1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
import numpy as np
from nose.tools import (assert_raises, assert_equal, assert_almost_equal,
assert_true)
from numpy.testing import assert_array_equal
from os import path as op
import warnings
import mne
from mne.io import Raw
from mne.utils import sum_squared
from mne.time_frequency import compute_epochs_csd, induced_power
warnings.simplefilter('always')
base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
raw_fname = op.join(base_dir, 'test_raw.fif')
event_fname = op.join(base_dir, 'test-eve.fif')
def _get_data():
# Read raw data
raw = Raw(raw_fname)
raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bads channels
# Set picks
picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=False,
stim=False, exclude='bads')
# Read several epochs
event_id, tmin, tmax = 1, -0.2, 0.5
events = mne.read_events(event_fname)[0:100]
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
picks=picks, baseline=(None, 0), preload=True,
reject=dict(grad=4000e-13, mag=4e-12))
# Create an epochs object with one epoch and one channel of artificial data
event_id, tmin, tmax = 1, 0.0, 1.0
epochs_sin = mne.Epochs(raw, events[0:5], event_id, tmin, tmax, proj=True,
picks=[0], baseline=(None, 0), preload=True,
reject=dict(grad=4000e-13))
freq = 10
epochs_sin._data = np.sin(2 * np.pi * freq
* epochs_sin.times)[None, None, :]
return epochs, epochs_sin
def test_compute_epochs_csd():
"""Test computing cross-spectral density from epochs
"""
epochs, epochs_sin = _get_data()
# Check that wrong parameters are recognized
assert_raises(ValueError, compute_epochs_csd, epochs, mode='notamode')
assert_raises(ValueError, compute_epochs_csd, epochs, fmin=20, fmax=10)
assert_raises(ValueError, compute_epochs_csd, epochs, fmin=20, fmax=20.1)
assert_raises(ValueError, compute_epochs_csd, epochs, tmin=0.15, tmax=0.1)
assert_raises(ValueError, compute_epochs_csd, epochs, tmin=0, tmax=10)
assert_raises(ValueError, compute_epochs_csd, epochs, tmin=10, tmax=11)
data_csd_mt = compute_epochs_csd(epochs, mode='multitaper', fmin=8,
fmax=12, tmin=0.04, tmax=0.15)
data_csd_fourier = compute_epochs_csd(epochs, mode='fourier', fmin=8,
fmax=12, tmin=0.04, tmax=0.15)
# Check shape of the CSD matrix
n_chan = len(data_csd_mt.ch_names)
assert_equal(data_csd_mt.data.shape, (n_chan, n_chan))
assert_equal(data_csd_fourier.data.shape, (n_chan, n_chan))
# Check if the CSD matrix is hermitian
assert_array_equal(np.tril(data_csd_mt.data).T.conj(),
np.triu(data_csd_mt.data))
assert_array_equal(np.tril(data_csd_fourier.data).T.conj(),
np.triu(data_csd_fourier.data))
# Computing induced power for comparison
epochs.crop(tmin=0.04, tmax=0.15)
with warnings.catch_warnings(record=True): # deprecation
warnings.simplefilter('always')
power, _ = induced_power(epochs.get_data(), epochs.info['sfreq'], [10],
n_cycles=0.6)
power = np.mean(power, 2)
# Maximum PSD should occur for specific channel
max_ch_power = power.argmax()
max_ch_mt = data_csd_mt.data.diagonal().argmax()
max_ch_fourier = data_csd_fourier.data.diagonal().argmax()
assert_equal(max_ch_mt, max_ch_power)
assert_equal(max_ch_fourier, max_ch_power)
# Maximum CSD should occur for specific channel
ch_csd_mt = [np.abs(data_csd_mt.data[max_ch_power][i])
if i != max_ch_power else 0 for i in range(n_chan)]
max_ch_csd_mt = np.argmax(ch_csd_mt)
ch_csd_fourier = [np.abs(data_csd_fourier.data[max_ch_power][i])
if i != max_ch_power else 0 for i in range(n_chan)]
max_ch_csd_fourier = np.argmax(ch_csd_fourier)
assert_equal(max_ch_csd_mt, max_ch_csd_fourier)
# Check a list of CSD matrices is returned for multiple frequencies within
# a given range when fsum=False
csd_fsum = compute_epochs_csd(epochs, mode='fourier', fmin=8, fmax=20,
fsum=True)
csds = compute_epochs_csd(epochs, mode='fourier', fmin=8, fmax=20,
fsum=False)
freqs = [csd.frequencies[0] for csd in csds]
csd_sum = np.zeros_like(csd_fsum.data)
for csd in csds:
csd_sum += csd.data
assert(len(csds) == 2)
assert(len(csd_fsum.frequencies) == 2)
assert_array_equal(csd_fsum.frequencies, freqs)
assert_array_equal(csd_fsum.data, csd_sum)
def test_compute_epochs_csd_on_artificial_data():
"""Test computing CSD on artificial data
"""
epochs, epochs_sin = _get_data()
sfreq = epochs_sin.info['sfreq']
# Computing signal power in the time domain
signal_power = sum_squared(epochs_sin._data)
signal_power_per_sample = signal_power / len(epochs_sin.times)
# Computing signal power in the frequency domain
data_csd_fourier = compute_epochs_csd(epochs_sin, mode='fourier')
data_csd_mt = compute_epochs_csd(epochs_sin, mode='multitaper')
fourier_power = np.abs(data_csd_fourier.data[0, 0]) * sfreq
mt_power = np.abs(data_csd_mt.data[0, 0]) * sfreq
assert_true(abs(fourier_power - signal_power) <= 0.5)
assert_true(abs(mt_power - signal_power) <= 1)
# Power per sample should not depend on time window length
for tmax in [0.2, 0.4, 0.6, 0.8]:
for add_n_fft in [30, 0, 30]:
t_mask = (epochs_sin.times >= 0) & (epochs_sin.times <= tmax)
n_samples = sum(t_mask)
n_fft = n_samples + add_n_fft
data_csd_fourier = compute_epochs_csd(epochs_sin, mode='fourier',
tmin=None, tmax=tmax, fmin=0,
fmax=np.inf, n_fft=n_fft)
fourier_power_per_sample = np.abs(data_csd_fourier.data[0, 0]) *\
sfreq / data_csd_fourier.n_fft
assert_true(abs(signal_power_per_sample -
fourier_power_per_sample) < 0.003)
# Power per sample should not depend on number of tapers
for n_tapers in [1, 2, 3, 5]:
for add_n_fft in [30, 0, 30]:
mt_bandwidth = sfreq / float(n_samples) * (n_tapers + 1)
data_csd_mt = compute_epochs_csd(epochs_sin, mode='multitaper',
tmin=None, tmax=tmax, fmin=0,
fmax=np.inf,
mt_bandwidth=mt_bandwidth,
n_fft=n_fft)
mt_power_per_sample = np.abs(data_csd_mt.data[0, 0]) *\
sfreq / data_csd_mt.n_fft
# The estimate of power gets worse for small time windows when
# more tapers are used
if n_tapers == 5 and tmax == 0.2:
delta = 0.05
else:
delta = 0.004
assert_true(abs(signal_power_per_sample - mt_power_per_sample)
< delta)
|