1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
|
"""Functions to make 3D plots with M/EEG data
"""
from __future__ import print_function
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Denis Engemann <denis.engemann@gmail.com>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Eric Larson <larson.eric.d@gmail.com>
# Mainak Jas <mainak@neuro.hut.fi>
#
# License: Simplified BSD
from ..externals.six import string_types, advance_iterator
from distutils.version import LooseVersion
import os
import inspect
import warnings
from itertools import cycle
import numpy as np
from scipy import linalg
from ..io.pick import pick_types
from ..surface import get_head_surf, get_meg_helmet_surf, read_surface
from ..transforms import read_trans, _find_trans, apply_trans
from ..utils import get_subjects_dir, logger, _check_subject
from .utils import mne_analyze_colormap, _prepare_trellis, COLORS
def plot_evoked_field(evoked, surf_maps, time=None, time_label='t = %0.0f ms',
n_jobs=1):
"""Plot MEG/EEG fields on head surface and helmet in 3D
Parameters
----------
evoked : instance of mne.Evoked
The evoked object.
surf_maps : list
The surface mapping information obtained with make_field_map.
time : float | None
The time point at which the field map shall be displayed. If None,
the average peak latency (across sensor types) is used.
time_label : str
How to print info about the time instant visualized.
n_jobs : int
Number of jobs to run in parallel.
Returns
-------
fig : instance of mlab.Figure
The mayavi figure.
"""
types = [t for t in ['eeg', 'grad', 'mag'] if t in evoked]
time_idx = None
if time is None:
time = np.mean([evoked.get_peak(ch_type=t)[1] for t in types])
if not evoked.times[0] <= time <= evoked.times[-1]:
raise ValueError('`time` (%0.3f) must be inside `evoked.times`' % time)
time_idx = np.argmin(np.abs(evoked.times - time))
types = [sm['kind'] for sm in surf_maps]
# Plot them
from mayavi import mlab
alphas = [1.0, 0.5]
colors = [(0.6, 0.6, 0.6), (1.0, 1.0, 1.0)]
colormap = mne_analyze_colormap(format='mayavi')
colormap_lines = np.concatenate([np.tile([0., 0., 255., 255.], (127, 1)),
np.tile([0., 0., 0., 255.], (2, 1)),
np.tile([255., 0., 0., 255.], (127, 1))])
fig = mlab.figure(bgcolor=(0.0, 0.0, 0.0), size=(600, 600))
for ii, this_map in enumerate(surf_maps):
surf = this_map['surf']
map_data = this_map['data']
map_type = this_map['kind']
map_ch_names = this_map['ch_names']
if map_type == 'eeg':
pick = pick_types(evoked.info, meg=False, eeg=True)
else:
pick = pick_types(evoked.info, meg=True, eeg=False, ref_meg=False)
ch_names = [evoked.ch_names[k] for k in pick]
set_ch_names = set(ch_names)
set_map_ch_names = set(map_ch_names)
if set_ch_names != set_map_ch_names:
message = ['Channels in map and data do not match.']
diff = set_map_ch_names - set_ch_names
if len(diff):
message += ['%s not in data file. ' % list(diff)]
diff = set_ch_names - set_map_ch_names
if len(diff):
message += ['%s not in map file.' % list(diff)]
raise RuntimeError(' '.join(message))
data = np.dot(map_data, evoked.data[pick, time_idx])
x, y, z = surf['rr'].T
nn = surf['nn']
# make absolutely sure these are normalized for Mayavi
nn = nn / np.sum(nn * nn, axis=1)[:, np.newaxis]
# Make a solid surface
vlim = np.max(np.abs(data))
alpha = alphas[ii]
with warnings.catch_warnings(record=True): # traits
mesh = mlab.pipeline.triangular_mesh_source(x, y, z, surf['tris'])
mesh.data.point_data.normals = nn
mesh.data.cell_data.normals = None
mlab.pipeline.surface(mesh, color=colors[ii], opacity=alpha)
# Now show our field pattern
with warnings.catch_warnings(record=True): # traits
mesh = mlab.pipeline.triangular_mesh_source(x, y, z, surf['tris'],
scalars=data)
mesh.data.point_data.normals = nn
mesh.data.cell_data.normals = None
with warnings.catch_warnings(record=True): # traits
fsurf = mlab.pipeline.surface(mesh, vmin=-vlim, vmax=vlim)
fsurf.module_manager.scalar_lut_manager.lut.table = colormap
# And the field lines on top
with warnings.catch_warnings(record=True): # traits
mesh = mlab.pipeline.triangular_mesh_source(x, y, z, surf['tris'],
scalars=data)
mesh.data.point_data.normals = nn
mesh.data.cell_data.normals = None
with warnings.catch_warnings(record=True): # traits
cont = mlab.pipeline.contour_surface(mesh, contours=21,
line_width=1.0,
vmin=-vlim, vmax=vlim,
opacity=alpha)
cont.module_manager.scalar_lut_manager.lut.table = colormap_lines
if '%' in time_label:
time_label %= (1e3 * evoked.times[time_idx])
mlab.text(0.01, 0.01, time_label, width=0.4)
mlab.view(10, 60)
return fig
def _plot_mri_contours(mri_fname, surf_fnames, orientation='coronal',
slices=None, show=True):
"""Plot BEM contours on anatomical slices.
Parameters
----------
mri_fname : str
The name of the file containing anatomical data.
surf_fnames : list of str
The filenames for the BEM surfaces in the format
['inner_skull.surf', 'outer_skull.surf', 'outer_skin.surf'].
orientation : str
'coronal' or 'transverse' or 'sagittal'
slices : list of int
Slice indices.
show : bool
Call pyplot.show() at the end.
Returns
-------
fig : Instance of matplotlib.figure.Figure
The figure.
"""
import matplotlib.pyplot as plt
import nibabel as nib
if orientation not in ['coronal', 'axial', 'sagittal']:
raise ValueError("Orientation must be 'coronal', 'axial' or "
"'sagittal'. Got %s." % orientation)
# Load the T1 data
nim = nib.load(mri_fname)
data = nim.get_data()
affine = nim.get_affine()
n_sag, n_axi, n_cor = data.shape
orientation_name2axis = dict(sagittal=0, axial=1, coronal=2)
orientation_axis = orientation_name2axis[orientation]
if slices is None:
n_slices = data.shape[orientation_axis]
slices = np.linspace(0, n_slices, 12, endpoint=False).astype(np.int)
# create of list of surfaces
surfs = list()
trans = linalg.inv(affine)
# XXX : next line is a hack don't ask why
trans[:3, -1] = [n_sag // 2, n_axi // 2, n_cor // 2]
for surf_fname in surf_fnames:
surf = dict()
surf['rr'], surf['tris'] = read_surface(surf_fname)
# move back surface to MRI coordinate system
surf['rr'] = nib.affines.apply_affine(trans, surf['rr'])
surfs.append(surf)
fig, axs = _prepare_trellis(len(slices), 4)
for ax, sl in zip(axs, slices):
# adjust the orientations for good view
if orientation == 'coronal':
dat = data[:, :, sl].transpose()
elif orientation == 'axial':
dat = data[:, sl, :]
elif orientation == 'sagittal':
dat = data[sl, :, :]
# First plot the anatomical data
ax.imshow(dat, cmap=plt.cm.gray)
ax.axis('off')
# and then plot the contours on top
for surf in surfs:
if orientation == 'coronal':
ax.tricontour(surf['rr'][:, 0], surf['rr'][:, 1],
surf['tris'], surf['rr'][:, 2],
levels=[sl], colors='yellow', linewidths=2.0)
elif orientation == 'axial':
ax.tricontour(surf['rr'][:, 2], surf['rr'][:, 0],
surf['tris'], surf['rr'][:, 1],
levels=[sl], colors='yellow', linewidths=2.0)
elif orientation == 'sagittal':
ax.tricontour(surf['rr'][:, 2], surf['rr'][:, 1],
surf['tris'], surf['rr'][:, 0],
levels=[sl], colors='yellow', linewidths=2.0)
if show:
plt.subplots_adjust(left=0., bottom=0., right=1., top=1., wspace=0.,
hspace=0.)
plt.show()
return fig
def plot_trans(info, trans_fname='auto', subject=None, subjects_dir=None,
ch_type=None, source='bem'):
"""Plot MEG/EEG head surface and helmet in 3D.
Parameters
----------
info : dict
The measurement info.
trans_fname : str | 'auto'
The full path to the `*-trans.fif` file produced during
coregistration.
subject : str | None
The subject name corresponding to FreeSurfer environment
variable SUBJECT.
subjects_dir : str
The path to the freesurfer subjects reconstructions.
It corresponds to Freesurfer environment variable SUBJECTS_DIR.
ch_type : None | 'eeg' | 'meg'
If None, both the MEG helmet and EEG electrodes will be shown.
If 'meg', only the MEG helmet will be shown. If 'eeg', only the
EEG electrodes will be shown.
source : str
Type to load. Common choices would be `'bem'` or `'head'`. We first
try loading `'$SUBJECTS_DIR/$SUBJECT/bem/$SUBJECT-$SOURCE.fif'`, and
then look for `'$SUBJECT*$SOURCE.fif'` in the same directory. Defaults
to 'bem'. Note. For single layer bems it is recommended to use 'head'.
Returns
-------
fig : instance of mlab.Figure
The mayavi figure.
"""
if ch_type not in [None, 'eeg', 'meg']:
raise ValueError('Argument ch_type must be None | eeg | meg. Got %s.'
% ch_type)
if trans_fname == 'auto':
# let's try to do this in MRI coordinates so they're easy to plot
trans_fname = _find_trans(subject, subjects_dir)
trans = read_trans(trans_fname)
surfs = [get_head_surf(subject, source=source, subjects_dir=subjects_dir)]
if ch_type is None or ch_type == 'meg':
surfs.append(get_meg_helmet_surf(info, trans))
# Plot them
from mayavi import mlab
alphas = [1.0, 0.5]
colors = [(0.6, 0.6, 0.6), (0.0, 0.0, 0.6)]
fig = mlab.figure(bgcolor=(0.0, 0.0, 0.0), size=(600, 600))
for ii, surf in enumerate(surfs):
x, y, z = surf['rr'].T
nn = surf['nn']
# make absolutely sure these are normalized for Mayavi
nn = nn / np.sum(nn * nn, axis=1)[:, np.newaxis]
# Make a solid surface
alpha = alphas[ii]
with warnings.catch_warnings(record=True): # traits
mesh = mlab.pipeline.triangular_mesh_source(x, y, z, surf['tris'])
mesh.data.point_data.normals = nn
mesh.data.cell_data.normals = None
mlab.pipeline.surface(mesh, color=colors[ii], opacity=alpha)
if ch_type is None or ch_type == 'eeg':
eeg_locs = [l['eeg_loc'][:, 0] for l in info['chs']
if l['eeg_loc'] is not None]
if len(eeg_locs) > 0:
eeg_loc = np.array(eeg_locs)
# Transform EEG electrodes to MRI coordinates
eeg_loc = apply_trans(trans['trans'], eeg_loc)
with warnings.catch_warnings(record=True): # traits
mlab.points3d(eeg_loc[:, 0], eeg_loc[:, 1], eeg_loc[:, 2],
color=(1.0, 0.0, 0.0), scale_factor=0.005)
else:
warnings.warn('EEG electrode locations not found. '
'Cannot plot EEG electrodes.')
mlab.view(90, 90)
return fig
def plot_source_estimates(stc, subject=None, surface='inflated', hemi='lh',
colormap='hot', time_label='time=%0.2f ms',
smoothing_steps=10, fmin=5., fmid=10., fmax=15.,
transparent=True, alpha=1.0, time_viewer=False,
config_opts={}, subjects_dir=None, figure=None,
views='lat', colorbar=True):
"""Plot SourceEstimates with PySurfer
Note: PySurfer currently needs the SUBJECTS_DIR environment variable,
which will automatically be set by this function. Plotting multiple
SourceEstimates with different values for subjects_dir will cause
PySurfer to use the wrong FreeSurfer surfaces when using methods of
the returned Brain object. It is therefore recommended to set the
SUBJECTS_DIR environment variable or always use the same value for
subjects_dir (within the same Python session).
Parameters
----------
stc : SourceEstimates
The source estimates to plot.
subject : str | None
The subject name corresponding to FreeSurfer environment
variable SUBJECT. If None stc.subject will be used. If that
is None, the environment will be used.
surface : str
The type of surface (inflated, white etc.).
hemi : str, 'lh' | 'rh' | 'split' | 'both'
The hemisphere to display. Using 'both' or 'split' requires
PySurfer version 0.4 or above.
colormap : str
The type of colormap to use.
time_label : str
How to print info about the time instant visualized.
smoothing_steps : int
The amount of smoothing
fmin : float
The minimum value to display.
fmid : float
The middle value on the colormap.
fmax : float
The maximum value for the colormap.
transparent : bool
If True, use a linear transparency between fmin and fmid.
alpha : float
Alpha value to apply globally to the overlay.
time_viewer : bool
Display time viewer GUI.
config_opts : dict
Keyword arguments for Brain initialization.
See pysurfer.viz.Brain.
subjects_dir : str
The path to the freesurfer subjects reconstructions.
It corresponds to Freesurfer environment variable SUBJECTS_DIR.
figure : instance of mayavi.core.scene.Scene | list | int | None
If None, a new figure will be created. If multiple views or a
split view is requested, this must be a list of the appropriate
length. If int is provided it will be used to identify the Mayavi
figure by it's id or create a new figure with the given id.
views : str | list
View to use. See surfer.Brain().
colorbar : bool
If True, display colorbar on scene.
Returns
-------
brain : Brain
A instance of surfer.viz.Brain from PySurfer.
"""
import surfer
from surfer import Brain, TimeViewer
if hemi in ['split', 'both'] and LooseVersion(surfer.__version__) < '0.4':
raise NotImplementedError('hemi type "%s" not supported with your '
'version of pysurfer. Please upgrade to '
'version 0.4 or higher.' % hemi)
try:
import mayavi
from mayavi import mlab
except ImportError:
from enthought import mayavi
from enthought.mayavi import mlab
# import here to avoid circular import problem
from ..source_estimate import SourceEstimate
if not isinstance(stc, SourceEstimate):
raise ValueError('stc has to be a surface source estimate')
if hemi not in ['lh', 'rh', 'split', 'both']:
raise ValueError('hemi has to be either "lh", "rh", "split", '
'or "both"')
n_split = 2 if hemi == 'split' else 1
n_views = 1 if isinstance(views, string_types) else len(views)
if figure is not None:
# use figure with specified id or create new figure
if isinstance(figure, int):
figure = mlab.figure(figure, size=(600, 600))
# make sure it is of the correct type
if not isinstance(figure, list):
figure = [figure]
if not all([isinstance(f, mayavi.core.scene.Scene) for f in figure]):
raise TypeError('figure must be a mayavi scene or list of scenes')
# make sure we have the right number of figures
n_fig = len(figure)
if not n_fig == n_split * n_views:
raise RuntimeError('`figure` must be a list with the same '
'number of elements as PySurfer plots that '
'will be created (%s)' % n_split * n_views)
subjects_dir = get_subjects_dir(subjects_dir=subjects_dir)
subject = _check_subject(stc.subject, subject, False)
if subject is None:
if 'SUBJECT' in os.environ:
subject = os.environ['SUBJECT']
else:
raise ValueError('SUBJECT environment variable not set')
if hemi in ['both', 'split']:
hemis = ['lh', 'rh']
else:
hemis = [hemi]
title = subject if len(hemis) > 1 else '%s - %s' % (subject, hemis[0])
args = inspect.getargspec(Brain.__init__)[0]
kwargs = dict(title=title, figure=figure, config_opts=config_opts,
subjects_dir=subjects_dir)
if 'views' in args:
kwargs['views'] = views
else:
logger.info('PySurfer does not support "views" argument, please '
'consider updating to a newer version (0.4 or later)')
with warnings.catch_warnings(record=True): # traits warnings
brain = Brain(subject, hemi, surface, **kwargs)
for hemi in hemis:
hemi_idx = 0 if hemi == 'lh' else 1
if hemi_idx == 0:
data = stc.data[:len(stc.vertno[0])]
else:
data = stc.data[len(stc.vertno[0]):]
vertices = stc.vertno[hemi_idx]
time = 1e3 * stc.times
with warnings.catch_warnings(record=True): # traits warnings
brain.add_data(data, colormap=colormap, vertices=vertices,
smoothing_steps=smoothing_steps, time=time,
time_label=time_label, alpha=alpha, hemi=hemi,
colorbar=colorbar)
# scale colormap and set time (index) to display
brain.scale_data_colormap(fmin=fmin, fmid=fmid, fmax=fmax,
transparent=transparent)
if time_viewer:
TimeViewer(brain)
return brain
def plot_sparse_source_estimates(src, stcs, colors=None, linewidth=2,
fontsize=18, bgcolor=(.05, 0, .1),
opacity=0.2, brain_color=(0.7,) * 3,
show=True, high_resolution=False,
fig_name=None, fig_number=None, labels=None,
modes=['cone', 'sphere'],
scale_factors=[1, 0.6],
verbose=None, **kwargs):
"""Plot source estimates obtained with sparse solver
Active dipoles are represented in a "Glass" brain.
If the same source is active in multiple source estimates it is
displayed with a sphere otherwise with a cone in 3D.
Parameters
----------
src : dict
The source space.
stcs : instance of SourceEstimate or list of instances of SourceEstimate
The source estimates (up to 3).
colors : list
List of colors
linewidth : int
Line width in 2D plot.
fontsize : int
Font size.
bgcolor : tuple of length 3
Background color in 3D.
opacity : float in [0, 1]
Opacity of brain mesh.
brain_color : tuple of length 3
Brain color.
show : bool
Show figures if True.
fig_name :
Mayavi figure name.
fig_number :
Matplotlib figure number.
labels : ndarray or list of ndarrays
Labels to show sources in clusters. Sources with the same
label and the waveforms within each cluster are presented in
the same color. labels should be a list of ndarrays when
stcs is a list ie. one label for each stc.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
kwargs : kwargs
Keyword arguments to pass to mlab.triangular_mesh.
"""
if not isinstance(stcs, list):
stcs = [stcs]
if labels is not None and not isinstance(labels, list):
labels = [labels]
if colors is None:
colors = COLORS
linestyles = ['-', '--', ':']
# Show 3D
lh_points = src[0]['rr']
rh_points = src[1]['rr']
points = np.r_[lh_points, rh_points]
lh_normals = src[0]['nn']
rh_normals = src[1]['nn']
normals = np.r_[lh_normals, rh_normals]
if high_resolution:
use_lh_faces = src[0]['tris']
use_rh_faces = src[1]['tris']
else:
use_lh_faces = src[0]['use_tris']
use_rh_faces = src[1]['use_tris']
use_faces = np.r_[use_lh_faces, lh_points.shape[0] + use_rh_faces]
points *= 170
vertnos = [np.r_[stc.lh_vertno, lh_points.shape[0] + stc.rh_vertno]
for stc in stcs]
unique_vertnos = np.unique(np.concatenate(vertnos).ravel())
try:
from mayavi import mlab
except ImportError:
from enthought.mayavi import mlab
from matplotlib.colors import ColorConverter
color_converter = ColorConverter()
f = mlab.figure(figure=fig_name, bgcolor=bgcolor, size=(600, 600))
mlab.clf()
if mlab.options.backend != 'test':
f.scene.disable_render = True
with warnings.catch_warnings(record=True): # traits warnings
surface = mlab.triangular_mesh(points[:, 0], points[:, 1],
points[:, 2], use_faces,
color=brain_color,
opacity=opacity, **kwargs)
import matplotlib.pyplot as plt
# Show time courses
plt.figure(fig_number)
plt.clf()
colors = cycle(colors)
logger.info("Total number of active sources: %d" % len(unique_vertnos))
if labels is not None:
colors = [advance_iterator(colors) for _ in
range(np.unique(np.concatenate(labels).ravel()).size)]
for idx, v in enumerate(unique_vertnos):
# get indices of stcs it belongs to
ind = [k for k, vertno in enumerate(vertnos) if v in vertno]
is_common = len(ind) > 1
if labels is None:
c = advance_iterator(colors)
else:
# if vertex is in different stcs than take label from first one
c = colors[labels[ind[0]][vertnos[ind[0]] == v]]
mode = modes[1] if is_common else modes[0]
scale_factor = scale_factors[1] if is_common else scale_factors[0]
if (isinstance(scale_factor, (np.ndarray, list, tuple))
and len(unique_vertnos) == len(scale_factor)):
scale_factor = scale_factor[idx]
x, y, z = points[v]
nx, ny, nz = normals[v]
with warnings.catch_warnings(record=True): # traits
mlab.quiver3d(x, y, z, nx, ny, nz, color=color_converter.to_rgb(c),
mode=mode, scale_factor=scale_factor)
for k in ind:
vertno = vertnos[k]
mask = (vertno == v)
assert np.sum(mask) == 1
linestyle = linestyles[k]
plt.plot(1e3 * stc.times, 1e9 * stcs[k].data[mask].ravel(), c=c,
linewidth=linewidth, linestyle=linestyle)
plt.xlabel('Time (ms)', fontsize=18)
plt.ylabel('Source amplitude (nAm)', fontsize=18)
if fig_name is not None:
plt.title(fig_name)
if show:
plt.show()
surface.actor.property.backface_culling = True
surface.actor.property.shading = True
return surface
|