1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
|
from __future__ import print_function
import os
import os.path as op
from nose.tools import assert_true, assert_raises
from nose.plugins.skip import SkipTest
import numpy as np
from numpy.testing import assert_array_equal, assert_allclose, assert_equal
import warnings
from scipy.spatial.distance import cdist
from mne.datasets import sample
from mne import (read_source_spaces, vertex_to_mni, write_source_spaces,
setup_source_space, setup_volume_source_space,
add_source_space_distances)
from mne.utils import (_TempDir, requires_fs_or_nibabel, requires_nibabel,
requires_freesurfer, run_subprocess,
requires_mne, requires_scipy_version)
from mne.surface import _accumulate_normals, _triangle_neighbors
from mne.source_space import _get_mgz_header
from mne.externals.six.moves import zip
warnings.simplefilter('always')
# WARNING: test_source_space is imported by forward, so download=False
# is critical here, otherwise on first import of MNE users will have to
# download the whole sample dataset!
base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data')
data_path = sample.data_path(download=False)
subjects_dir = op.join(data_path, 'subjects')
fname_small = op.join(base_dir, 'small-src.fif.gz')
fname = op.join(subjects_dir, 'sample', 'bem', 'sample-oct-6-src.fif')
fname_bem = op.join(data_path, 'subjects', 'sample', 'bem',
'sample-5120-bem.fif')
fname_mri = op.join(data_path, 'subjects', 'sample', 'mri', 'T1.mgz')
tempdir = _TempDir()
@requires_nibabel(vox2ras_tkr=True)
def test_mgz_header():
import nibabel as nib
header = _get_mgz_header(fname_mri)
mri_hdr = nib.load(fname_mri).get_header()
assert_allclose(mri_hdr.get_data_shape(), header['dims'])
assert_allclose(mri_hdr.get_vox2ras_tkr(), header['vox2ras_tkr'])
assert_allclose(mri_hdr.get_ras2vox(), header['ras2vox'])
@requires_scipy_version('0.11')
def test_add_patch_info():
"""Test adding patch info to source space"""
# let's setup a small source space
src = read_source_spaces(fname_small)
src_new = read_source_spaces(fname_small)
for s in src_new:
s['nearest'] = None
s['nearest_dist'] = None
s['pinfo'] = None
# test that no patch info is added for small dist_limit
try:
add_source_space_distances(src_new, dist_limit=0.00001)
except RuntimeError: # what we throw when scipy version is wrong
pass
else:
assert_true(all(s['nearest'] is None for s in src_new))
assert_true(all(s['nearest_dist'] is None for s in src_new))
assert_true(all(s['pinfo'] is None for s in src_new))
# now let's use one that works
add_source_space_distances(src_new)
for s1, s2 in zip(src, src_new):
assert_array_equal(s1['nearest'], s2['nearest'])
assert_allclose(s1['nearest_dist'], s2['nearest_dist'], atol=1e-7)
assert_equal(len(s1['pinfo']), len(s2['pinfo']))
for p1, p2 in zip(s1['pinfo'], s2['pinfo']):
assert_array_equal(p1, p2)
@sample.requires_sample_data
@requires_scipy_version('0.11')
def test_add_source_space_distances_limited():
"""Test adding distances to source space with a dist_limit"""
src = read_source_spaces(fname)
src_new = read_source_spaces(fname)
del src_new[0]['dist']
del src_new[1]['dist']
n_do = 200 # limit this for speed
src_new[0]['vertno'] = src_new[0]['vertno'][:n_do].copy()
src_new[1]['vertno'] = src_new[1]['vertno'][:n_do].copy()
out_name = op.join(tempdir, 'temp-src.fif')
try:
add_source_space_distances(src_new, dist_limit=0.007)
except RuntimeError: # what we throw when scipy version is wrong
raise SkipTest('dist_limit requires scipy > 0.13')
write_source_spaces(out_name, src_new)
src_new = read_source_spaces(out_name)
for so, sn in zip(src, src_new):
assert_array_equal(so['dist_limit'], np.array([-0.007], np.float32))
assert_array_equal(sn['dist_limit'], np.array([0.007], np.float32))
do = so['dist']
dn = sn['dist']
# clean out distances > 0.007 in C code
do.data[do.data > 0.007] = 0
do.eliminate_zeros()
# make sure we have some comparable distances
assert_true(np.sum(do.data < 0.007) > 400)
# do comparison over the region computed
d = (do - dn)[:sn['vertno'][n_do - 1]][:, :sn['vertno'][n_do - 1]]
assert_allclose(np.zeros_like(d.data), d.data, rtol=0, atol=1e-6)
@sample.requires_sample_data
@requires_scipy_version('0.11')
def test_add_source_space_distances():
"""Test adding distances to source space"""
src = read_source_spaces(fname)
src_new = read_source_spaces(fname)
del src_new[0]['dist']
del src_new[1]['dist']
n_do = 20 # limit this for speed
src_new[0]['vertno'] = src_new[0]['vertno'][:n_do].copy()
src_new[1]['vertno'] = src_new[1]['vertno'][:n_do].copy()
out_name = op.join(tempdir, 'temp-src.fif')
add_source_space_distances(src_new)
write_source_spaces(out_name, src_new)
src_new = read_source_spaces(out_name)
# iterate over both hemispheres
for so, sn in zip(src, src_new):
v = so['vertno'][:n_do]
assert_array_equal(so['dist_limit'], np.array([-0.007], np.float32))
assert_array_equal(sn['dist_limit'], np.array([np.inf], np.float32))
do = so['dist']
dn = sn['dist']
# clean out distances > 0.007 in C code (some residual), and Python
ds = list()
for d in [do, dn]:
d.data[d.data > 0.007] = 0
d = d[v][:, v]
d.eliminate_zeros()
ds.append(d)
# make sure we actually calculated some comparable distances
assert_true(np.sum(ds[0].data < 0.007) > 10)
# do comparison
d = ds[0] - ds[1]
assert_allclose(np.zeros_like(d.data), d.data, rtol=0, atol=1e-9)
@sample.requires_sample_data
@requires_mne
def test_discrete_source_space():
"""Test setting up (and reading/writing) discrete source spaces
"""
src = read_source_spaces(fname)
v = src[0]['vertno']
# let's make a discrete version with the C code, and with ours
temp_name = op.join(tempdir, 'temp-src.fif')
try:
# save
temp_pos = op.join(tempdir, 'temp-pos.txt')
np.savetxt(temp_pos, np.c_[src[0]['rr'][v], src[0]['nn'][v]])
# let's try the spherical one (no bem or surf supplied)
run_subprocess(['mne_volume_source_space', '--meters',
'--pos', temp_pos, '--src', temp_name])
src_c = read_source_spaces(temp_name)
pos_dict = dict(rr=src[0]['rr'][v], nn=src[0]['nn'][v])
src_new = setup_volume_source_space('sample', None,
pos=pos_dict,
subjects_dir=subjects_dir)
_compare_source_spaces(src_c, src_new, mode='approx')
assert_allclose(src[0]['rr'][v], src_new[0]['rr'],
rtol=1e-3, atol=1e-6)
assert_allclose(src[0]['nn'][v], src_new[0]['nn'],
rtol=1e-3, atol=1e-6)
# now do writing
write_source_spaces(temp_name, src_c)
src_c2 = read_source_spaces(temp_name)
_compare_source_spaces(src_c, src_c2)
# now do MRI
assert_raises(ValueError, setup_volume_source_space, 'sample',
pos=pos_dict, mri=fname_mri)
finally:
if op.isfile(temp_name):
os.remove(temp_name)
@sample.requires_sample_data
@requires_mne
def test_volume_source_space():
"""Test setting up volume source spaces
"""
fname_vol = op.join(data_path, 'subjects', 'sample', 'bem',
'volume-7mm-src.fif')
src = read_source_spaces(fname_vol)
temp_name = op.join(tempdir, 'temp-src.fif')
try:
# The one in the sample dataset (uses bem as bounds)
src_new = setup_volume_source_space('sample', temp_name, pos=7.0,
bem=fname_bem, mri=fname_mri,
subjects_dir=subjects_dir)
_compare_source_spaces(src, src_new, mode='approx')
src_new = read_source_spaces(temp_name)
_compare_source_spaces(src, src_new, mode='approx')
# let's try the spherical one (no bem or surf supplied)
run_subprocess(['mne_volume_source_space',
'--grid', '15.0',
'--src', temp_name,
'--mri', fname_mri])
src = read_source_spaces(temp_name)
src_new = setup_volume_source_space('sample', temp_name, pos=15.0,
mri=fname_mri,
subjects_dir=subjects_dir)
_compare_source_spaces(src, src_new, mode='approx')
# now without MRI argument, it should give an error when we try
# to read it
run_subprocess(['mne_volume_source_space',
'--grid', '15.0',
'--src', temp_name])
assert_raises(ValueError, read_source_spaces, temp_name)
finally:
if op.isfile(temp_name):
os.remove(temp_name)
@sample.requires_sample_data
def test_triangle_neighbors():
"""Test efficient vertex neighboring triangles for surfaces"""
this = read_source_spaces(fname)[0]
this['neighbor_tri'] = [list() for _ in range(this['np'])]
for p in range(this['ntri']):
verts = this['tris'][p]
this['neighbor_tri'][verts[0]].append(p)
this['neighbor_tri'][verts[1]].append(p)
this['neighbor_tri'][verts[2]].append(p)
this['neighbor_tri'] = [np.array(nb, int) for nb in this['neighbor_tri']]
neighbor_tri = _triangle_neighbors(this['tris'], this['np'])
assert_true(np.array_equal(nt1, nt2)
for nt1, nt2 in zip(neighbor_tri, this['neighbor_tri']))
def test_accumulate_normals():
"""Test efficient normal accumulation for surfaces"""
# set up comparison
rng = np.random.RandomState(0)
n_pts = int(1.6e5) # approx number in sample source space
n_tris = int(3.2e5)
# use all positive to make a worst-case for cumulative summation
# (real "nn" vectors will have both positive and negative values)
tris = (rng.rand(n_tris, 1) * (n_pts - 2)).astype(int)
tris = np.c_[tris, tris + 1, tris + 2]
tri_nn = rng.rand(n_tris, 3)
this = dict(tris=tris, np=n_pts, ntri=n_tris, tri_nn=tri_nn)
# cut-and-paste from original code in surface.py:
# Find neighboring triangles and accumulate vertex normals
this['nn'] = np.zeros((this['np'], 3))
for p in range(this['ntri']):
# vertex normals
verts = this['tris'][p]
this['nn'][verts, :] += this['tri_nn'][p, :]
nn = _accumulate_normals(this['tris'], this['tri_nn'], this['np'])
# the moment of truth (or reckoning)
assert_allclose(nn, this['nn'], rtol=1e-7, atol=1e-7)
@sample.requires_sample_data
def test_setup_source_space():
"""Test setting up ico, oct, and all source spaces
"""
fname_all = op.join(data_path, 'subjects', 'sample', 'bem',
'sample-all-src.fif')
fname_ico = op.join(data_path, 'subjects', 'fsaverage', 'bem',
'fsaverage-ico-5-src.fif')
# first lets test some input params
assert_raises(ValueError, setup_source_space, 'sample', spacing='oct',
add_dist=False)
assert_raises(ValueError, setup_source_space, 'sample', spacing='octo',
add_dist=False)
assert_raises(ValueError, setup_source_space, 'sample', spacing='oct6e',
add_dist=False)
assert_raises(ValueError, setup_source_space, 'sample', spacing='7emm',
add_dist=False)
assert_raises(ValueError, setup_source_space, 'sample', spacing='alls',
add_dist=False)
assert_raises(IOError, setup_source_space, 'sample', spacing='oct6',
subjects_dir=subjects_dir, add_dist=False)
# ico 5 (fsaverage) - write to temp file
src = read_source_spaces(fname_ico)
temp_name = op.join(tempdir, 'temp-src.fif')
with warnings.catch_warnings(record=True): # sklearn equiv neighbors
warnings.simplefilter('always')
src_new = setup_source_space('fsaverage', temp_name, spacing='ico5',
subjects_dir=subjects_dir, add_dist=False,
overwrite=True)
_compare_source_spaces(src, src_new, mode='approx')
# oct-6 (sample) - auto filename + IO
src = read_source_spaces(fname)
temp_name = op.join(tempdir, 'temp-src.fif')
with warnings.catch_warnings(record=True): # sklearn equiv neighbors
warnings.simplefilter('always')
src_new = setup_source_space('sample', temp_name, spacing='oct6',
subjects_dir=subjects_dir,
overwrite=True, add_dist=False)
_compare_source_spaces(src, src_new, mode='approx')
src_new = read_source_spaces(temp_name)
_compare_source_spaces(src, src_new, mode='approx')
# all source points - no file writing
src = read_source_spaces(fname_all)
src_new = setup_source_space('sample', None, spacing='all',
subjects_dir=subjects_dir, add_dist=False)
_compare_source_spaces(src, src_new, mode='approx')
@sample.requires_sample_data
def test_read_source_spaces():
"""Test reading of source space meshes
"""
src = read_source_spaces(fname, add_geom=True)
# 3D source space
lh_points = src[0]['rr']
lh_faces = src[0]['tris']
lh_use_faces = src[0]['use_tris']
rh_points = src[1]['rr']
rh_faces = src[1]['tris']
rh_use_faces = src[1]['use_tris']
assert_true(lh_faces.min() == 0)
assert_true(lh_faces.max() == lh_points.shape[0] - 1)
assert_true(lh_use_faces.min() >= 0)
assert_true(lh_use_faces.max() <= lh_points.shape[0] - 1)
assert_true(rh_faces.min() == 0)
assert_true(rh_faces.max() == rh_points.shape[0] - 1)
assert_true(rh_use_faces.min() >= 0)
assert_true(rh_use_faces.max() <= rh_points.shape[0] - 1)
@sample.requires_sample_data
def test_write_source_space():
"""Test writing and reading of source spaces
"""
src0 = read_source_spaces(fname, add_geom=False)
write_source_spaces(op.join(tempdir, 'tmp-src.fif'), src0)
src1 = read_source_spaces(op.join(tempdir, 'tmp-src.fif'), add_geom=False)
_compare_source_spaces(src0, src1)
# test warnings on bad filenames
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
src_badname = op.join(tempdir, 'test-bad-name.fif.gz')
write_source_spaces(src_badname, src0)
read_source_spaces(src_badname)
print([ww.message for ww in w])
assert_equal(len(w), 2)
def _compare_source_spaces(src0, src1, mode='exact'):
"""Compare two source spaces
Note: this function is also used by forward/tests/test_make_forward.py
"""
for s0, s1 in zip(src0, src1):
for name in ['nuse', 'ntri', 'np', 'type', 'id']:
print(name)
assert_equal(s0[name], s1[name])
for name in ['subject_his_id']:
if name in s0 or name in s1:
print(name)
assert_equal(s0[name], s1[name])
for name in ['interpolator']:
if name in s0 or name in s1:
print(name)
diffs = (s0['interpolator'] - s1['interpolator']).data
if len(diffs) > 0:
assert_true(np.sqrt(np.mean(diffs ** 2)) < 0.05) # 5%
for name in ['nn', 'rr', 'nuse_tri', 'coord_frame', 'tris']:
print(name)
if s0[name] is None:
assert_true(s1[name] is None)
else:
if mode == 'exact':
assert_array_equal(s0[name], s1[name])
elif mode == 'approx':
assert_allclose(s0[name], s1[name], rtol=1e-3, atol=1e-4)
else:
raise RuntimeError('unknown mode')
if mode == 'exact':
for name in ['inuse', 'vertno', 'use_tris']:
assert_array_equal(s0[name], s1[name])
# these fields will exist if patch info was added, these are
# not tested in mode == 'approx'
for name in ['nearest', 'nearest_dist']:
print(name)
if s0[name] is None:
assert_true(s1[name] is None)
else:
assert_array_equal(s0[name], s1[name])
for name in ['dist_limit']:
print(name)
assert_true(s0[name] == s1[name])
for name in ['dist']:
if s0[name] is not None:
assert_equal(s1[name].shape, s0[name].shape)
assert_true(len((s0['dist'] - s1['dist']).data) == 0)
for name in ['pinfo']:
if s0[name] is not None:
assert_true(len(s0[name]) == len(s1[name]))
for p1, p2 in zip(s0[name], s1[name]):
assert_true(all(p1 == p2))
elif mode == 'approx':
# deal with vertno, inuse, and use_tris carefully
assert_array_equal(s0['vertno'], np.where(s0['inuse'])[0])
assert_array_equal(s1['vertno'], np.where(s1['inuse'])[0])
assert_equal(len(s0['vertno']), len(s1['vertno']))
agreement = np.mean(s0['inuse'] == s1['inuse'])
assert_true(agreement > 0.99)
if agreement < 1.0:
# make sure mismatched vertno are within 1.5mm
v0 = np.setdiff1d(s0['vertno'], s1['vertno'])
v1 = np.setdiff1d(s1['vertno'], s0['vertno'])
dists = cdist(s0['rr'][v0], s1['rr'][v1])
assert_allclose(np.min(dists, axis=1), np.zeros(len(v0)),
atol=1.5e-3)
if s0['use_tris'] is not None: # for "spacing"
assert_array_equal(s0['use_tris'].shape, s1['use_tris'].shape)
else:
assert_true(s1['use_tris'] is None)
assert_true(np.mean(s0['use_tris'] == s1['use_tris']) > 0.99)
# The above "if s0[name] is not None" can be removed once the sample
# dataset is updated to have a source space with distance info
for name in ['working_dir', 'command_line']:
if mode == 'exact':
assert_equal(src0.info[name], src1.info[name])
elif mode == 'approx':
print(name)
if name in src0.info:
assert_true(name in src1.info)
else:
assert_true(name not in src1.info)
@sample.requires_sample_data
@requires_fs_or_nibabel
def test_vertex_to_mni():
"""Test conversion of vertices to MNI coordinates
"""
# obtained using "tksurfer (sample/fsaverage) (l/r)h white"
vertices = [100960, 7620, 150549, 96761]
coords_s = np.array([[-60.86, -11.18, -3.19], [-36.46, -93.18, -2.36],
[-38.00, 50.08, -10.61], [47.14, 8.01, 46.93]])
coords_f = np.array([[-41.28, -40.04, 18.20], [-6.05, 49.74, -18.15],
[-61.71, -14.55, 20.52], [21.70, -60.84, 25.02]])
hemis = [0, 0, 0, 1]
for coords, subject in zip([coords_s, coords_f], ['sample', 'fsaverage']):
coords_2 = vertex_to_mni(vertices, hemis, subject, subjects_dir)
# less than 1mm error
assert_allclose(coords, coords_2, atol=1.0)
@sample.requires_sample_data
@requires_freesurfer
@requires_nibabel()
def test_vertex_to_mni_fs_nibabel():
"""Test equivalence of vert_to_mni for nibabel and freesurfer
"""
n_check = 1000
for subject in ['sample', 'fsaverage']:
vertices = np.random.randint(0, 100000, n_check)
hemis = np.random.randint(0, 1, n_check)
coords = vertex_to_mni(vertices, hemis, subject, subjects_dir,
'nibabel')
coords_2 = vertex_to_mni(vertices, hemis, subject, subjects_dir,
'freesurfer')
# less than 0.1 mm error
assert_allclose(coords, coords_2, atol=0.1)
# The following code was used to generate small-src.fif.gz.
# Unfortunately the C code bombs when trying to add source space distances,
# possibly due to incomplete "faking" of a smaller surface on our part here.
"""
# -*- coding: utf-8 -*-
import os
import numpy as np
import mne
data_path = mne.datasets.sample.data_path()
src = mne.setup_source_space('sample', fname=None, spacing='oct5')
hemis = ['lh', 'rh']
fnames = [data_path + '/subjects/sample/surf/%s.decimated' % h for h in hemis]
vs = list()
for s, fname in zip(src, fnames):
coords = s['rr'][s['vertno']]
vs.append(s['vertno'])
idx = -1 * np.ones(len(s['rr']))
idx[s['vertno']] = np.arange(s['nuse'])
faces = s['use_tris']
faces = idx[faces]
mne.write_surface(fname, coords, faces)
# we need to move sphere surfaces
spheres = [data_path + '/subjects/sample/surf/%s.sphere' % h for h in hemis]
for s in spheres:
os.rename(s, s + '.bak')
try:
for s, v in zip(spheres, vs):
coords, faces = mne.read_surface(s + '.bak')
coords = coords[v]
mne.write_surface(s, coords, faces)
src = mne.setup_source_space('sample', fname=None, spacing='oct4',
surface='decimated')
finally:
for s in spheres:
os.rename(s + '.bak', s)
fname = 'small-src.fif'
fname_gz = fname + '.gz'
mne.write_source_spaces(fname, src)
mne.utils.run_subprocess(['mne_add_patch_info', '--src', fname,
'--srcp', fname])
mne.write_source_spaces(fname_gz, mne.read_source_spaces(fname))
"""
|