File: epochs.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (451 lines) | stat: -rw-r--r-- 16,398 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
"""Functions to plot epochs data
"""
from __future__ import print_function

# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#
# License: Simplified BSD

import warnings
from collections import deque
from functools import partial

import numpy as np
from scipy import ndimage

from ..utils import create_chunks
from ..io.pick import pick_types, channel_type
from ..fixes import Counter
from .utils import _mutable_defaults, tight_layout, _prepare_trellis
from .utils import figure_nobar


def plot_image_epochs(epochs, picks=None, sigma=0.3, vmin=None,
                      vmax=None, colorbar=True, order=None, show=True,
                      units=None, scalings=None, cmap='RdBu_r'):
    """Plot Event Related Potential / Fields image

    Parameters
    ----------
    epochs : instance of Epochs
        The epochs
    picks : int | array-like of int | None
        The indices of the channels to consider. If None, all good
        data channels are plotted.
    sigma : float
        The standard deviation of the Gaussian smoothing to apply along
        the epoch axis to apply in the image.
    vmin : float
        The min value in the image. The unit is uV for EEG channels,
        fT for magnetometers and fT/cm for gradiometers
    vmax : float
        The max value in the image. The unit is uV for EEG channels,
        fT for magnetometers and fT/cm for gradiometers
    colorbar : bool
        Display or not a colorbar
    order : None | array of int | callable
        If not None, order is used to reorder the epochs on the y-axis
        of the image. If it's an array of int it should be of length
        the number of good epochs. If it's a callable the arguments
        passed are the times vector and the data as 2d array
        (data.shape[1] == len(times)
    show : bool
        Show or not the figure at the end
    units : dict | None
        The units of the channel types used for axes lables. If None,
        defaults to `units=dict(eeg='uV', grad='fT/cm', mag='fT')`.
    scalings : dict | None
        The scalings of the channel types to be applied for plotting.
        If None, defaults to `scalings=dict(eeg=1e6, grad=1e13, mag=1e15)`
    cmap : matplotlib colormap
        Colormap.

    Returns
    -------
    figs : the list of matplotlib figures
        One figure per channel displayed
    """
    units, scalings = _mutable_defaults(('units', units),
                                        ('scalings', scalings))

    import matplotlib.pyplot as plt
    if picks is None:
        picks = pick_types(epochs.info, meg=True, eeg=True, ref_meg=False,
                           exclude='bads')

    if list(units.keys()) != list(scalings.keys()):
        raise ValueError('Scalings and units must have the same keys.')

    picks = np.atleast_1d(picks)
    evoked = epochs.average(picks)
    data = epochs.get_data()[:, picks, :]
    if vmin is None:
        vmin = data.min()
    if vmax is None:
        vmax = data.max()

    figs = list()
    for i, (this_data, idx) in enumerate(zip(np.swapaxes(data, 0, 1), picks)):
        this_fig = plt.figure()
        figs.append(this_fig)

        ch_type = channel_type(epochs.info, idx)
        if not ch_type in scalings:
            # We know it's not in either scalings or units since keys match
            raise KeyError('%s type not in scalings and units' % ch_type)
        this_data *= scalings[ch_type]

        this_order = order
        if callable(order):
            this_order = order(epochs.times, this_data)

        if this_order is not None:
            this_data = this_data[this_order]

        this_data = ndimage.gaussian_filter1d(this_data, sigma=sigma, axis=0)

        ax1 = plt.subplot2grid((3, 10), (0, 0), colspan=9, rowspan=2)
        im = plt.imshow(this_data,
                        extent=[1e3 * epochs.times[0], 1e3 * epochs.times[-1],
                                0, len(data)],
                        aspect='auto', origin='lower',
                        vmin=vmin, vmax=vmax, cmap=cmap)
        ax2 = plt.subplot2grid((3, 10), (2, 0), colspan=9, rowspan=1)
        if colorbar:
            ax3 = plt.subplot2grid((3, 10), (0, 9), colspan=1, rowspan=3)
        ax1.set_title(epochs.ch_names[idx])
        ax1.set_ylabel('Epochs')
        ax1.axis('auto')
        ax1.axis('tight')
        ax1.axvline(0, color='m', linewidth=3, linestyle='--')
        ax2.plot(1e3 * evoked.times, scalings[ch_type] * evoked.data[i])
        ax2.set_xlabel('Time (ms)')
        ax2.set_ylabel(units[ch_type])
        ax2.set_ylim([vmin, vmax])
        ax2.axvline(0, color='m', linewidth=3, linestyle='--')
        if colorbar:
            plt.colorbar(im, cax=ax3)
            tight_layout(fig=this_fig)

    if show:
        plt.show()

    return figs


def _drop_log_stats(drop_log, ignore=['IGNORED']):
    """
    Parameters
    ----------
    drop_log : list of lists
        Epoch drop log from Epochs.drop_log.
    ignore : list
        The drop reasons to ignore.

    Returns
    -------
    perc : float
        Total percentage of epochs dropped.
    """
    # XXX: This function should be moved to epochs.py after
    # removal of perc return parameter in plot_drop_log()

    if not isinstance(drop_log, list) or not isinstance(drop_log[0], list):
        raise ValueError('drop_log must be a list of lists')

    perc = 100 * np.mean([len(d) > 0 for d in drop_log
                          if not any([r in ignore for r in d])])

    return perc


def plot_drop_log(drop_log, threshold=0, n_max_plot=20, subject='Unknown',
                  color=(0.9, 0.9, 0.9), width=0.8, ignore=['IGNORED'],
                  show=True, return_fig=False):
    """Show the channel stats based on a drop_log from Epochs

    Parameters
    ----------
    drop_log : list of lists
        Epoch drop log from Epochs.drop_log.
    threshold : float
        The percentage threshold to use to decide whether or not to
        plot. Default is zero (always plot).
    n_max_plot : int
        Maximum number of channels to show stats for.
    subject : str
        The subject name to use in the title of the plot.
    color : tuple | str
        Color to use for the bars.
    width : float
        Width of the bars.
    ignore : list
        The drop reasons to ignore.
    show : bool
        Show figure if True.
    return_fig : bool
        Return only figure handle if True. This argument will default
        to True in v0.9 and then be removed.

    Returns
    -------
    perc : float
        Total percentage of epochs dropped.
    fig : Instance of matplotlib.figure.Figure
        The figure.
    """
    import matplotlib.pyplot as plt
    perc = _drop_log_stats(drop_log, ignore)
    scores = Counter([ch for d in drop_log for ch in d if ch not in ignore])
    ch_names = np.array(list(scores.keys()))
    if perc < threshold or len(ch_names) == 0:
        return perc
    counts = 100 * np.array(list(scores.values()), dtype=float) / len(drop_log)
    n_plot = min(n_max_plot, len(ch_names))
    order = np.flipud(np.argsort(counts))
    fig = plt.figure()
    plt.title('%s: %0.1f%%' % (subject, perc))
    x = np.arange(n_plot)
    plt.bar(x, counts[order[:n_plot]], color=color, width=width)
    plt.xticks(x + width / 2.0, ch_names[order[:n_plot]], rotation=45,
               horizontalalignment='right')
    plt.tick_params(axis='x', which='major', labelsize=10)
    plt.ylabel('% of epochs rejected')
    plt.xlim((-width / 2.0, (n_plot - 1) + width * 3 / 2))
    plt.grid(True, axis='y')

    if show:
        plt.show()

    if return_fig:
        return fig
    else:
        msg = ("'return_fig=False' will be deprecated in v0.9. "
               "Use 'Epochs.drop_log_stats' to get percentages instead.")
        warnings.warn(msg, DeprecationWarning)
        return perc, fig


def _draw_epochs_axes(epoch_idx, good_ch_idx, bad_ch_idx, data, times, axes,
                      title_str, axes_handler):
    """Aux functioin"""
    this = axes_handler[0]
    for ii, data_, ax in zip(epoch_idx, data, axes):
        [l.set_data(times, d) for l, d in zip(ax.lines, data_[good_ch_idx])]
        if bad_ch_idx is not None:
            bad_lines = [ax.lines[k] for k in bad_ch_idx]
            [l.set_data(times, d) for l, d in zip(bad_lines,
                                                  data_[bad_ch_idx])]
        if title_str is not None:
            ax.set_title(title_str % ii, fontsize=12)
        ax.set_ylim(data.min(), data.max())
        ax.set_yticks([])
        ax.set_xticks([])
        if vars(ax)[this]['reject'] is True:
            #  memorizing reject
            [l.set_color((0.8, 0.8, 0.8)) for l in ax.lines]
            ax.get_figure().canvas.draw()
        else:
            #  forgetting previous reject
            for k in axes_handler:
                if k == this:
                    continue
                if vars(ax).get(k, {}).get('reject', None) is True:
                    [l.set_color('k') for l in ax.lines[:len(good_ch_idx)]]
                    if bad_ch_idx is not None:
                        [l.set_color('r') for l in ax.lines[-len(bad_ch_idx):]]
                    ax.get_figure().canvas.draw()
                    break


def _epochs_navigation_onclick(event, params):
    """Aux function"""
    import matplotlib.pyplot as plt
    p = params
    here = None
    if event.inaxes == p['back'].ax:
        here = 1
    elif event.inaxes == p['next'].ax:
        here = -1
    elif event.inaxes == p['reject-quit'].ax:
        if p['reject_idx']:
            p['epochs'].drop_epochs(p['reject_idx'])
        plt.close(p['fig'])
        plt.close(event.inaxes.get_figure())

    if here is not None:
        p['idx_handler'].rotate(here)
        p['axes_handler'].rotate(here)
        this_idx = p['idx_handler'][0]
        _draw_epochs_axes(this_idx, p['good_ch_idx'], p['bad_ch_idx'],
                          p['data'][this_idx],
                          p['times'], p['axes'], p['title_str'],
                          p['axes_handler'])
            # XXX don't ask me why
        p['axes'][0].get_figure().canvas.draw()


def _epochs_axes_onclick(event, params):
    """Aux function"""
    reject_color = (0.8, 0.8, 0.8)
    ax = event.inaxes
    if event.inaxes is None:
        return
    p = params
    here = vars(ax)[p['axes_handler'][0]]
    if here.get('reject', None) is False:
        idx = here['idx']
        if idx not in p['reject_idx']:
            p['reject_idx'].append(idx)
            [l.set_color(reject_color) for l in ax.lines]
            here['reject'] = True
    elif here.get('reject', None) is True:
        idx = here['idx']
        if idx in p['reject_idx']:
            p['reject_idx'].pop(p['reject_idx'].index(idx))
            good_lines = [ax.lines[k] for k in p['good_ch_idx']]
            [l.set_color('k') for l in good_lines]
            if p['bad_ch_idx'] is not None:
                bad_lines = ax.lines[-len(p['bad_ch_idx']):]
                [l.set_color('r') for l in bad_lines]
            here['reject'] = False
    ax.get_figure().canvas.draw()


def plot_epochs(epochs, epoch_idx=None, picks=None, scalings=None,
                title_str='#%003i', show=True, block=False):
    """ Visualize single trials using Trellis plot.

    Parameters
    ----------

    epochs : instance of Epochs
        The epochs object
    epoch_idx : array-like | int | None
        The epochs to visualize. If None, the first 20 epochs are shown.
        Defaults to None.
    picks : array-like of int | None
        Channels to be included. If None only good data channels are used.
        Defaults to None
    scalings : dict | None
        Scale factors for the traces. If None, defaults to:
        `dict(mag=1e-12, grad=4e-11, eeg=20e-6, eog=150e-6, ecg=5e-4, emg=1e-3,
             ref_meg=1e-12, misc=1e-3, stim=1, resp=1, chpi=1e-4)`
    title_str : None | str
        The string formatting to use for axes titles. If None, no titles
        will be shown. Defaults expand to ``#001, #002, ...``
    show : bool
        Whether to show the figure or not.
    block : bool
        Whether to halt program execution until the figure is closed.
        Useful for rejecting bad trials on the fly by clicking on a
        sub plot.

    Returns
    -------
    fig : Instance of matplotlib.figure.Figure
        The figure.
    """
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    scalings = _mutable_defaults(('scalings_plot_raw', None))[0]
    if np.isscalar(epoch_idx):
        epoch_idx = [epoch_idx]
    if epoch_idx is None:
        n_events = len(epochs.events)
        epoch_idx = list(range(n_events))
    else:
        n_events = len(epoch_idx)
    epoch_idx = epoch_idx[:n_events]
    idx_handler = deque(create_chunks(epoch_idx, 20))

    if picks is None:
        if any('ICA' in k for k in epochs.ch_names):
            picks = pick_types(epochs.info, misc=True, ref_meg=False,
                               exclude=[])
        else:
            picks = pick_types(epochs.info, meg=True, eeg=True, ref_meg=False,
                               exclude=[])
    if len(picks) < 1:
        raise RuntimeError('No appropriate channels found. Please'
                           ' check your picks')
    times = epochs.times * 1e3
    n_channels = epochs.info['nchan']
    types = [channel_type(epochs.info, idx) for idx in
             picks]

    # preallocation needed for min / max scaling
    data = np.zeros((len(epochs.events), n_channels, len(times)))
    for ii, epoch in enumerate(epochs.get_data()):
        for jj, (this_type, this_channel) in enumerate(zip(types, epoch)):
            data[ii, jj] = this_channel / scalings[this_type]

    n_events = len(epochs.events)
    epoch_idx = epoch_idx[:n_events]
    idx_handler = deque(create_chunks(epoch_idx, 20))
    # handle bads
    bad_ch_idx = None
    ch_names = epochs.ch_names
    bads = epochs.info['bads']
    if any([ch_names[k] in bads for k in picks]):
        ch_picked = [k for k in ch_names if ch_names.index(k) in picks]
        bad_ch_idx = [ch_picked.index(k) for k in bads if k in ch_names]
        good_ch_idx = [p for p in picks if p not in bad_ch_idx]
    else:
        good_ch_idx = np.arange(n_channels)

    fig, axes = _prepare_trellis(len(data[idx_handler[0]]), max_col=5)
    axes_handler = deque(list(range(len(idx_handler))))
    for ii, data_, ax in zip(idx_handler[0], data[idx_handler[0]], axes):
        ax.plot(times, data_[good_ch_idx].T, color='k')
        if bad_ch_idx is not None:
            ax.plot(times, data_[bad_ch_idx].T, color='r')
        if title_str is not None:
            ax.set_title(title_str % ii, fontsize=12)
        ax.set_ylim(data.min(), data.max())
        ax.set_yticks([])
        ax.set_xticks([])
        vars(ax)[axes_handler[0]] = {'idx': ii, 'reject': False}

    # initialize memory
    for this_view, this_inds in zip(axes_handler, idx_handler):
        for ii, ax in zip(this_inds, axes):
            vars(ax)[this_view] = {'idx': ii, 'reject': False}

    tight_layout(fig=fig)
    navigation = figure_nobar(figsize=(3, 1.5))
    from matplotlib import gridspec
    gs = gridspec.GridSpec(2, 2)
    ax1 = plt.subplot(gs[0, 0])
    ax2 = plt.subplot(gs[0, 1])
    ax3 = plt.subplot(gs[1, :])

    params = {
        'fig': fig,
        'idx_handler': idx_handler,
        'epochs': epochs,
        'picks': picks,
        'times': times,
        'scalings': scalings,
        'good_ch_idx': good_ch_idx,
        'bad_ch_idx': bad_ch_idx,
        'axes': axes,
        'back': mpl.widgets.Button(ax1, 'back'),
        'next': mpl.widgets.Button(ax2, 'next'),
        'reject-quit': mpl.widgets.Button(ax3, 'reject-quit'),
        'title_str': title_str,
        'reject_idx': [],
        'axes_handler': axes_handler,
        'data': data
    }
    fig.canvas.mpl_connect('button_press_event',
                           partial(_epochs_axes_onclick, params=params))
    navigation.canvas.mpl_connect('button_press_event',
                                  partial(_epochs_navigation_onclick,
                                          params=params))
    if show is True:
        plt.show(block=block)
    return fig