1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
"""Functions to plot epochs data
"""
from __future__ import print_function
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Denis Engemann <denis.engemann@gmail.com>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Eric Larson <larson.eric.d@gmail.com>
#
# License: Simplified BSD
import warnings
from collections import deque
from functools import partial
import numpy as np
from scipy import ndimage
from ..utils import create_chunks
from ..io.pick import pick_types, channel_type
from ..fixes import Counter
from .utils import _mutable_defaults, tight_layout, _prepare_trellis
from .utils import figure_nobar
def plot_image_epochs(epochs, picks=None, sigma=0.3, vmin=None,
vmax=None, colorbar=True, order=None, show=True,
units=None, scalings=None, cmap='RdBu_r'):
"""Plot Event Related Potential / Fields image
Parameters
----------
epochs : instance of Epochs
The epochs
picks : int | array-like of int | None
The indices of the channels to consider. If None, all good
data channels are plotted.
sigma : float
The standard deviation of the Gaussian smoothing to apply along
the epoch axis to apply in the image.
vmin : float
The min value in the image. The unit is uV for EEG channels,
fT for magnetometers and fT/cm for gradiometers
vmax : float
The max value in the image. The unit is uV for EEG channels,
fT for magnetometers and fT/cm for gradiometers
colorbar : bool
Display or not a colorbar
order : None | array of int | callable
If not None, order is used to reorder the epochs on the y-axis
of the image. If it's an array of int it should be of length
the number of good epochs. If it's a callable the arguments
passed are the times vector and the data as 2d array
(data.shape[1] == len(times)
show : bool
Show or not the figure at the end
units : dict | None
The units of the channel types used for axes lables. If None,
defaults to `units=dict(eeg='uV', grad='fT/cm', mag='fT')`.
scalings : dict | None
The scalings of the channel types to be applied for plotting.
If None, defaults to `scalings=dict(eeg=1e6, grad=1e13, mag=1e15)`
cmap : matplotlib colormap
Colormap.
Returns
-------
figs : the list of matplotlib figures
One figure per channel displayed
"""
units, scalings = _mutable_defaults(('units', units),
('scalings', scalings))
import matplotlib.pyplot as plt
if picks is None:
picks = pick_types(epochs.info, meg=True, eeg=True, ref_meg=False,
exclude='bads')
if list(units.keys()) != list(scalings.keys()):
raise ValueError('Scalings and units must have the same keys.')
picks = np.atleast_1d(picks)
evoked = epochs.average(picks)
data = epochs.get_data()[:, picks, :]
if vmin is None:
vmin = data.min()
if vmax is None:
vmax = data.max()
figs = list()
for i, (this_data, idx) in enumerate(zip(np.swapaxes(data, 0, 1), picks)):
this_fig = plt.figure()
figs.append(this_fig)
ch_type = channel_type(epochs.info, idx)
if not ch_type in scalings:
# We know it's not in either scalings or units since keys match
raise KeyError('%s type not in scalings and units' % ch_type)
this_data *= scalings[ch_type]
this_order = order
if callable(order):
this_order = order(epochs.times, this_data)
if this_order is not None:
this_data = this_data[this_order]
this_data = ndimage.gaussian_filter1d(this_data, sigma=sigma, axis=0)
ax1 = plt.subplot2grid((3, 10), (0, 0), colspan=9, rowspan=2)
im = plt.imshow(this_data,
extent=[1e3 * epochs.times[0], 1e3 * epochs.times[-1],
0, len(data)],
aspect='auto', origin='lower',
vmin=vmin, vmax=vmax, cmap=cmap)
ax2 = plt.subplot2grid((3, 10), (2, 0), colspan=9, rowspan=1)
if colorbar:
ax3 = plt.subplot2grid((3, 10), (0, 9), colspan=1, rowspan=3)
ax1.set_title(epochs.ch_names[idx])
ax1.set_ylabel('Epochs')
ax1.axis('auto')
ax1.axis('tight')
ax1.axvline(0, color='m', linewidth=3, linestyle='--')
ax2.plot(1e3 * evoked.times, scalings[ch_type] * evoked.data[i])
ax2.set_xlabel('Time (ms)')
ax2.set_ylabel(units[ch_type])
ax2.set_ylim([vmin, vmax])
ax2.axvline(0, color='m', linewidth=3, linestyle='--')
if colorbar:
plt.colorbar(im, cax=ax3)
tight_layout(fig=this_fig)
if show:
plt.show()
return figs
def _drop_log_stats(drop_log, ignore=['IGNORED']):
"""
Parameters
----------
drop_log : list of lists
Epoch drop log from Epochs.drop_log.
ignore : list
The drop reasons to ignore.
Returns
-------
perc : float
Total percentage of epochs dropped.
"""
# XXX: This function should be moved to epochs.py after
# removal of perc return parameter in plot_drop_log()
if not isinstance(drop_log, list) or not isinstance(drop_log[0], list):
raise ValueError('drop_log must be a list of lists')
perc = 100 * np.mean([len(d) > 0 for d in drop_log
if not any([r in ignore for r in d])])
return perc
def plot_drop_log(drop_log, threshold=0, n_max_plot=20, subject='Unknown',
color=(0.9, 0.9, 0.9), width=0.8, ignore=['IGNORED'],
show=True, return_fig=False):
"""Show the channel stats based on a drop_log from Epochs
Parameters
----------
drop_log : list of lists
Epoch drop log from Epochs.drop_log.
threshold : float
The percentage threshold to use to decide whether or not to
plot. Default is zero (always plot).
n_max_plot : int
Maximum number of channels to show stats for.
subject : str
The subject name to use in the title of the plot.
color : tuple | str
Color to use for the bars.
width : float
Width of the bars.
ignore : list
The drop reasons to ignore.
show : bool
Show figure if True.
return_fig : bool
Return only figure handle if True. This argument will default
to True in v0.9 and then be removed.
Returns
-------
perc : float
Total percentage of epochs dropped.
fig : Instance of matplotlib.figure.Figure
The figure.
"""
import matplotlib.pyplot as plt
perc = _drop_log_stats(drop_log, ignore)
scores = Counter([ch for d in drop_log for ch in d if ch not in ignore])
ch_names = np.array(list(scores.keys()))
if perc < threshold or len(ch_names) == 0:
return perc
counts = 100 * np.array(list(scores.values()), dtype=float) / len(drop_log)
n_plot = min(n_max_plot, len(ch_names))
order = np.flipud(np.argsort(counts))
fig = plt.figure()
plt.title('%s: %0.1f%%' % (subject, perc))
x = np.arange(n_plot)
plt.bar(x, counts[order[:n_plot]], color=color, width=width)
plt.xticks(x + width / 2.0, ch_names[order[:n_plot]], rotation=45,
horizontalalignment='right')
plt.tick_params(axis='x', which='major', labelsize=10)
plt.ylabel('% of epochs rejected')
plt.xlim((-width / 2.0, (n_plot - 1) + width * 3 / 2))
plt.grid(True, axis='y')
if show:
plt.show()
if return_fig:
return fig
else:
msg = ("'return_fig=False' will be deprecated in v0.9. "
"Use 'Epochs.drop_log_stats' to get percentages instead.")
warnings.warn(msg, DeprecationWarning)
return perc, fig
def _draw_epochs_axes(epoch_idx, good_ch_idx, bad_ch_idx, data, times, axes,
title_str, axes_handler):
"""Aux functioin"""
this = axes_handler[0]
for ii, data_, ax in zip(epoch_idx, data, axes):
[l.set_data(times, d) for l, d in zip(ax.lines, data_[good_ch_idx])]
if bad_ch_idx is not None:
bad_lines = [ax.lines[k] for k in bad_ch_idx]
[l.set_data(times, d) for l, d in zip(bad_lines,
data_[bad_ch_idx])]
if title_str is not None:
ax.set_title(title_str % ii, fontsize=12)
ax.set_ylim(data.min(), data.max())
ax.set_yticks([])
ax.set_xticks([])
if vars(ax)[this]['reject'] is True:
# memorizing reject
[l.set_color((0.8, 0.8, 0.8)) for l in ax.lines]
ax.get_figure().canvas.draw()
else:
# forgetting previous reject
for k in axes_handler:
if k == this:
continue
if vars(ax).get(k, {}).get('reject', None) is True:
[l.set_color('k') for l in ax.lines[:len(good_ch_idx)]]
if bad_ch_idx is not None:
[l.set_color('r') for l in ax.lines[-len(bad_ch_idx):]]
ax.get_figure().canvas.draw()
break
def _epochs_navigation_onclick(event, params):
"""Aux function"""
import matplotlib.pyplot as plt
p = params
here = None
if event.inaxes == p['back'].ax:
here = 1
elif event.inaxes == p['next'].ax:
here = -1
elif event.inaxes == p['reject-quit'].ax:
if p['reject_idx']:
p['epochs'].drop_epochs(p['reject_idx'])
plt.close(p['fig'])
plt.close(event.inaxes.get_figure())
if here is not None:
p['idx_handler'].rotate(here)
p['axes_handler'].rotate(here)
this_idx = p['idx_handler'][0]
_draw_epochs_axes(this_idx, p['good_ch_idx'], p['bad_ch_idx'],
p['data'][this_idx],
p['times'], p['axes'], p['title_str'],
p['axes_handler'])
# XXX don't ask me why
p['axes'][0].get_figure().canvas.draw()
def _epochs_axes_onclick(event, params):
"""Aux function"""
reject_color = (0.8, 0.8, 0.8)
ax = event.inaxes
if event.inaxes is None:
return
p = params
here = vars(ax)[p['axes_handler'][0]]
if here.get('reject', None) is False:
idx = here['idx']
if idx not in p['reject_idx']:
p['reject_idx'].append(idx)
[l.set_color(reject_color) for l in ax.lines]
here['reject'] = True
elif here.get('reject', None) is True:
idx = here['idx']
if idx in p['reject_idx']:
p['reject_idx'].pop(p['reject_idx'].index(idx))
good_lines = [ax.lines[k] for k in p['good_ch_idx']]
[l.set_color('k') for l in good_lines]
if p['bad_ch_idx'] is not None:
bad_lines = ax.lines[-len(p['bad_ch_idx']):]
[l.set_color('r') for l in bad_lines]
here['reject'] = False
ax.get_figure().canvas.draw()
def plot_epochs(epochs, epoch_idx=None, picks=None, scalings=None,
title_str='#%003i', show=True, block=False):
""" Visualize single trials using Trellis plot.
Parameters
----------
epochs : instance of Epochs
The epochs object
epoch_idx : array-like | int | None
The epochs to visualize. If None, the first 20 epochs are shown.
Defaults to None.
picks : array-like of int | None
Channels to be included. If None only good data channels are used.
Defaults to None
scalings : dict | None
Scale factors for the traces. If None, defaults to:
`dict(mag=1e-12, grad=4e-11, eeg=20e-6, eog=150e-6, ecg=5e-4, emg=1e-3,
ref_meg=1e-12, misc=1e-3, stim=1, resp=1, chpi=1e-4)`
title_str : None | str
The string formatting to use for axes titles. If None, no titles
will be shown. Defaults expand to ``#001, #002, ...``
show : bool
Whether to show the figure or not.
block : bool
Whether to halt program execution until the figure is closed.
Useful for rejecting bad trials on the fly by clicking on a
sub plot.
Returns
-------
fig : Instance of matplotlib.figure.Figure
The figure.
"""
import matplotlib.pyplot as plt
import matplotlib as mpl
scalings = _mutable_defaults(('scalings_plot_raw', None))[0]
if np.isscalar(epoch_idx):
epoch_idx = [epoch_idx]
if epoch_idx is None:
n_events = len(epochs.events)
epoch_idx = list(range(n_events))
else:
n_events = len(epoch_idx)
epoch_idx = epoch_idx[:n_events]
idx_handler = deque(create_chunks(epoch_idx, 20))
if picks is None:
if any('ICA' in k for k in epochs.ch_names):
picks = pick_types(epochs.info, misc=True, ref_meg=False,
exclude=[])
else:
picks = pick_types(epochs.info, meg=True, eeg=True, ref_meg=False,
exclude=[])
if len(picks) < 1:
raise RuntimeError('No appropriate channels found. Please'
' check your picks')
times = epochs.times * 1e3
n_channels = epochs.info['nchan']
types = [channel_type(epochs.info, idx) for idx in
picks]
# preallocation needed for min / max scaling
data = np.zeros((len(epochs.events), n_channels, len(times)))
for ii, epoch in enumerate(epochs.get_data()):
for jj, (this_type, this_channel) in enumerate(zip(types, epoch)):
data[ii, jj] = this_channel / scalings[this_type]
n_events = len(epochs.events)
epoch_idx = epoch_idx[:n_events]
idx_handler = deque(create_chunks(epoch_idx, 20))
# handle bads
bad_ch_idx = None
ch_names = epochs.ch_names
bads = epochs.info['bads']
if any([ch_names[k] in bads for k in picks]):
ch_picked = [k for k in ch_names if ch_names.index(k) in picks]
bad_ch_idx = [ch_picked.index(k) for k in bads if k in ch_names]
good_ch_idx = [p for p in picks if p not in bad_ch_idx]
else:
good_ch_idx = np.arange(n_channels)
fig, axes = _prepare_trellis(len(data[idx_handler[0]]), max_col=5)
axes_handler = deque(list(range(len(idx_handler))))
for ii, data_, ax in zip(idx_handler[0], data[idx_handler[0]], axes):
ax.plot(times, data_[good_ch_idx].T, color='k')
if bad_ch_idx is not None:
ax.plot(times, data_[bad_ch_idx].T, color='r')
if title_str is not None:
ax.set_title(title_str % ii, fontsize=12)
ax.set_ylim(data.min(), data.max())
ax.set_yticks([])
ax.set_xticks([])
vars(ax)[axes_handler[0]] = {'idx': ii, 'reject': False}
# initialize memory
for this_view, this_inds in zip(axes_handler, idx_handler):
for ii, ax in zip(this_inds, axes):
vars(ax)[this_view] = {'idx': ii, 'reject': False}
tight_layout(fig=fig)
navigation = figure_nobar(figsize=(3, 1.5))
from matplotlib import gridspec
gs = gridspec.GridSpec(2, 2)
ax1 = plt.subplot(gs[0, 0])
ax2 = plt.subplot(gs[0, 1])
ax3 = plt.subplot(gs[1, :])
params = {
'fig': fig,
'idx_handler': idx_handler,
'epochs': epochs,
'picks': picks,
'times': times,
'scalings': scalings,
'good_ch_idx': good_ch_idx,
'bad_ch_idx': bad_ch_idx,
'axes': axes,
'back': mpl.widgets.Button(ax1, 'back'),
'next': mpl.widgets.Button(ax2, 'next'),
'reject-quit': mpl.widgets.Button(ax3, 'reject-quit'),
'title_str': title_str,
'reject_idx': [],
'axes_handler': axes_handler,
'data': data
}
fig.canvas.mpl_connect('button_press_event',
partial(_epochs_axes_onclick, params=params))
navigation.canvas.mpl_connect('button_press_event',
partial(_epochs_navigation_onclick,
params=params))
if show is True:
plt.show(block=block)
return fig
|