File: test_source_space.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (543 lines) | stat: -rw-r--r-- 21,974 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
from __future__ import print_function

import os
import os.path as op
from nose.tools import assert_true, assert_raises
from nose.plugins.skip import SkipTest
import numpy as np
from numpy.testing import assert_array_equal, assert_allclose, assert_equal
import warnings
from scipy.spatial.distance import cdist

from mne.datasets import sample
from mne import (read_source_spaces, vertex_to_mni, write_source_spaces,
                 setup_source_space, setup_volume_source_space,
                 add_source_space_distances)
from mne.utils import (_TempDir, requires_fs_or_nibabel, requires_nibabel,
                       requires_freesurfer, run_subprocess,
                       requires_mne, requires_scipy_version)
from mne.surface import _accumulate_normals, _triangle_neighbors
from mne.source_space import _get_mgz_header
from mne.externals.six.moves import zip

warnings.simplefilter('always')

# WARNING: test_source_space is imported by forward, so download=False
# is critical here, otherwise on first import of MNE users will have to
# download the whole sample dataset!
base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data')
data_path = sample.data_path(download=False)
subjects_dir = op.join(data_path, 'subjects')
fname_small = op.join(base_dir, 'small-src.fif.gz')
fname = op.join(subjects_dir, 'sample', 'bem', 'sample-oct-6-src.fif')
fname_bem = op.join(data_path, 'subjects', 'sample', 'bem',
                    'sample-5120-bem.fif')
fname_mri = op.join(data_path, 'subjects', 'sample', 'mri', 'T1.mgz')

tempdir = _TempDir()


@requires_nibabel(vox2ras_tkr=True)
def test_mgz_header():
    import nibabel as nib
    header = _get_mgz_header(fname_mri)
    mri_hdr = nib.load(fname_mri).get_header()
    assert_allclose(mri_hdr.get_data_shape(), header['dims'])
    assert_allclose(mri_hdr.get_vox2ras_tkr(), header['vox2ras_tkr'])
    assert_allclose(mri_hdr.get_ras2vox(), header['ras2vox'])


@requires_scipy_version('0.11')
def test_add_patch_info():
    """Test adding patch info to source space"""
    # let's setup a small source space
    src = read_source_spaces(fname_small)
    src_new = read_source_spaces(fname_small)
    for s in src_new:
        s['nearest'] = None
        s['nearest_dist'] = None
        s['pinfo'] = None

    # test that no patch info is added for small dist_limit
    try:
        add_source_space_distances(src_new, dist_limit=0.00001)
    except RuntimeError:  # what we throw when scipy version is wrong
        pass
    else:
        assert_true(all(s['nearest'] is None for s in src_new))
        assert_true(all(s['nearest_dist'] is None for s in src_new))
        assert_true(all(s['pinfo'] is None for s in src_new))

    # now let's use one that works
    add_source_space_distances(src_new)

    for s1, s2 in zip(src, src_new):
        assert_array_equal(s1['nearest'], s2['nearest'])
        assert_allclose(s1['nearest_dist'], s2['nearest_dist'], atol=1e-7)
        assert_equal(len(s1['pinfo']), len(s2['pinfo']))
        for p1, p2 in zip(s1['pinfo'], s2['pinfo']):
            assert_array_equal(p1, p2)


@sample.requires_sample_data
@requires_scipy_version('0.11')
def test_add_source_space_distances_limited():
    """Test adding distances to source space with a dist_limit"""
    src = read_source_spaces(fname)
    src_new = read_source_spaces(fname)
    del src_new[0]['dist']
    del src_new[1]['dist']
    n_do = 200  # limit this for speed
    src_new[0]['vertno'] = src_new[0]['vertno'][:n_do].copy()
    src_new[1]['vertno'] = src_new[1]['vertno'][:n_do].copy()
    out_name = op.join(tempdir, 'temp-src.fif')
    try:
        add_source_space_distances(src_new, dist_limit=0.007)
    except RuntimeError:  # what we throw when scipy version is wrong
        raise SkipTest('dist_limit requires scipy > 0.13')
    write_source_spaces(out_name, src_new)
    src_new = read_source_spaces(out_name)

    for so, sn in zip(src, src_new):
        assert_array_equal(so['dist_limit'], np.array([-0.007], np.float32))
        assert_array_equal(sn['dist_limit'], np.array([0.007], np.float32))
        do = so['dist']
        dn = sn['dist']

        # clean out distances > 0.007 in C code
        do.data[do.data > 0.007] = 0
        do.eliminate_zeros()

        # make sure we have some comparable distances
        assert_true(np.sum(do.data < 0.007) > 400)

        # do comparison over the region computed
        d = (do - dn)[:sn['vertno'][n_do - 1]][:, :sn['vertno'][n_do - 1]]
        assert_allclose(np.zeros_like(d.data), d.data, rtol=0, atol=1e-6)


@sample.requires_sample_data
@requires_scipy_version('0.11')
def test_add_source_space_distances():
    """Test adding distances to source space"""
    src = read_source_spaces(fname)
    src_new = read_source_spaces(fname)
    del src_new[0]['dist']
    del src_new[1]['dist']
    n_do = 20  # limit this for speed
    src_new[0]['vertno'] = src_new[0]['vertno'][:n_do].copy()
    src_new[1]['vertno'] = src_new[1]['vertno'][:n_do].copy()
    out_name = op.join(tempdir, 'temp-src.fif')
    add_source_space_distances(src_new)
    write_source_spaces(out_name, src_new)
    src_new = read_source_spaces(out_name)

    # iterate over both hemispheres
    for so, sn in zip(src, src_new):
        v = so['vertno'][:n_do]
        assert_array_equal(so['dist_limit'], np.array([-0.007], np.float32))
        assert_array_equal(sn['dist_limit'], np.array([np.inf], np.float32))
        do = so['dist']
        dn = sn['dist']

        # clean out distances > 0.007 in C code (some residual), and Python
        ds = list()
        for d in [do, dn]:
            d.data[d.data > 0.007] = 0
            d = d[v][:, v]
            d.eliminate_zeros()
            ds.append(d)

        # make sure we actually calculated some comparable distances
        assert_true(np.sum(ds[0].data < 0.007) > 10)

        # do comparison
        d = ds[0] - ds[1]
        assert_allclose(np.zeros_like(d.data), d.data, rtol=0, atol=1e-9)


@sample.requires_sample_data
@requires_mne
def test_discrete_source_space():
    """Test setting up (and reading/writing) discrete source spaces
    """
    src = read_source_spaces(fname)
    v = src[0]['vertno']

    # let's make a discrete version with the C code, and with ours
    temp_name = op.join(tempdir, 'temp-src.fif')
    try:
        # save
        temp_pos = op.join(tempdir, 'temp-pos.txt')
        np.savetxt(temp_pos, np.c_[src[0]['rr'][v], src[0]['nn'][v]])
        # let's try the spherical one (no bem or surf supplied)
        run_subprocess(['mne_volume_source_space', '--meters',
                        '--pos', temp_pos, '--src', temp_name])
        src_c = read_source_spaces(temp_name)
        pos_dict = dict(rr=src[0]['rr'][v], nn=src[0]['nn'][v])
        src_new = setup_volume_source_space('sample', None,
                                            pos=pos_dict,
                                            subjects_dir=subjects_dir)
        _compare_source_spaces(src_c, src_new, mode='approx')
        assert_allclose(src[0]['rr'][v], src_new[0]['rr'],
                        rtol=1e-3, atol=1e-6)
        assert_allclose(src[0]['nn'][v], src_new[0]['nn'],
                        rtol=1e-3, atol=1e-6)

        # now do writing
        write_source_spaces(temp_name, src_c)
        src_c2 = read_source_spaces(temp_name)
        _compare_source_spaces(src_c, src_c2)

        # now do MRI
        assert_raises(ValueError, setup_volume_source_space, 'sample',
                      pos=pos_dict, mri=fname_mri)
    finally:
        if op.isfile(temp_name):
            os.remove(temp_name)


@sample.requires_sample_data
@requires_mne
def test_volume_source_space():
    """Test setting up volume source spaces
    """
    fname_vol = op.join(data_path, 'subjects', 'sample', 'bem',
                        'volume-7mm-src.fif')
    src = read_source_spaces(fname_vol)
    temp_name = op.join(tempdir, 'temp-src.fif')
    try:
        # The one in the sample dataset (uses bem as bounds)
        src_new = setup_volume_source_space('sample', temp_name, pos=7.0,
                                            bem=fname_bem, mri=fname_mri,
                                            subjects_dir=subjects_dir)
        _compare_source_spaces(src, src_new, mode='approx')
        src_new = read_source_spaces(temp_name)
        _compare_source_spaces(src, src_new, mode='approx')

        # let's try the spherical one (no bem or surf supplied)
        run_subprocess(['mne_volume_source_space',
                        '--grid', '15.0',
                        '--src', temp_name,
                        '--mri', fname_mri])
        src = read_source_spaces(temp_name)
        src_new = setup_volume_source_space('sample', temp_name, pos=15.0,
                                            mri=fname_mri,
                                            subjects_dir=subjects_dir)
        _compare_source_spaces(src, src_new, mode='approx')

        # now without MRI argument, it should give an error when we try
        # to read it
        run_subprocess(['mne_volume_source_space',
                        '--grid', '15.0',
                        '--src', temp_name])
        assert_raises(ValueError, read_source_spaces, temp_name)
    finally:
        if op.isfile(temp_name):
            os.remove(temp_name)


@sample.requires_sample_data
def test_triangle_neighbors():
    """Test efficient vertex neighboring triangles for surfaces"""
    this = read_source_spaces(fname)[0]
    this['neighbor_tri'] = [list() for _ in range(this['np'])]
    for p in range(this['ntri']):
        verts = this['tris'][p]
        this['neighbor_tri'][verts[0]].append(p)
        this['neighbor_tri'][verts[1]].append(p)
        this['neighbor_tri'][verts[2]].append(p)
    this['neighbor_tri'] = [np.array(nb, int) for nb in this['neighbor_tri']]

    neighbor_tri = _triangle_neighbors(this['tris'], this['np'])
    assert_true(np.array_equal(nt1, nt2)
                for nt1, nt2 in zip(neighbor_tri, this['neighbor_tri']))


def test_accumulate_normals():
    """Test efficient normal accumulation for surfaces"""
    # set up comparison
    rng = np.random.RandomState(0)
    n_pts = int(1.6e5)  # approx number in sample source space
    n_tris = int(3.2e5)
    # use all positive to make a worst-case for cumulative summation
    # (real "nn" vectors will have both positive and negative values)
    tris = (rng.rand(n_tris, 1) * (n_pts - 2)).astype(int)
    tris = np.c_[tris, tris + 1, tris + 2]
    tri_nn = rng.rand(n_tris, 3)
    this = dict(tris=tris, np=n_pts, ntri=n_tris, tri_nn=tri_nn)

    # cut-and-paste from original code in surface.py:
    #    Find neighboring triangles and accumulate vertex normals
    this['nn'] = np.zeros((this['np'], 3))
    for p in range(this['ntri']):
        # vertex normals
        verts = this['tris'][p]
        this['nn'][verts, :] += this['tri_nn'][p, :]
    nn = _accumulate_normals(this['tris'], this['tri_nn'], this['np'])

    # the moment of truth (or reckoning)
    assert_allclose(nn, this['nn'], rtol=1e-7, atol=1e-7)


@sample.requires_sample_data
def test_setup_source_space():
    """Test setting up ico, oct, and all source spaces
    """
    fname_all = op.join(data_path, 'subjects', 'sample', 'bem',
                        'sample-all-src.fif')
    fname_ico = op.join(data_path, 'subjects', 'fsaverage', 'bem',
                        'fsaverage-ico-5-src.fif')
    # first lets test some input params
    assert_raises(ValueError, setup_source_space, 'sample', spacing='oct',
                  add_dist=False)
    assert_raises(ValueError, setup_source_space, 'sample', spacing='octo',
                  add_dist=False)
    assert_raises(ValueError, setup_source_space, 'sample', spacing='oct6e',
                  add_dist=False)
    assert_raises(ValueError, setup_source_space, 'sample', spacing='7emm',
                  add_dist=False)
    assert_raises(ValueError, setup_source_space, 'sample', spacing='alls',
                  add_dist=False)
    assert_raises(IOError, setup_source_space, 'sample', spacing='oct6',
                  subjects_dir=subjects_dir, add_dist=False)

    # ico 5 (fsaverage) - write to temp file
    src = read_source_spaces(fname_ico)
    temp_name = op.join(tempdir, 'temp-src.fif')
    with warnings.catch_warnings(record=True):  # sklearn equiv neighbors
        warnings.simplefilter('always')
        src_new = setup_source_space('fsaverage', temp_name, spacing='ico5',
                                     subjects_dir=subjects_dir, add_dist=False,
                                     overwrite=True)
    _compare_source_spaces(src, src_new, mode='approx')

    # oct-6 (sample) - auto filename + IO
    src = read_source_spaces(fname)
    temp_name = op.join(tempdir, 'temp-src.fif')
    with warnings.catch_warnings(record=True):  # sklearn equiv neighbors
        warnings.simplefilter('always')
        src_new = setup_source_space('sample', temp_name, spacing='oct6',
                                     subjects_dir=subjects_dir,
                                     overwrite=True, add_dist=False)
    _compare_source_spaces(src, src_new, mode='approx')
    src_new = read_source_spaces(temp_name)
    _compare_source_spaces(src, src_new, mode='approx')

    # all source points - no file writing
    src = read_source_spaces(fname_all)
    src_new = setup_source_space('sample', None, spacing='all',
                                 subjects_dir=subjects_dir, add_dist=False)
    _compare_source_spaces(src, src_new, mode='approx')


@sample.requires_sample_data
def test_read_source_spaces():
    """Test reading of source space meshes
    """
    src = read_source_spaces(fname, add_geom=True)

    # 3D source space
    lh_points = src[0]['rr']
    lh_faces = src[0]['tris']
    lh_use_faces = src[0]['use_tris']
    rh_points = src[1]['rr']
    rh_faces = src[1]['tris']
    rh_use_faces = src[1]['use_tris']
    assert_true(lh_faces.min() == 0)
    assert_true(lh_faces.max() == lh_points.shape[0] - 1)
    assert_true(lh_use_faces.min() >= 0)
    assert_true(lh_use_faces.max() <= lh_points.shape[0] - 1)
    assert_true(rh_faces.min() == 0)
    assert_true(rh_faces.max() == rh_points.shape[0] - 1)
    assert_true(rh_use_faces.min() >= 0)
    assert_true(rh_use_faces.max() <= rh_points.shape[0] - 1)


@sample.requires_sample_data
def test_write_source_space():
    """Test writing and reading of source spaces
    """
    src0 = read_source_spaces(fname, add_geom=False)
    write_source_spaces(op.join(tempdir, 'tmp-src.fif'), src0)
    src1 = read_source_spaces(op.join(tempdir, 'tmp-src.fif'), add_geom=False)
    _compare_source_spaces(src0, src1)

    # test warnings on bad filenames
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        src_badname = op.join(tempdir, 'test-bad-name.fif.gz')
        write_source_spaces(src_badname, src0)
        read_source_spaces(src_badname)
        print([ww.message for ww in w])
    assert_equal(len(w), 2)


def _compare_source_spaces(src0, src1, mode='exact'):
    """Compare two source spaces

    Note: this function is also used by forward/tests/test_make_forward.py
    """
    for s0, s1 in zip(src0, src1):
        for name in ['nuse', 'ntri', 'np', 'type', 'id']:
            print(name)
            assert_equal(s0[name], s1[name])
        for name in ['subject_his_id']:
            if name in s0 or name in s1:
                print(name)
                assert_equal(s0[name], s1[name])
        for name in ['interpolator']:
            if name in s0 or name in s1:
                print(name)
                diffs = (s0['interpolator'] - s1['interpolator']).data
                if len(diffs) > 0:
                    assert_true(np.sqrt(np.mean(diffs ** 2)) < 0.05)  # 5%
        for name in ['nn', 'rr', 'nuse_tri', 'coord_frame', 'tris']:
            print(name)
            if s0[name] is None:
                assert_true(s1[name] is None)
            else:
                if mode == 'exact':
                    assert_array_equal(s0[name], s1[name])
                elif mode == 'approx':
                    assert_allclose(s0[name], s1[name], rtol=1e-3, atol=1e-4)
                else:
                    raise RuntimeError('unknown mode')
        if mode == 'exact':
            for name in ['inuse', 'vertno', 'use_tris']:
                assert_array_equal(s0[name], s1[name])
            # these fields will exist if patch info was added, these are
            # not tested in mode == 'approx'
            for name in ['nearest', 'nearest_dist']:
                print(name)
                if s0[name] is None:
                    assert_true(s1[name] is None)
                else:
                    assert_array_equal(s0[name], s1[name])
            for name in ['dist_limit']:
                print(name)
                assert_true(s0[name] == s1[name])
            for name in ['dist']:
                if s0[name] is not None:
                    assert_equal(s1[name].shape, s0[name].shape)
                    assert_true(len((s0['dist'] - s1['dist']).data) == 0)
            for name in ['pinfo']:
                if s0[name] is not None:
                    assert_true(len(s0[name]) == len(s1[name]))
                    for p1, p2 in zip(s0[name], s1[name]):
                        assert_true(all(p1 == p2))
        elif mode == 'approx':
            # deal with vertno, inuse, and use_tris carefully
            assert_array_equal(s0['vertno'], np.where(s0['inuse'])[0])
            assert_array_equal(s1['vertno'], np.where(s1['inuse'])[0])
            assert_equal(len(s0['vertno']), len(s1['vertno']))
            agreement = np.mean(s0['inuse'] == s1['inuse'])
            assert_true(agreement > 0.99)
            if agreement < 1.0:
                # make sure mismatched vertno are within 1.5mm
                v0 = np.setdiff1d(s0['vertno'], s1['vertno'])
                v1 = np.setdiff1d(s1['vertno'], s0['vertno'])
                dists = cdist(s0['rr'][v0], s1['rr'][v1])
                assert_allclose(np.min(dists, axis=1), np.zeros(len(v0)),
                                atol=1.5e-3)
            if s0['use_tris'] is not None:  # for "spacing"
                assert_array_equal(s0['use_tris'].shape, s1['use_tris'].shape)
            else:
                assert_true(s1['use_tris'] is None)
            assert_true(np.mean(s0['use_tris'] == s1['use_tris']) > 0.99)
    # The above "if s0[name] is not None" can be removed once the sample
    # dataset is updated to have a source space with distance info
    for name in ['working_dir', 'command_line']:
        if mode == 'exact':
            assert_equal(src0.info[name], src1.info[name])
        elif mode == 'approx':
            print(name)
            if name in src0.info:
                assert_true(name in src1.info)
            else:
                assert_true(name not in src1.info)


@sample.requires_sample_data
@requires_fs_or_nibabel
def test_vertex_to_mni():
    """Test conversion of vertices to MNI coordinates
    """
    # obtained using "tksurfer (sample/fsaverage) (l/r)h white"
    vertices = [100960, 7620, 150549, 96761]
    coords_s = np.array([[-60.86, -11.18, -3.19], [-36.46, -93.18, -2.36],
                         [-38.00, 50.08, -10.61], [47.14, 8.01, 46.93]])
    coords_f = np.array([[-41.28, -40.04, 18.20], [-6.05, 49.74, -18.15],
                         [-61.71, -14.55, 20.52], [21.70, -60.84, 25.02]])
    hemis = [0, 0, 0, 1]
    for coords, subject in zip([coords_s, coords_f], ['sample', 'fsaverage']):
        coords_2 = vertex_to_mni(vertices, hemis, subject, subjects_dir)
        # less than 1mm error
        assert_allclose(coords, coords_2, atol=1.0)


@sample.requires_sample_data
@requires_freesurfer
@requires_nibabel()
def test_vertex_to_mni_fs_nibabel():
    """Test equivalence of vert_to_mni for nibabel and freesurfer
    """
    n_check = 1000
    for subject in ['sample', 'fsaverage']:
        vertices = np.random.randint(0, 100000, n_check)
        hemis = np.random.randint(0, 1, n_check)
        coords = vertex_to_mni(vertices, hemis, subject, subjects_dir,
                               'nibabel')
        coords_2 = vertex_to_mni(vertices, hemis, subject, subjects_dir,
                                 'freesurfer')
        # less than 0.1 mm error
        assert_allclose(coords, coords_2, atol=0.1)


# The following code was used to generate small-src.fif.gz.
# Unfortunately the C code bombs when trying to add source space distances,
# possibly due to incomplete "faking" of a smaller surface on our part here.
"""
# -*- coding: utf-8 -*-

import os
import numpy as np
import mne

data_path = mne.datasets.sample.data_path()
src = mne.setup_source_space('sample', fname=None, spacing='oct5')
hemis = ['lh', 'rh']
fnames = [data_path + '/subjects/sample/surf/%s.decimated' % h for h in hemis]

vs = list()
for s, fname in zip(src, fnames):
    coords = s['rr'][s['vertno']]
    vs.append(s['vertno'])
    idx = -1 * np.ones(len(s['rr']))
    idx[s['vertno']] = np.arange(s['nuse'])
    faces = s['use_tris']
    faces = idx[faces]
    mne.write_surface(fname, coords, faces)

# we need to move sphere surfaces
spheres = [data_path + '/subjects/sample/surf/%s.sphere' % h for h in hemis]
for s in spheres:
    os.rename(s, s + '.bak')
try:
    for s, v in zip(spheres, vs):
        coords, faces = mne.read_surface(s + '.bak')
        coords = coords[v]
        mne.write_surface(s, coords, faces)
    src = mne.setup_source_space('sample', fname=None, spacing='oct4',
                                 surface='decimated')
finally:
    for s in spheres:
        os.rename(s + '.bak', s)

fname = 'small-src.fif'
fname_gz = fname + '.gz'
mne.write_source_spaces(fname, src)
mne.utils.run_subprocess(['mne_add_patch_info', '--src', fname,
                          '--srcp', fname])
mne.write_source_spaces(fname_gz, mne.read_source_spaces(fname))
"""