1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
|
"""Functions to plot ICA specific data (besides topographies)
"""
from __future__ import print_function
# Authors: Denis Engemann <denis.engemann@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: Simplified BSD
from functools import partial
import numpy as np
from ..utils import deprecated
from .utils import tight_layout, _prepare_trellis
def _ica_plot_sources_onpick_(event, sources=None, ylims=None):
"""Onpick callback for plot_ica_panel"""
# make sure that the swipe gesture in OS-X doesn't open many figures
if event.mouseevent.inaxes is None or event.mouseevent.button != 1:
return
artist = event.artist
try:
import matplotlib.pyplot as plt
plt.figure()
src_idx = artist._mne_src_idx
component = artist._mne_component
plt.plot(sources[src_idx], 'r' if artist._mne_is_bad else 'k')
plt.ylim(ylims)
plt.grid(linestyle='-', color='gray', linewidth=.25)
plt.title('ICA #%i' % component)
except Exception as err:
# matplotlib silently ignores exceptions in event handlers, so we print
# it here to know what went wrong
print(err)
raise err
@deprecated('`plot_ica_panel` is deprecated and will be removed in '
'MNE 1.0. Use `plot_ica_sources` instead')
def plot_ica_panel(sources, start=None, stop=None,
source_idx=None, ncol=3, verbose=None,
title=None, show=True):
"""Create panel plots of ICA sources
Clicking on the plot of an individual source opens a new figure showing
the source.
Parameters
----------
sources : ndarray
Sources as drawn from ica.get_sources.
start : int
x-axis start index. If None from the beginning.
stop : int
x-axis stop index. If None to the end.
source_idx : array-like
Indices for subsetting the sources.
ncol : int
Number of panel-columns.
title : str
The figure title. If None a default is provided.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
show : bool
If True, plot will be shown, else just the figure is returned.
Returns
-------
fig : instance of pyplot.Figure
"""
return _plot_ica_grid(sources=sources, start=start, stop=stop,
source_idx=source_idx, ncol=ncol, verbose=verbose,
title=title, show=show)
def plot_ica_sources(ica, inst, picks=None, exclude=None, start=None,
stop=None, show=True, title=None):
"""Plot estimated latent sources given the unmixing matrix.
Typical usecases:
1. plot evolution of latent sources over time based on (Raw input)
2. plot latent source around event related time windows (Epochs input)
3. plot time-locking in ICA space (Evoked input)
Parameters
----------
ica : instance of mne.preprocessing.ICA
The ICA solution.
inst : instance of mne.io.Raw, mne.Epochs, mne.Evoked
The object to plot the sources from.
picks : ndarray | None.
The components to be displayed. If None, plot will show the
sources in the order as fitted.
start : int
X-axis start index. If None from the beginning.
stop : int
X-axis stop index. If None to the end.
exclude : array_like of int
The components marked for exclusion. If None (default), ICA.exclude
will be used.
title : str | None
The figure title. If None a default is provided.
show : bool
If True, plot will be shown, else just the figure is returned.
Returns
-------
fig : instance of pyplot.Figure
The figure.
"""
from ..io.base import _BaseRaw
from ..evoked import Evoked
from ..epochs import _BaseEpochs
if exclude is None:
exclude = ica.exclude
if isinstance(inst, (_BaseRaw, _BaseEpochs)):
if isinstance(inst, _BaseRaw):
sources = ica._transform_raw(inst, start, stop)
else:
if start is not None or stop is not None:
inst = inst.crop(start, stop, copy=True)
sources = ica._transform_epochs(inst, concatenate=True)
if picks is not None:
if np.isscalar(picks):
picks = [picks]
sources = np.atleast_2d(sources[picks])
fig = _plot_ica_grid(sources, start=start, stop=stop,
ncol=len(sources) // 10 or 1,
exclude=exclude,
source_idx=picks,
title=title, show=show)
elif isinstance(inst, Evoked):
sources = ica.get_sources(inst)
if start is not None or stop is not None:
inst = inst.crop(start, stop, copy=True)
fig = _plot_ica_sources_evoked(evoked=sources,
exclude=exclude,
title=title)
else:
raise ValueError('Data input must be of Raw or Epochs type')
return fig
def _plot_ica_grid(sources, start, stop,
source_idx, ncol, exclude,
title, show):
"""Create panel plots of ICA sources
Clicking on the plot of an individual source opens a new figure showing
the source.
Parameters
----------
sources : ndarray
Sources as drawn from ica.get_sources.
start : int
x-axis start index. If None from the beginning.
stop : int
x-axis stop index. If None to the end.
n_components : int
Number of components fitted.
source_idx : array-like
Indices for subsetting the sources.
ncol : int
Number of panel-columns.
title : str
The figure title. If None a default is provided.
show : bool
If True, plot will be shown, else just the figure is returned.
"""
import matplotlib.pyplot as plt
if source_idx is None:
source_idx = np.arange(len(sources))
elif isinstance(source_idx, list):
source_idx = np.array(source_idx)
if exclude is None:
exclude = []
n_components = len(sources)
ylims = sources.min(), sources.max()
xlims = np.arange(sources.shape[-1])[[0, -1]]
fig, axes = _prepare_trellis(n_components, ncol)
if title is None:
fig.suptitle('Reconstructed latent sources', size=16)
elif title:
fig.suptitle(title, size=16)
plt.subplots_adjust(wspace=0.05, hspace=0.05)
my_iter = enumerate(zip(source_idx, axes, sources))
for i_source, (i_selection, ax, source) in my_iter:
component = '[%i]' % i_selection
# plot+ emebed idx and comp. name to use in callback
color = 'r' if i_selection in exclude else 'k'
line = ax.plot(source, linewidth=0.5, color=color, picker=1e9)[0]
vars(line)['_mne_src_idx'] = i_source
vars(line)['_mne_component'] = i_selection
vars(line)['_mne_is_bad'] = i_selection in exclude
ax.set_xlim(xlims)
ax.set_ylim(ylims)
ax.text(0.05, .95, component, transform=ax.transAxes,
verticalalignment='top')
plt.setp(ax.get_xticklabels(), visible=False)
plt.setp(ax.get_yticklabels(), visible=False)
# register callback
callback = partial(_ica_plot_sources_onpick_, sources=sources, ylims=ylims)
fig.canvas.mpl_connect('pick_event', callback)
if show:
plt.show()
return fig
def _plot_ica_sources_evoked(evoked, exclude, title):
"""Plot average over epochs in ICA space
Parameters
----------
ica : instance of mne.prerocessing.ICA
The ICA object.
epochs : instance of mne.Epochs
The Epochs to be regarded.
title : str
The figure title.
"""
import matplotlib.pyplot as plt
if title is None:
title = 'Reconstructed latent sources, time-locked'
fig = plt.figure()
times = evoked.times * 1e3
# plot unclassified sources
plt.plot(times, evoked.data.T, 'k')
for ii in exclude:
# use indexing to expose event related sources
color, label = ('r', 'ICA %02d' % ii)
plt.plot(times, evoked.data[ii].T, color='r', label=label)
plt.title(title)
plt.xlim(times[[0, -1]])
plt.xlabel('Time (ms)')
plt.ylabel('(NA)')
plt.legend(loc='best')
tight_layout(fig=fig)
return fig
def plot_ica_scores(ica, scores, exclude=None, axhline=None,
title='ICA component scores',
figsize=(12, 6)):
"""Plot scores related to detected components.
Use this function to asses how well your score describes outlier
sources and how well you were detecting them.
Parameters
----------
ica : instance of mne.preprocessing.ICA
The ICA object.
scores : array_like of float, shape (n ica components) | list of arrays
Scores based on arbitrary metric to characterize ICA components.
exclude : array_like of int
The components marked for exclusion. If None (default), ICA.exclude
will be used.
axhline : float
Draw horizontal line to e.g. visualize rejection threshold.
title : str
The figure title.
figsize : tuple of int
The figure size. Defaults to (12, 6)
Returns
-------
fig : instance of matplotlib.pyplot.Figure
The figure object
"""
import matplotlib.pyplot as plt
my_range = np.arange(ica.n_components_)
if exclude is None:
exclude = ica.exclude
exclude = np.unique(exclude)
if not isinstance(scores[0], (list, np.ndarray)):
scores = [scores]
n_rows = len(scores)
figsize = (12, 6) if figsize is None else figsize
fig, axes = plt.subplots(n_rows, figsize=figsize, sharex=True, sharey=True)
if isinstance(axes, np.ndarray):
axes = axes.flatten()
else:
axes = [axes]
plt.suptitle(title)
for this_scores, ax in zip(scores, axes):
if len(my_range) != len(this_scores):
raise ValueError('The length ofr `scores` must equal the '
'number of ICA components.')
ax.bar(my_range, this_scores, color='w')
for excl in exclude:
ax.bar(my_range[excl], this_scores[excl], color='r')
if axhline is not None:
if np.isscalar(axhline):
axhline = [axhline]
for axl in axhline:
ax.axhline(axl, color='r', linestyle='--')
ax.set_ylabel('score')
ax.set_xlabel('ICA components')
ax.set_xlim(0, len(this_scores))
plt.show()
tight_layout(fig=fig)
if len(axes) > 1:
plt.subplots_adjust(top=0.9)
return fig
def plot_ica_overlay(ica, inst, exclude=None, picks=None, start=None,
stop=None, title=None, show=True):
"""Overlay of raw and cleaned signals given the unmixing matrix.
This method helps visualizing signal quality and arficat rejection.
Parameters
----------
inst : instance of mne.io.Raw or mne.Evoked
The signals to be compared given the ICA solution. If Raw input,
The raw data are displayed before and after cleaning. In a second
panel the cross channel average will be displayed. Since dipolar
sources will be canceled out this display is sensitive to
artifacts. If evoked input, butterfly plots for clean and raw
signals will be superimposed.
exclude : array_like of int
The components marked for exclusion. If None (default), ICA.exclude
will be used.
picks : array-like of int | None (default)
Indices of channels to include (if None, all channels
are used that were included on fitting).
start : int
X-axis start index. If None from the beginning.
stop : int
X-axis stop index. If None to the end.
title : str
The figure title.
Returns
-------
fig : instance of pyplot.Figure
The figure.
"""
# avoid circular imports
from ..io.base import _BaseRaw
from ..evoked import Evoked
from ..preprocessing.ica import _check_start_stop
import matplotlib.pyplot as plt
if not isinstance(inst, (_BaseRaw, Evoked)):
raise ValueError('Data input must be of Raw or Epochs type')
if title is None:
title = 'Signals before (red) and after (black) cleaning'
if picks is None:
picks = [inst.ch_names.index(k) for k in ica.ch_names]
if exclude is None:
exclude = ica.exclude
if isinstance(inst, _BaseRaw):
if start is None:
start = 0.0
if stop is None:
stop = 3.0
ch_types_used = [k for k in ['mag', 'grad', 'eeg'] if k in ica]
start_compare, stop_compare = _check_start_stop(inst, start, stop)
data, times = inst[picks, start_compare:stop_compare]
raw_cln = ica.apply(inst, exclude=exclude, start=start, stop=stop,
copy=True)
data_cln, _ = raw_cln[picks, start_compare:stop_compare]
fig = _plot_ica_overlay_raw(data=data, data_cln=data_cln,
times=times * 1e3, title=title,
ch_types_used=ch_types_used)
elif isinstance(inst, Evoked):
if start is not None and stop is not None:
inst = inst.crop(start, stop, copy=True)
if picks is not None:
inst.pick_channels([inst.ch_names[p] for p in picks])
evoked_cln = ica.apply(inst, exclude=exclude, copy=True)
fig = _plot_ica_overlay_evoked(evoked=inst, evoked_cln=evoked_cln,
title=title)
if show is True:
plt.show()
return fig
def _plot_ica_overlay_raw(data, data_cln, times, title, ch_types_used):
"""Plot evoked after and before ICA cleaning
Parameters
----------
ica : instance of mne.preprocessing.ICA
The ICA object.
epochs : instance of mne.Epochs
The Epochs to be regarded.
Returns
-------
fig : instance of pyplot.Figure
"""
import matplotlib.pyplot as plt
# Restore sensor space data and keep all PCA components
# let's now compare the date before and after cleaning.
# first the raw data
assert data.shape == data_cln.shape
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
plt.suptitle(title)
ax1.plot(times, data.T, color='r')
ax1.plot(times, data_cln.T, color='k')
ax1.set_xlabel('time (s)')
ax1.set_xlim(times[0], times[-1])
ax1.set_xlim(times[0], times[-1])
ax1.set_title('Raw data')
_ch_types = {'mag': 'Magnetometers',
'grad': 'Gradiometers',
'eeg': 'EEG'}
ch_types = ', '.join([_ch_types[k] for k in ch_types_used])
ax2.set_title('Average across channels ({})'.format(ch_types))
ax2.plot(times, data.mean(0), color='r')
ax2.plot(times, data_cln.mean(0), color='k')
ax2.set_xlim(100, 106)
ax2.set_xlabel('time (ms)')
ax2.set_xlim(times[0], times[-1])
tight_layout(fig=fig)
fig.subplots_adjust(top=0.90)
fig.canvas.draw()
return fig
def _plot_ica_overlay_evoked(evoked, evoked_cln, title):
"""Plot evoked after and before ICA cleaning
Parameters
----------
ica : instance of mne.preprocessing.ICA
The ICA object.
epochs : instance of mne.Epochs
The Epochs to be regarded.
Returns
-------
fig : instance of pyplot.Figure
"""
import matplotlib.pyplot as plt
ch_types_used = [c for c in ['mag', 'grad', 'eeg'] if c in evoked]
n_rows = len(ch_types_used)
ch_types_used_cln = [c for c in ['mag', 'grad', 'eeg'] if
c in evoked_cln]
if len(ch_types_used) != len(ch_types_used_cln):
raise ValueError('Raw and clean evokeds must match. '
'Found different channels.')
fig, axes = plt.subplots(n_rows, 1)
fig.suptitle('Average signal before (red) and after (black) ICA')
axes = axes.flatten() if isinstance(axes, np.ndarray) else axes
evoked.plot(axes=axes)
for ax in fig.axes:
[l.set_color('r') for l in ax.get_lines()]
fig.canvas.draw()
evoked_cln.plot(axes=axes)
tight_layout(fig=fig)
fig.subplots_adjust(top=0.90)
fig.canvas.draw()
return fig
|