File: tfr.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (916 lines) | stat: -rw-r--r-- 34,409 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
"""A module which implements the continuous wavelet transform
with complex Morlet wavelets.

Author : Alexandre Gramfort, alexandre.gramfort@telecom-paristech.fr (2011)
License : BSD 3-clause

inspired by Matlab code from Sheraz Khan & Brainstorm & SPM
"""

from math import sqrt
from copy import deepcopy
import numpy as np
from scipy import linalg
from scipy.fftpack import fftn, ifftn

from ..fixes import partial
from ..baseline import rescale
from ..parallel import parallel_func
from ..utils import logger, verbose
from ..channels import ContainsMixin, PickDropChannelsMixin
from ..io.pick import pick_info, pick_types
from ..utils import deprecated


def morlet(Fs, freqs, n_cycles=7, sigma=None, zero_mean=False):
    """Compute Wavelets for the given frequency range

    Parameters
    ----------
    Fs : float
        Sampling Frequency
    freqs : array
        frequency range of interest (1 x Frequencies)
    n_cycles: float | array of float
        Number of cycles. Fixed number or one per frequency.
    sigma : float, (optional)
        It controls the width of the wavelet ie its temporal
        resolution. If sigma is None the temporal resolution
        is adapted with the frequency like for all wavelet transform.
        The higher the frequency the shorter is the wavelet.
        If sigma is fixed the temporal resolution is fixed
        like for the short time Fourier transform and the number
        of oscillations increases with the frequency.
    zero_mean : bool
        Make sure the wavelet is zero mean

    Returns
    -------
    Ws : list of array
        Wavelets time series
    """
    Ws = list()
    n_cycles = np.atleast_1d(n_cycles)
    if (n_cycles.size != 1) and (n_cycles.size != len(freqs)):
        raise ValueError("n_cycles should be fixed or defined for "
                         "each frequency.")
    for k, f in enumerate(freqs):
        if len(n_cycles) != 1:
            this_n_cycles = n_cycles[k]
        else:
            this_n_cycles = n_cycles[0]
        # fixed or scale-dependent window
        if sigma is None:
            sigma_t = this_n_cycles / (2.0 * np.pi * f)
        else:
            sigma_t = this_n_cycles / (2.0 * np.pi * sigma)
        # this scaling factor is proportional to (Tallon-Baudry 98):
        # (sigma_t*sqrt(pi))^(-1/2);
        t = np.arange(0, 5 * sigma_t, 1.0 / Fs)
        t = np.r_[-t[::-1], t[1:]]
        oscillation = np.exp(2.0 * 1j * np.pi * f * t)
        gaussian_enveloppe = np.exp(-t ** 2 / (2.0 * sigma_t ** 2))
        if zero_mean:  # to make it zero mean
            real_offset = np.exp(- 2 * (np.pi * f * sigma_t) ** 2)
            oscillation -= real_offset
        W = oscillation * gaussian_enveloppe
        W /= sqrt(0.5) * linalg.norm(W.ravel())
        Ws.append(W)
    return Ws


def _centered(arr, newsize):
    """Aux Function to center data"""
    # Return the center newsize portion of the array.
    newsize = np.asarray(newsize)
    currsize = np.array(arr.shape)
    startind = (currsize - newsize) // 2
    endind = startind + newsize
    myslice = [slice(startind[k], endind[k]) for k in range(len(endind))]
    return arr[tuple(myslice)]


def _cwt_fft(X, Ws, mode="same"):
    """Compute cwt with fft based convolutions
    Return a generator over signals.
    """
    X = np.asarray(X)

    # Precompute wavelets for given frequency range to save time
    n_signals, n_times = X.shape
    n_freqs = len(Ws)

    Ws_max_size = max(W.size for W in Ws)
    size = n_times + Ws_max_size - 1
    # Always use 2**n-sized FFT
    fsize = 2 ** int(np.ceil(np.log2(size)))

    # precompute FFTs of Ws
    fft_Ws = np.empty((n_freqs, fsize), dtype=np.complex128)
    for i, W in enumerate(Ws):
        if len(W) > n_times:
            raise ValueError('Wavelet is too long for such a short signal. '
                             'Reduce the number of cycles.')
        fft_Ws[i] = fftn(W, [fsize])

    for k, x in enumerate(X):
        if mode == "full":
            tfr = np.zeros((n_freqs, fsize), dtype=np.complex128)
        elif mode == "same" or mode == "valid":
            tfr = np.zeros((n_freqs, n_times), dtype=np.complex128)

        fft_x = fftn(x, [fsize])
        for i, W in enumerate(Ws):
            ret = ifftn(fft_x * fft_Ws[i])[:n_times + W.size - 1]
            if mode == "valid":
                sz = abs(W.size - n_times) + 1
                offset = (n_times - sz) / 2
                tfr[i, offset:(offset + sz)] = _centered(ret, sz)
            else:
                tfr[i, :] = _centered(ret, n_times)
        yield tfr


def _cwt_convolve(X, Ws, mode='same'):
    """Compute time freq decomposition with temporal convolutions
    Return a generator over signals.
    """
    X = np.asarray(X)

    n_signals, n_times = X.shape
    n_freqs = len(Ws)

    # Compute convolutions
    for x in X:
        tfr = np.zeros((n_freqs, n_times), dtype=np.complex128)
        for i, W in enumerate(Ws):
            ret = np.convolve(x, W, mode=mode)
            if len(W) > len(x):
                raise ValueError('Wavelet is too long for such a short '
                                 'signal. Reduce the number of cycles.')
            if mode == "valid":
                sz = abs(W.size - n_times) + 1
                offset = (n_times - sz) / 2
                tfr[i, offset:(offset + sz)] = ret
            else:
                tfr[i] = ret
        yield tfr


def cwt_morlet(X, Fs, freqs, use_fft=True, n_cycles=7.0, zero_mean=False):
    """Compute time freq decomposition with Morlet wavelets

    Parameters
    ----------
    X : array of shape [n_signals, n_times]
        signals (one per line)
    Fs : float
        sampling Frequency
    freqs : array
        Array of frequencies of interest
    use_fft : bool
        Compute convolution with FFT or temoral convolution.
    n_cycles: float | array of float
        Number of cycles. Fixed number or one per frequency.
    zero_mean : bool
        Make sure the wavelets are zero mean.

    Returns
    -------
    tfr : 3D array
        Time Frequency Decompositions (n_signals x n_frequencies x n_times)
    """
    mode = 'same'
    # mode = "valid"
    n_signals, n_times = X.shape
    n_frequencies = len(freqs)

    # Precompute wavelets for given frequency range to save time
    Ws = morlet(Fs, freqs, n_cycles=n_cycles, zero_mean=zero_mean)

    if use_fft:
        coefs = _cwt_fft(X, Ws, mode)
    else:
        coefs = _cwt_convolve(X, Ws, mode)

    tfrs = np.empty((n_signals, n_frequencies, n_times), dtype=np.complex)
    for k, tfr in enumerate(coefs):
        tfrs[k] = tfr

    return tfrs


def cwt(X, Ws, use_fft=True, mode='same', decim=1):
    """Compute time freq decomposition with continuous wavelet transform

    Parameters
    ----------
    X : array of shape [n_signals, n_times]
        signals (one per line)
    Ws : list of array
        Wavelets time series
    use_fft : bool
        Use FFT for convolutions
    mode : 'same' | 'valid' | 'full'
        Convention for convolution
    decim : int
        Temporal decimation factor

    Returns
    -------
    tfr : 3D array
        Time Frequency Decompositions (n_signals x n_frequencies x n_times)
    """
    n_signals, n_times = X[:, ::decim].shape
    n_frequencies = len(Ws)

    if use_fft:
        coefs = _cwt_fft(X, Ws, mode)
    else:
        coefs = _cwt_convolve(X, Ws, mode)

    tfrs = np.empty((n_signals, n_frequencies, n_times), dtype=np.complex)
    for k, tfr in enumerate(coefs):
        tfrs[k] = tfr[..., ::decim]

    return tfrs


def _time_frequency(X, Ws, use_fft):
    """Aux of time_frequency for parallel computing over channels
    """
    n_epochs, n_times = X.shape
    n_frequencies = len(Ws)
    psd = np.zeros((n_frequencies, n_times))  # PSD
    plf = np.zeros((n_frequencies, n_times), dtype=np.complex)  # phase lock

    mode = 'same'
    if use_fft:
        tfrs = _cwt_fft(X, Ws, mode)
    else:
        tfrs = _cwt_convolve(X, Ws, mode)

    for tfr in tfrs:
        tfr_abs = np.abs(tfr)
        psd += tfr_abs ** 2
        plf += tfr / tfr_abs

    return psd, plf


@verbose
def single_trial_power(data, Fs, frequencies, use_fft=True, n_cycles=7,
                       baseline=None, baseline_mode='ratio', times=None,
                       decim=1, n_jobs=1, zero_mean=False, verbose=None):
    """Compute time-frequency power on single epochs

    Parameters
    ----------
    data : array of shape [n_epochs, n_channels, n_times]
        The epochs
    Fs : float
        Sampling rate
    frequencies : array-like
        The frequencies
    use_fft : bool
        Use the FFT for convolutions or not.
    n_cycles : float | array of float
        Number of cycles  in the Morlet wavelet. Fixed number
        or one per frequency.
    baseline : None (default) or tuple of length 2
        The time interval to apply baseline correction.
        If None do not apply it. If baseline is (a, b)
        the interval is between "a (s)" and "b (s)".
        If a is None the beginning of the data is used
        and if b is None then b is set to the end of the interval.
        If baseline is equal ot (None, None) all the time
        interval is used.
    baseline_mode : None | 'ratio' | 'zscore'
        Do baseline correction with ratio (power is divided by mean
        power during baseline) or zscore (power is divided by standard
        deviation of power during baseline after subtracting the mean,
        power = [power - mean(power_baseline)] / std(power_baseline))
    times : array
        Required to define baseline
    decim : int
        Temporal decimation factor
    n_jobs : int
        The number of epochs to process at the same time
    zero_mean : bool
        Make sure the wavelets are zero mean.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    power : 4D array
        Power estimate (Epochs x Channels x Frequencies x Timepoints).
    """
    mode = 'same'
    n_frequencies = len(frequencies)
    n_epochs, n_channels, n_times = data[:, :, ::decim].shape

    # Precompute wavelets for given frequency range to save time
    Ws = morlet(Fs, frequencies, n_cycles=n_cycles, zero_mean=zero_mean)

    parallel, my_cwt, _ = parallel_func(cwt, n_jobs)

    logger.info("Computing time-frequency power on single epochs...")

    power = np.empty((n_epochs, n_channels, n_frequencies, n_times),
                     dtype=np.float)

    # Package arguments for `cwt` here to minimize omissions where only one of
    # the two calls below is updated with new function arguments.
    cwt_kw = dict(Ws=Ws, use_fft=use_fft, mode=mode, decim=decim)
    if n_jobs == 1:
        for k, e in enumerate(data):
            power[k] = np.abs(cwt(e, **cwt_kw)) ** 2
    else:
        # Precompute tf decompositions in parallel
        tfrs = parallel(my_cwt(e, **cwt_kw) for e in data)
        for k, tfr in enumerate(tfrs):
            power[k] = np.abs(tfr) ** 2

    # Run baseline correction.  Be sure to decimate the times array as well if
    # needed.
    if times is not None:
        times = times[::decim]
    power = rescale(power, times, baseline, baseline_mode, copy=False)
    return power


def _induced_power(data, Fs, frequencies, use_fft=True, n_cycles=7,
                   decim=1, n_jobs=1, zero_mean=False):
    """Compute time induced power and inter-trial phase-locking factor

    The time frequency decomposition is done with Morlet wavelets

    Parameters
    ----------
    data : array
        3D array of shape [n_epochs, n_channels, n_times]
    Fs : float
        sampling Frequency
    frequencies : array
        Array of frequencies of interest
    use_fft : bool
        Compute transform with fft based convolutions or temporal
        convolutions.
    n_cycles : float | array of float
        Number of cycles. Fixed number or one per frequency.
    decim: int
        Temporal decimation factor
    n_jobs : int
        The number of CPUs used in parallel. All CPUs are used in -1.
        Requires joblib package.
    zero_mean : bool
        Make sure the wavelets are zero mean.

    Returns
    -------
    power : 2D array
        Induced power (Channels x Frequencies x Timepoints).
        Squared amplitude of time-frequency coefficients.
    phase_lock : 2D array
        Phase locking factor in [0, 1] (Channels x Frequencies x Timepoints)
    """
    n_frequencies = len(frequencies)
    n_epochs, n_channels, n_times = data[:, :, ::decim].shape

    # Precompute wavelets for given frequency range to save time
    Ws = morlet(Fs, frequencies, n_cycles=n_cycles, zero_mean=zero_mean)

    if n_jobs == 1:
        psd = np.empty((n_channels, n_frequencies, n_times))
        plf = np.empty((n_channels, n_frequencies, n_times), dtype=np.complex)

        for c in range(n_channels):
            X = data[:, c, :]
            this_psd, this_plf = _time_frequency(X, Ws, use_fft)
            psd[c], plf[c] = this_psd[:, ::decim], this_plf[:, ::decim]
    else:
        parallel, my_time_frequency, _ = parallel_func(_time_frequency, n_jobs)

        psd_plf = parallel(my_time_frequency(np.squeeze(data[:, c, :]),
                                             Ws, use_fft)
                           for c in range(n_channels))

        psd = np.zeros((n_channels, n_frequencies, n_times))
        plf = np.zeros((n_channels, n_frequencies, n_times), dtype=np.complex)
        for c, (psd_c, plf_c) in enumerate(psd_plf):
            psd[c, :, :], plf[c, :, :] = psd_c[:, ::decim], plf_c[:, ::decim]

    psd /= n_epochs
    plf = np.abs(plf) / n_epochs
    return psd, plf


@deprecated("induced_power will be removed in release 0.9. Use "
            "tfr_morlet instead.")
def induced_power(data, Fs, frequencies, use_fft=True, n_cycles=7,
                  decim=1, n_jobs=1, zero_mean=False):
    """Compute time induced power and inter-trial phase-locking factor

    The time frequency decomposition is done with Morlet wavelets

    Parameters
    ----------
    data : array
        3D array of shape [n_epochs, n_channels, n_times]
    Fs : float
        sampling Frequency
    frequencies : array
        Array of frequencies of interest
    use_fft : bool
        Compute transform with fft based convolutions or temporal
        convolutions.
    n_cycles : float | array of float
        Number of cycles. Fixed number or one per frequency.
    decim: int
        Temporal decimation factor
    n_jobs : int
        The number of CPUs used in parallel. All CPUs are used in -1.
        Requires joblib package.
    zero_mean : bool
        Make sure the wavelets are zero mean.

    Returns
    -------
    power : 2D array
        Induced power (Channels x Frequencies x Timepoints).
        Squared amplitude of time-frequency coefficients.
    phase_lock : 2D array
        Phase locking factor in [0, 1] (Channels x Frequencies x Timepoints)
    """
    return _induced_power(data, Fs, frequencies, use_fft=use_fft,
                          n_cycles=n_cycles, decim=decim, n_jobs=n_jobs,
                          zero_mean=zero_mean)


def _preproc_tfr(data, times, freqs, tmin, tmax, fmin, fmax, mode,
                 baseline, vmin, vmax, dB):
    """Aux Function to prepare tfr computation"""
    from ..viz.utils import _setup_vmin_vmax

    if mode is not None and baseline is not None:
        logger.info("Applying baseline correction '%s' during %s" %
                    (mode, baseline))
        data = rescale(data.copy(), times, baseline, mode)

    # crop time
    itmin, itmax = None, None
    if tmin is not None:
        itmin = np.where(times >= tmin)[0][0]
    if tmax is not None:
        itmax = np.where(times <= tmax)[0][-1]

    times = times[itmin:itmax]

    # crop freqs
    ifmin, ifmax = None, None
    if fmin is not None:
        ifmin = np.where(freqs >= fmin)[0][0]
    if fmax is not None:
        ifmax = np.where(freqs <= fmax)[0][-1]

    freqs = freqs[ifmin:ifmax]

    # crop data
    data = data[:, ifmin:ifmax, itmin:itmax]

    times *= 1e3
    if dB:
        data = 20 * np.log10(data)

    vmin, vmax = _setup_vmin_vmax(data, vmin, vmax)
    return data, times, freqs, vmin, vmax


# XXX : todo IO of TFRs
class AverageTFR(ContainsMixin, PickDropChannelsMixin):
    """Container for Time-Frequency data

    Can for example store induced power at sensor level or intertrial
    coherence.

    Parameters
    ----------
    info : Info
        The measurement info.
    data : ndarray, shape (n_channels, n_freqs, n_times)
        The data.
    times : ndarray, shape (n_times,)
        The time values in seconds.
    freqs : ndarray, shape (n_freqs,)
        The frequencies in Hz.
    nave : int
        The number of averaged TFRs.

    Attributes
    ----------
    ch_names : list
        The names of the channels.
    """
    @verbose
    def __init__(self, info, data, times, freqs, nave, verbose=None):
        self.info = info
        if data.ndim != 3:
            raise ValueError('data should be 3d. Got %d.' % data.ndim)
        n_channels, n_freqs, n_times = data.shape
        if n_channels != len(info['chs']):
            raise ValueError("Number of channels and data size don't match"
                             " (%d != %d)." % (n_channels, len(info['chs'])))
        if n_freqs != len(freqs):
            raise ValueError("Number of frequencies and data size don't match"
                             " (%d != %d)." % (n_freqs, len(freqs)))
        if n_times != len(times):
            raise ValueError("Number of times and data size don't match"
                             " (%d != %d)." % (n_times, len(times)))
        self.data = data
        self.times = times
        self.freqs = freqs
        self.nave = nave

    @property
    def ch_names(self):
        return self.info['ch_names']

    @verbose
    def plot(self, picks, baseline=None, mode='mean', tmin=None, tmax=None,
             fmin=None, fmax=None, vmin=None, vmax=None, cmap='RdBu_r',
             dB=False, colorbar=True, show=True, verbose=None):
        """Plot TFRs in a topography with images

        Parameters
        ----------
        picks : array-like of int
            The indices of the channels to plot.
        baseline : None (default) or tuple of length 2
            The time interval to apply baseline correction.
            If None do not apply it. If baseline is (a, b)
            the interval is between "a (s)" and "b (s)".
            If a is None the beginning of the data is used
            and if b is None then b is set to the end of the interval.
            If baseline is equal ot (None, None) all the time
            interval is used.
        mode : None | 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent'
            Do baseline correction with ratio (power is divided by mean
            power during baseline) or zscore (power is divided by standard
            deviation of power during baseline after subtracting the mean,
            power = [power - mean(power_baseline)] / std(power_baseline)).
            If None no baseline correction is applied.
        tmin : None | float
            The first time instant to display. If None the first time point
            available is used.
        tmax : None | float
            The last time instant to display. If None the last time point
            available is used.
        fmin : None | float
            The first frequency to display. If None the first frequency
            available is used.
        fmax : None | float
            The last frequency to display. If None the last frequency
            available is used.
        vmin : float | None
            The mininum value an the color scale. If vmin is None, the data
            minimum value is used.
        vmax : float | None
            The maxinum value an the color scale. If vmax is None, the data
            maximum value is used.
        layout : Layout | None
            Layout instance specifying sensor positions. If possible, the
            correct layout is inferred from the data.
        cmap : matplotlib colormap | str
            The colormap to use. Defaults to 'RdBu_r'.
        dB : bool
            If True, 20*log10 is applied to the data to get dB.
        colorbar : bool
            If true, colorbar will be added to the plot
        layout_scale : float
            Scaling factor for adjusting the relative size of the layout
            on the canvas
        show : bool
            Call pyplot.show() at the end.
        verbose : bool, str, int, or None
            If not None, override default verbose level (see mne.verbose).
        """
        from ..viz.topo import _imshow_tfr
        import matplotlib.pyplot as plt
        times, freqs = self.times.copy(), self.freqs.copy()
        data = self.data[picks]

        data, times, freqs, vmin, vmax = \
            _preproc_tfr(data, times, freqs, tmin, tmax, fmin, fmax, mode,
                         baseline, vmin, vmax, dB)

        tmin, tmax = times[0], times[-1]

        for k, p in zip(range(len(data)), picks):
            plt.figure()
            _imshow_tfr(plt, 0, tmin, tmax, vmin, vmax, ylim=None,
                        tfr=data[k: k + 1], freq=freqs, x_label='Time (ms)',
                        y_label='Frequency (Hz)', colorbar=colorbar,
                        picker=False, cmap=cmap)

        if show:
            import matplotlib.pyplot as plt
            plt.show()

    def plot_topo(self, picks=None, baseline=None, mode='mean', tmin=None,
                  tmax=None, fmin=None, fmax=None, vmin=None, vmax=None,
                  layout=None, cmap='RdBu_r', title=None, dB=False,
                  colorbar=True, layout_scale=0.945, show=True):
        """Plot TFRs in a topography with images

        Parameters
        ----------
        picks : array-like of int | None
            The indices of the channels to plot. If None all available
            channels are displayed.
        baseline : None (default) or tuple of length 2
            The time interval to apply baseline correction.
            If None do not apply it. If baseline is (a, b)
            the interval is between "a (s)" and "b (s)".
            If a is None the beginning of the data is used
            and if b is None then b is set to the end of the interval.
            If baseline is equal ot (None, None) all the time
            interval is used.
        mode : None | 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent'
            Do baseline correction with ratio (power is divided by mean
            power during baseline) or zscore (power is divided by standard
            deviation of power during baseline after subtracting the mean,
            power = [power - mean(power_baseline)] / std(power_baseline)).
            If None no baseline correction is applied.
        tmin : None | float
            The first time instant to display. If None the first time point
            available is used.
        tmax : None | float
            The last time instant to display. If None the last time point
            available is used.
        fmin : None | float
            The first frequency to display. If None the first frequency
            available is used.
        fmax : None | float
            The last frequency to display. If None the last frequency
            available is used.
        vmin : float | None
            The mininum value an the color scale. If vmin is None, the data
            minimum value is used.
        vmax : float | None
            The maxinum value an the color scale. If vmax is None, the data
            maximum value is used.
        layout : Layout | None
            Layout instance specifying sensor positions. If possible, the
            correct layout is inferred from the data.
        cmap : matplotlib colormap | str
            The colormap to use. Defaults to 'RdBu_r'.
        title : str
            Title of the figure.
        dB : bool
            If True, 20*log10 is applied to the data to get dB.
        colorbar : bool
            If true, colorbar will be added to the plot
        layout_scale : float
            Scaling factor for adjusting the relative size of the layout
            on the canvas.
        show : bool
            Call pyplot.show() at the end.
        verbose : bool, str, int, or None
            If not None, override default verbose level (see mne.verbose).
        """
        from ..viz.topo import _imshow_tfr, _plot_topo
        times = self.times.copy()
        freqs = self.freqs
        data = self.data
        info = self.info

        if picks is not None:
            data = data[picks]
            info = pick_info(info, picks)

        data, times, freqs, vmin, vmax = \
            _preproc_tfr(data, times, freqs, tmin, tmax, fmin, fmax,
                         mode, baseline, vmin, vmax, dB)

        if layout is None:
            from mne.layouts.layout import find_layout
            layout = find_layout(self.info)

        imshow = partial(_imshow_tfr, tfr=data, freq=freqs, cmap=cmap)

        fig = _plot_topo(info=info, times=times,
                         show_func=imshow, layout=layout,
                         colorbar=colorbar, vmin=vmin, vmax=vmax, cmap=cmap,
                         layout_scale=layout_scale, title=title, border='w',
                         x_label='Time (ms)', y_label='Frequency (Hz)')

        if show:
            import matplotlib.pyplot as plt
            plt.show()

        return fig

    def _check_compat(self, tfr):
        """checks that self and tfr have the same time-frequency ranges"""
        assert np.all(tfr.times == self.times)
        assert np.all(tfr.freqs == self.freqs)

    def __add__(self, tfr):
        self._check_compat(tfr)
        out = self.copy()
        out.data += tfr.data
        return out

    def __iadd__(self, tfr):
        self._check_compat(tfr)
        self.data += tfr.data
        return self

    def __sub__(self, tfr):
        self._check_compat(tfr)
        out = self.copy()
        out.data -= tfr.data
        return out

    def __isub__(self, tfr):
        self._check_compat(tfr)
        self.data -= tfr.data
        return self

    def copy(self):
        """Return a copy of the instance."""
        return deepcopy(self)

    def __repr__(self):
        s = "time : [%f, %f]" % (self.times[0], self.times[-1])
        s += ", freq : [%f, %f]" % (self.freqs[0], self.freqs[-1])
        s += ", nave : %d" % self.nave
        s += ', channels : %d' % self.data.shape[1]
        return "<AverageTFR  |  %s>" % s

    def apply_baseline(self, baseline, mode='mean'):
        """Baseline correct the data

        Parameters
        ----------
        baseline : tuple or list of length 2
            The time interval to apply rescaling / baseline correction.
            If None do not apply it. If baseline is (a, b)
            the interval is between "a (s)" and "b (s)".
            If a is None the beginning of the data is used
            and if b is None then b is set to the end of the interval.
            If baseline is equal to (None, None) all the time
            interval is used.
        mode : 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent'
            Do baseline correction with ratio (power is divided by mean
            power during baseline) or z-score (power is divided by standard
            deviation of power during baseline after subtracting the mean,
            power = [power - mean(power_baseline)] / std(power_baseline))
            If None, baseline no correction will be performed.
        """
        self.data = rescale(self.data, self.times, baseline, mode, copy=False)

    def plot_topomap(self, tmin=None, tmax=None, fmin=None, fmax=None,
                     ch_type='mag', baseline=None, mode='mean',
                     layout=None, vmin=None, vmax=None, cmap='RdBu_r',
                     sensors='k,', colorbar=True, unit=None, res=64, size=2,
                     format='%1.1e', show_names=False, title=None,
                     axes=None, show=True):
        """Plot topographic maps of time-frequency intervals of TFR data

        Parameters
        ----------
        tfr : AvereageTFR
            The AvereageTFR object.
        tmin : None | float
            The first time instant to display. If None the first time point
            available is used.
        tmax : None | float
            The last time instant to display. If None the last time point
            available is used.
        fmin : None | float
            The first frequency to display. If None the first frequency
            available is used.
        fmax : None | float
            The last frequency to display. If None the last frequency
            available is used.
        ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg'
            The channel type to plot. For 'grad', the gradiometers are
            collected in pairs and the RMS for each pair is plotted.
        baseline : tuple or list of length 2
            The time interval to apply rescaling / baseline correction.
            If None do not apply it. If baseline is (a, b)
            the interval is between "a (s)" and "b (s)".
            If a is None the beginning of the data is used
            and if b is None then b is set to the end of the interval.
            If baseline is equal to (None, None) all the time
            interval is used.
        mode : 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent'
            Do baseline correction with ratio (power is divided by mean
            power during baseline) or z-score (power is divided by standard
            deviation of power during baseline after subtracting the mean,
            power = [power - mean(power_baseline)] / std(power_baseline))
            If None, baseline no correction will be performed.
        layout : None | Layout
            Layout instance specifying sensor positions (does not need to
            be specified for Neuromag data). If possible, the correct layout
            file is inferred from the data; if no appropriate layout file was
            found, the layout is automatically generated from the sensor
            locations.
        vmin : float | callable
            The value specfying the lower bound of the color range.
            If None, and vmax is None, -vmax is used. Else np.min(data).
            If callable, the output equals vmin(data).
        vmax : float | callable
            The value specfying the upper bound of the color range.
            If None, the maximum absolute value is used. If vmin is None,
            but vmax is not, defaults to np.min(data).
            If callable, the output equals vmax(data).
        cmap : matplotlib colormap
            Colormap. For magnetometers and eeg defaults to 'RdBu_r', else
            'Reds'.
        sensors : bool | str
            Add markers for sensor locations to the plot. Accepts matplotlib
            plot format string (e.g., 'r+' for red plusses).
        colorbar : bool
            Plot a colorbar.
        unit : str | None
            The unit of the channel type used for colorbar labels.
        res : int
            The resolution of the topomap image (n pixels along each side).
        size : float
            Side length per topomap in inches.
        format : str
            String format for colorbar values.
        show_names : bool | callable
            If True, show channel names on top of the map. If a callable is
            passed, channel names will be formatted using the callable; e.g.,
            to delete the prefix 'MEG ' from all channel names, pass the
            function lambda x: x.replace('MEG ', ''). If `mask` is not None,
            only significant sensors will be shown.
        title : str | None
            Title. If None (default), no title is displayed.
        axes : instance of Axes | None
            The axes to plot to. If None the axes is defined automatically.
        show : bool
            Call pyplot.show() at the end.

        Returns
        -------
        fig : matplotlib.figure.Figure
            The figure containing the topography.
        """
        from ..viz import plot_tfr_topomap
        return plot_tfr_topomap(self, tmin=tmin, tmax=tmax, fmin=fmin,
                                fmax=fmax, ch_type=ch_type, baseline=baseline,
                                mode=mode, layout=layout, vmin=vmin, vmax=vmax,
                                cmap=cmap, sensors=sensors, colorbar=colorbar,
                                unit=unit, res=res, size=size, format=format,
                                show_names=show_names, title=title, axes=axes,
                                show=show)


def tfr_morlet(epochs, freqs, n_cycles, use_fft=False,
               return_itc=True, decim=1, n_jobs=1):
    """Compute Time-Frequency Representation (TFR) using Morlet wavelets

    Parameters
    ----------
    epochs : Epochs
        The epochs.
    freqs : ndarray, shape (n_freqs,)
        The frequencies in Hz.
    n_cycles : float | ndarray, shape (n_freqs,)
        The number of cycles globally or for each frequency.
    use_fft : bool
        The fft based convolution or not.
    return_itc : bool
        Return intertrial coherence (ITC) as well as averaged power.
    decim : int
        The decimation factor on the time axis. To reduce memory usage.
    n_jobs : int
        The number of jobs to run in parallel.

    Returns
    -------
    power : AverageTFR
        The averaged power.
    itc : AverageTFR
        The intertrial coherence (ITC). Only returned if return_itc
        is True.
    """
    data = epochs.get_data()
    picks = pick_types(epochs.info, meg=True, eeg=True)
    info = pick_info(epochs.info, picks)
    data = data[:, picks, :]
    power, itc = _induced_power(data, Fs=info['sfreq'], frequencies=freqs,
                                n_cycles=n_cycles, n_jobs=n_jobs,
                                use_fft=use_fft, decim=decim,
                                zero_mean=True)
    times = epochs.times[::decim].copy()
    nave = len(data)
    out = AverageTFR(info, power, times, freqs, nave)
    if return_itc:
        out = (out, AverageTFR(info, itc, times, freqs, nave))
    return out