, stc.in_label(labels_lh[0]))


def _fake_stc(n_time=10):
    verts = [np.arange(10), np.arange(90)]
    return SourceEstimate(np.random.rand(100, n_time), verts, 0, 1e-1, 'foo')


def test_io_stc():
    """Test IO for STC files
    """
    stc = _fake_stc()
    stc.save(op.join(tempdir, "tmp.stc"))
    stc2 = read_source_estimate(op.join(tempdir, "tmp.stc"))

    assert_array_almost_equal(stc.data, stc2.data)
    assert_array_almost_equal(stc.tmin, stc2.tmin)
    assert_equal(len(stc.vertno), len(stc2.vertno))
    for v1, v2 in zip(stc.vertno, stc2.vertno):
        assert_array_almost_equal(v1, v2)
    assert_array_almost_equal(stc.tstep, stc2.tstep)


@requires_pytables()
def test_io_stc_h5():
    """Test IO for STC files using HDF5
    """
    stc = _fake_stc()
    assert_raises(ValueError, stc.save, op.join(tempdir, 'tmp'), ftype='foo')
    out_name = op.join(tempdir, 'tmp')
    stc.save(out_name, ftype='h5')
    stc3 = read_source_estimate(out_name)
    stc4 = read_source_estimate(out_name + '-stc.h5')
    assert_raises(RuntimeError, read_source_estimate, out_name, subject='bar')
    for stc_new in stc3, stc4:
        assert_equal(stc_new.subject, stc.subject)
        assert_array_equal(stc_new.data, stc.data)
        assert_array_equal(stc_new.tmin, stc.tmin)
        assert_array_equal(stc_new.tstep, stc.tstep)
        assert_equal(len(stc_new.vertno), len(stc.vertno))
        for v1, v2 in zip(stc_new.vertno, stc.vertno):
            assert_array_equal(v1, v2)


def test_io_w():
    """Test IO for w files
    """
    stc = _fake_stc(n_time=1)
    w_fname = op.join(tempdir, 'fake')
    stc.save(w_fname, ftype='w')
    src = read_source_estimate(w_fname)
    src.save(op.join(tempdir, 'tmp'), ftype='w')
    src2 = read_source_estimate(op.join(tempdir, 'tmp-lh.w'))
    assert_array_almost_equal(src.data, src2.data)
    assert_array_almost_equal(src.lh_vertno, src2.lh_vertno)
    assert_array_almost_equal(src.rh_vertno, src2.rh_vertno)


def test_stc_arithmetic():
    """Test arithmetic for STC files
    """
    stc = _fake_stc()
    data = stc.data.copy()

    out = list()
    for a in [data, stc]:
        a = a + a * 3 + 3 * a - a ** 2 / 2

        a += a
        a -= a
        with warnings.catch_warnings(record=True):
            warnings.simplefilter('always')
            a /= 2 * a
        a *= -a

        a += 2
        a -= 1
        a *= -1
        a /= 2
        a **= 3
        out.append(a)

    assert_array_equal(out[0], out[1].data)
    assert_array_equal(stc.sqrt().data, np.sqrt(stc.data))

    stc_mean = stc.mean()
    assert_array_equal(stc_mean.data, np.mean(stc.data, 1)[:, None])


@sample.requires_sample_data
def test_stc_methods():
    """Test stc methods lh_data, rh_data, bin(), center_of_mass(), resample()
    """
    fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis-meg')
    stc = read_source_estimate(fname)

    # lh_data / rh_data
    assert_array_equal(stc.lh_data, stc.data[:len(stc.lh_vertno)])
    assert_array_equal(stc.rh_data, stc.data[len(stc.lh_vertno):])

    # bin
    bin = stc.bin(.12)
    a = np.array((1,), dtype=stc.data.dtype)
    a[0] = np.mean(stc.data[0, stc.times < .12])
    assert a[0] == bin.data[0, 0]

    assert_raises(ValueError, stc.center_of_mass, 'sample')
    stc.lh_data[:] = 0
    vertex, hemi, t = stc.center_of_mass('sample', subjects_dir=subjects_dir)
    assert_true(hemi == 1)
    # XXX Should design a fool-proof test case, but here were the results:
    assert_true(vertex == 90186)
    assert_true(np.round(t, 3) == 0.123)

    stc = read_source_estimate(fname)
    stc_new = deepcopy(stc)
    o_sfreq = 1.0 / stc.tstep
    # note that using no padding for this STC reduces edge ringing...
    stc_new.resample(2 * o_sfreq, npad=0, n_jobs=2)
    assert_true(stc_new.data.shape[1] == 2 * stc.data.shape[1])
    assert_true(stc_new.tstep == stc.tstep / 2)
    stc_new.resample(o_sfreq, npad=0)
    assert_true(stc_new.data.shape[1] == stc.data.shape[1])
    assert_true(stc_new.tstep == stc.tstep)
    assert_array_almost_equal(stc_new.data, stc.data, 5)


@sample.requires_sample_data
def test_extract_label_time_course():
    """Test extraction of label time courses from stc
    """
    n_stcs = 3
    n_times = 50

    src = read_inverse_operator(fname_inv)['src']
    vertices = [src[0]['vertno'], src[1]['vertno']]
    n_verts = len(vertices[0]) + len(vertices[1])

    # get some labels
    labels_lh = read_labels_from_annot('sample', hemi='lh',
                                       subjects_dir=subjects_dir)
    labels_rh = read_labels_from_annot('sample', hemi='rh',
                                       subjects_dir=subjects_dir)
    labels = list()
    labels.extend(labels_lh[:5])
    labels.extend(labels_rh[:4])

    n_labels = len(labels)

    label_means = np.arange(n_labels)[:, None] * np.ones((n_labels, n_times))
    label_maxs = np.arange(n_labels)[:, None] * np.ones((n_labels, n_times))

    # compute the mean with sign flip
    label_means_flipped = np.zeros_like(label_means)
    for i, label in enumerate(labels):
        label_means_flipped[i] = i * np.mean(label_sign_flip(label, src))

    # generate some stc's with known data
    stcs = list()
    for i in range(n_stcs):
        data = np.zeros((n_verts, n_times))
        # set the value of the stc within each label
        for j, label in enumerate(labels):
            if label.hemi == 'lh':
                idx = np.intersect1d(vertices[0], label.vertices)
                idx = np.searchsorted(vertices[0], idx)
            elif label.hemi == 'rh':
                idx = np.intersect1d(vertices[1], label.vertices)
                idx = len(vertices[0]) + np.searchsorted(vertices[1], idx)
            data[idx] = label_means[j]

        this_stc = SourceEstimate(data, vertices, 0, 1)
        stcs.append(this_stc)

    # test some invalid inputs
    assert_raises(ValueError, extract_label_time_course, stcs, labels,
                  src, mode='notamode')

    # have an empty label
    empty_label = labels[0].copy()
    empty_label.vertices += 1000000
    assert_raises(ValueError, extract_label_time_course, stcs, empty_label,
                  src, mode='mean')

    # but this works:
    tc = extract_label_time_course(stcs, empty_label, src, mode='mean',
                                   allow_empty=True)
    for arr in tc:
        assert_true(arr.shape == (1, n_times))
        assert_array_equal(arr, np.zeros((1, n_times)))

    # test the different modes
    modes = ['mean', 'mean_flip', 'pca_flip', 'max']

    for mode in modes:
        label_tc = extract_label_time_course(stcs, labels, src, mode=mode)
        label_tc_method = [stc.extract_label_time_course(labels, src,
                           mode=mode) for stc in stcs]
        assert_true(len(label_tc) == n_stcs)
        assert_true(len(label_tc_method) == n_stcs)
        for tc1, tc2 in zip(label_tc, label_tc_method):
            assert_true(tc1.shape == (n_labels, n_times))
            assert_true(tc2.shape == (n_labels, n_times))
            assert_true(np.allclose(tc1, tc2, rtol=1e-8, atol=1e-16))
            if mode == 'mean':
                assert_array_almost_equal(tc1, label_means)
            if mode == 'mean_flip':
                assert_array_almost_equal(tc1, label_means_flipped)
            if mode == 'max':
                assert_array_almost_equal(tc1, label_maxs)

    # test label with very few vertices (check SVD conditionals)
    label = Label(vertices=src[0]['vertno'][:2], hemi='lh')
    x = label_sign_flip(label, src)
    assert_true(len(x) == 2)
    label = Label(vertices=[], hemi='lh')
    x = label_sign_flip(label, src)
    assert_true(x.size == 0)


@sample.requires_sample_data
def test_morph_data():
    """Test morphing of data
    """
    subject_from = 'sample'
    subject_to = 'fsaverage'
    fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis-meg')
    stc_from = read_source_estimate(fname, subject='sample')
    fname = op.join(data_path, 'MEG', 'sample', 'fsaverage_audvis-meg')
    stc_to = read_source_estimate(fname)
    # make sure we can specify grade
    stc_from.crop(0.09, 0.1)  # for faster computation
    stc_to.crop(0.09, 0.1)  # for faster computation
    stc_to1 = stc_from.morph(subject_to, grade=3, smooth=12, buffer_size=1000,
                             subjects_dir=subjects_dir)
    stc_to1.save(op.join(tempdir, '%s_audvis-meg' % subject_to))
    # make sure we can specify vertices
    vertices_to = grade_to_vertices(subject_to, grade=3,
                                    subjects_dir=subjects_dir)
    stc_to2 = morph_data(subject_from, subject_to, stc_from,
                         grade=vertices_to, smooth=12, buffer_size=1000,
                         subjects_dir=subjects_dir)
    # make sure we can use different buffer_size
    stc_to3 = morph_data(subject_from, subject_to, stc_from,
                         grade=vertices_to, smooth=12, buffer_size=3,
                         subjects_dir=subjects_dir)

    assert_array_almost_equal(stc_to.data, stc_to1.data, 5)
    assert_array_almost_equal(stc_to1.data, stc_to2.data)
    assert_array_almost_equal(stc_to1.data, stc_to3.data)
    # make sure precomputed morph matrices work
    morph_mat = compute_morph_matrix(subject_from, subject_to,
                                     stc_from.vertno, vertices_to,
                                     smooth=12, subjects_dir=subjects_dir)
    stc_to3 = stc_from.morph_precomputed(subject_to, vertices_to, morph_mat)
    assert_array_almost_equal(stc_to1.data, stc_to3.data)

    mean_from = stc_from.data.mean(axis=0)
    mean_to = stc_to1.data.mean(axis=0)
    assert_true(np.corrcoef(mean_to, mean_from).min() > 0.999)

    # make sure we can fill by morphing
    stc_to5 = morph_data(subject_from, subject_to, stc_from, grade=None,
                         smooth=12, buffer_size=3, subjects_dir=subjects_dir)
    assert_true(stc_to5.data.shape[0] == 163842 + 163842)

    # test morphing to the same subject
    stc_to6 = stc_from.morph(subject_from, grade=stc_from.vertno, smooth=1,
                             subjects_dir=subjects_dir)
    mask = np.ones(stc_from.data.shape[0], dtype=np.bool)
    # XXX: there is a bug somewhere that causes a difference at 2 vertices..
    mask[6799] = False
    mask[6800] = False
    assert_array_almost_equal(stc_from.data[mask], stc_to6.data[mask], 5)

    # Morph sparse data
    # Make a sparse stc
    stc_from.vertno[0] = stc_from.vertno[0][[100, 500]]
    stc_from.vertno[1] = stc_from.vertno[1][[200]]
    stc_from._data = stc_from._data[:3]

    assert_raises(RuntimeError, stc_from.morph, subject_to, sparse=True,
                  grade=5, subjects_dir=subjects_dir)

    stc_to_sparse = stc_from.morph(subject_to, grade=None, sparse=True,
                                   subjects_dir=subjects_dir)
    assert_array_almost_equal(np.sort(stc_from.data.sum(axis=1)),
                              np.sort(stc_to_sparse.data.sum(axis=1)))
    assert_equal(len(stc_from.rh_vertno), len(stc_to_sparse.rh_vertno))
    assert_equal(len(stc_from.lh_vertno), len(stc_to_sparse.lh_vertno))
    assert_equal(stc_to_sparse.subject, subject_to)
    assert_equal(stc_from.tmin, stc_from.tmin)
    assert_equal(stc_from.tstep, stc_from.tstep)

    stc_from.vertno[0] = np.array([], dtype=np.int64)
    stc_from._data = stc_from._data[:1]

    stc_to_sparse = stc_from.morph(subject_to, grade=None, sparse=True,
                                   subjects_dir=subjects_dir)
    assert_array_almost_equal(np.sort(stc_from.data.sum(axis=1)),
                              np.sort(stc_to_sparse.data.sum(axis=1)))
    assert_equal(len(stc_from.rh_vertno), len(stc_to_sparse.rh_vertno))
    assert_equal(len(stc_from.lh_vertno), len(stc_to_sparse.lh_vertno))
    assert_equal(stc_to_sparse.subject, subject_to)
    assert_equal(stc_from.tmin, stc_from.tmin)
    assert_equal(stc_from.tstep, stc_from.tstep)


def _my_trans(data):
    """FFT that adds an additional dimension by repeating result"""
    data_t = fft(data)
    data_t = np.concatenate([data_t[:, :, None], data_t[:, :, None]], axis=2)
    return data_t, None


def test_transform_data():
    """Test applying linear (time) transform to data"""
    # make up some data
    n_sensors, n_vertices, n_times = 10, 20, 4
    kernel = np.random.randn(n_vertices, n_sensors)
    sens_data = np.random.randn(n_sensors, n_times)

    vertices = np.arange(n_vertices)
    data = np.dot(kernel, sens_data)

    for idx, tmin_idx, tmax_idx in\
            zip([None, np.arange(n_vertices // 2, n_vertices)],
                [None, 1], [None, 3]):

        if idx is None:
            idx_use = slice(None, None)
        else:
            idx_use = idx

        data_f, _ = _my_trans(data[idx_use, tmin_idx:tmax_idx])

        for stc_data in (data, (kernel, sens_data)):
            stc = VolSourceEstimate(stc_data, vertices=vertices,
                                    tmin=0., tstep=1.)
            stc_data_t = stc.transform_data(_my_trans, idx=idx,
                                            tmin_idx=tmin_idx,
                                            tmax_idx=tmax_idx)
            assert_allclose(data_f, stc_data_t)


def test_transform():
    """Test applying linear (time) transform to data"""
    # make up some data
    n_verts_lh, n_verts_rh, n_times = 10, 10, 10
    vertices = [np.arange(n_verts_lh), n_verts_lh + np.arange(n_verts_rh)]
    data = np.random.randn(n_verts_lh + n_verts_rh, n_times)
    stc = SourceEstimate(data, vertices=vertices, tmin=-0.1, tstep=0.1)

    # data_t.ndim > 2 & copy is True
    stcs_t = stc.transform(_my_trans, copy=True)
    assert_true(isinstance(stcs_t, list))
    assert_array_equal(stc.times, stcs_t[0].times)
    assert_equal(stc.vertno, stcs_t[0].vertno)

    data = np.concatenate((stcs_t[0].data[:, :, None],
                           stcs_t[1].data[:, :, None]), axis=2)
    data_t = stc.transform_data(_my_trans)
    assert_array_equal(data, data_t)  # check against stc.transform_data()

    # data_t.ndim > 2 & copy is False
    assert_raises(ValueError, stc.transform, _my_trans, copy=False)

    # data_t.ndim = 2 & copy is True
    tmp = deepcopy(stc)
    stc_t = stc.transform(np.abs, copy=True)
    assert_true(isinstance(stc_t, SourceEstimate))
    assert_array_equal(stc.data, tmp.data)  # xfrm doesn't modify original?

    # data_t.ndim = 2 & copy is False
    times = np.round(1000 * stc.times)
    verts = np.arange(len(stc.lh_vertno),
                      len(stc.lh_vertno) + len(stc.rh_vertno), 1)
    verts_rh = stc.rh_vertno
    t_idx = [np.where(times >= -50)[0][0], np.where(times <= 500)[0][-1]]
    data_t = stc.transform_data(np.abs, idx=verts, tmin_idx=t_idx[0],
                                tmax_idx=t_idx[-1])
    stc.transform(np.abs, idx=verts, tmin=-50, tmax=500, copy=False)
    assert_true(isinstance(stc, SourceEstimate))
    assert_true((stc.tmin == 0.) & (stc.times[-1] == 0.5))
    assert_true(len(stc.vertno[0]) == 0)
    assert_equal(stc.vertno[1], verts_rh)
    assert_array_equal(stc.data, data_t)

    times = np.round(1000 * stc.times)
    t_idx = [np.where(times >= 0)[0][0], np.where(times <= 250)[0][-1]]
    data_t = stc.transform_data(np.abs, tmin_idx=t_idx[0], tmax_idx=t_idx[-1])
    stc.transform(np.abs, tmin=0, tmax=250, copy=False)
    assert_true((stc.tmin == 0.) & (stc.times[-1] == 0.2))
    assert_array_equal(stc.data, data_t)


@requires_sklearn
def test_spatio_temporal_tris_connectivity():
    """Test spatio-temporal connectivity from triangles"""
    tris = np.array([[0, 1, 2], [3, 4, 5]])
    connectivity = spatio_temporal_tris_connectivity(tris, 2)
    x = [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]
    components = stats.cluster_level._get_components(np.array(x), connectivity)
    # _get_components works differently now...
    old_fmt = [0, 0, -2, -2, -2, -2, 0, -2, -2, -2, -2, 1]
    new_fmt = np.array(old_fmt)
    new_fmt = [np.nonzero(new_fmt == v)[0]
               for v in np.unique(new_fmt[new_fmt >= 0])]
    assert_true(len(new_fmt), len(components))
    for c, n in zip(components, new_fmt):
        assert_array_equal(c, n)


@sample.requires_sample_data
def test_spatio_temporal_src_connectivity():
    """Test spatio-temporal connectivity from source spaces"""
    tris = np.array([[0, 1, 2], [3, 4, 5]])
    src = [dict(), dict()]
    connectivity = spatio_temporal_tris_connectivity(tris, 2)
    src[0]['use_tris'] = np.array([[0, 1, 2]])
    src[1]['use_tris'] = np.array([[0, 1, 2]])
    src[0]['vertno'] = np.array([0, 1, 2])
    src[1]['vertno'] = np.array([0, 1, 2])
    connectivity2 = spatio_temporal_src_connectivity(src, 2)
    assert_array_equal(connectivity.todense(), connectivity2.todense())
    # add test for dist connectivity
    src[0]['dist'] = np.ones((3, 3)) - np.eye(3)
    src[1]['dist'] = np.ones((3, 3)) - np.eye(3)
    src[0]['vertno'] = [0, 1, 2]
    src[1]['vertno'] = [0, 1, 2]
    connectivity3 = spatio_temporal_src_connectivity(src, 2, dist=2)
    assert_array_equal(connectivity.todense(), connectivity3.todense())
    # add test for source space connectivity with omitted vertices
    inverse_operator = read_inverse_operator(fname_inv)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        src_ = inverse_operator['src']
        connectivity = spatio_temporal_src_connectivity(src_, n_times=2)
        assert len(w) == 1
    a = connectivity.shape[0] / 2
    b = sum([s['nuse'] for s in inverse_operator['src']])
    assert_true(a == b)


@requires_pandas
def test_as_data_frame():
    """Test stc Pandas exporter"""
    n_vert, n_times = 10, 5
    vertices = [np.arange(n_vert, dtype=np.int), np.empty(0, dtype=np.int)]
    data = np.random.randn(n_vert, n_times)
    stc_surf = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1,
                              subject='sample')
    stc_vol = VolSourceEstimate(data, vertices=vertices[0], tmin=0, tstep=1,
                                subject='sample')
    for stc in [stc_surf, stc_vol]:
        assert_raises(ValueError, stc.as_data_frame, index=['foo', 'bar'])
        for ncat, ind in zip([1, 0], ['time', ['subject', 'time']]):
            df = stc.as_data_frame(index=ind)
            assert_true(df.index.names == ind
                        if isinstance(ind, list) else [ind])
            assert_array_equal(df.values.T[ncat:], stc.data)
            # test that non-indexed data were present as categorial variables
            with warnings.catch_warnings(record=True):  # pandas
                df.reset_index().columns[:3] == ['subject', 'time']


def test_get_peak():
    """Test peak getter
    """
    n_vert, n_times = 10, 5
    vertices = [np.arange(n_vert, dtype=np.int), np.empty(0, dtype=np.int)]
    data = np.random.randn(n_vert, n_times)
    stc_surf = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1,
                              subject='sample')

    stc_vol = VolSourceEstimate(data, vertices=vertices[0], tmin=0, tstep=1,
                                subject='sample')

    for ii, stc in enumerate([stc_surf, stc_vol]):
        assert_raises(ValueError, stc.get_peak, tmin=-100)
        assert_raises(ValueError, stc.get_peak, tmax=90)
        assert_raises(ValueError, stc.get_peak, tmin=0.002, tmax=0.001)

        vert_idx, time_idx = stc.get_peak()
        vertno = np.concatenate(stc.vertno) if ii == 0 else stc.vertno
        assert_true(vert_idx in vertno)
        assert_true(time_idx in stc.times)

        ch_idx, time_idx = stc.get_peak(vert_as_index=True,
                                        time_as_index=True)
        assert_true(vert_idx < stc.data.shape[0])
        assert_true(time_idx < len(stc.times))