File: test_ica.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (140 lines) | stat: -rw-r--r-- 4,464 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Authors: Denis Engemann <denis.engemann@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: Simplified BSD

import os.path as op
from functools import wraps
import warnings

from numpy.testing import assert_raises

from mne import io, read_events, Epochs, read_cov
from mne import pick_types
from mne.datasets import sample
from mne.utils import check_sklearn_version
from mne.preprocessing import ICA, create_ecg_epochs, create_eog_epochs


warnings.simplefilter('always')  # enable b/c these tests throw warnings

# Set our plotters to test mode
import matplotlib
matplotlib.use('Agg')  # for testing don't use X server
import matplotlib.pyplot as plt


data_dir = sample.data_path(download=False)
subjects_dir = op.join(data_dir, 'subjects')
ecg_fname = op.join(data_dir, 'MEG', 'sample', 'sample_audvis_ecg_proj.fif')

base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
evoked_fname = op.join(base_dir, 'test-ave.fif')
raw_fname = op.join(base_dir, 'test_raw.fif')
cov_fname = op.join(base_dir, 'test-cov.fif')
event_name = op.join(base_dir, 'test-eve.fif')
event_id, tmin, tmax = 1, -0.1, 0.2


def requires_sklearn(function):
    """Decorator to skip test if scikit-learn >= 0.12 is not available"""
    @wraps(function)
    def dec(*args, **kwargs):
        if not check_sklearn_version(min_version='0.12'):
            from nose.plugins.skip import SkipTest
            raise SkipTest('Test %s skipped, requires scikit-learn >= 0.12'
                           % function.__name__)
        ret = function(*args, **kwargs)
        return ret
    return dec


def _get_raw():
    return io.Raw(raw_fname, preload=False)


def _get_events():
    return read_events(event_name)


def _get_picks(raw):
    return [0, 1, 2, 6, 7, 8, 12, 13, 14]  # take a only few channels


def _get_epochs():
    raw = _get_raw()
    events = _get_events()
    picks = _get_picks(raw)
    epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0))
    return epochs


@requires_sklearn
def test_plot_ica_components():
    """Test plotting of ICA solutions
    """
    raw = _get_raw()
    ica = ICA(noise_cov=read_cov(cov_fname), n_components=2,
              max_pca_components=3, n_pca_components=3)
    ica_picks = _get_picks(raw)
    ica.fit(raw, picks=ica_picks)
    warnings.simplefilter('always', UserWarning)
    with warnings.catch_warnings(record=True):
        for components in [0, [0], [0, 1], [0, 1] * 2, None]:
            ica.plot_components(components, image_interp='bilinear', res=16)
    ica.info = None
    assert_raises(RuntimeError, ica.plot_components, 1)
    plt.close('all')


@requires_sklearn
def test_plot_ica_sources():
    """Test plotting of ICA panel
    """
    raw = io.Raw(raw_fname, preload=True)
    picks = _get_picks(raw)
    epochs = _get_epochs()
    raw.pick_channels([raw.ch_names[k] for k in picks])
    ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False,
                           ecg=False, eog=False, exclude='bads')
    ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3)
    ica.fit(raw, picks=ica_picks)
    ica.plot_sources(raw)
    ica.plot_sources(epochs)
    with warnings.catch_warnings(record=True):  # no labeled objects mpl
        ica.plot_sources(epochs.average())
    assert_raises(ValueError, ica.plot_sources, 'meeow')
    plt.close('all')


@requires_sklearn
def test_plot_ica_overlay():
    """Test plotting of ICA cleaning
    """
    raw = _get_raw()
    picks = _get_picks(raw)
    ica = ICA(noise_cov=read_cov(cov_fname), n_components=2,
              max_pca_components=3, n_pca_components=3)
    ica.fit(raw, picks=picks)
    # don't test raw, needs preload ...
    ecg_epochs = create_ecg_epochs(raw, picks=picks)
    ica.plot_overlay(ecg_epochs.average())
    eog_epochs = create_eog_epochs(raw, picks=picks)
    ica.plot_overlay(eog_epochs.average())
    assert_raises(ValueError, ica.plot_overlay, raw[:2, :3][0])
    plt.close('all')


@requires_sklearn
def test_plot_ica_scores():
    """Test plotting of ICA scores
    """
    raw = _get_raw()
    picks = _get_picks(raw)
    ica = ICA(noise_cov=read_cov(cov_fname), n_components=2,
              max_pca_components=3, n_pca_components=3)
    ica.fit(raw, picks=picks)
    ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1])
    assert_raises(ValueError, ica.plot_scores, [0.2])
    plt.close('all')