File: topomap.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (1035 lines) | stat: -rw-r--r-- 39,746 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
"""Functions to plot M/EEG data e.g. topographies
"""
from __future__ import print_function

# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#
# License: Simplified BSD

import math
import copy

import numpy as np
from scipy import linalg

from ..baseline import rescale
from ..io.constants import FIFF
from ..io.pick import pick_types
from ..utils import _clean_names, deprecated
from .utils import tight_layout, _setup_vmin_vmax, DEFAULTS
from .utils import _prepare_trellis, _check_delayed_ssp
from .utils import _draw_proj_checkbox


def _prepare_topo_plot(obj, ch_type, layout):
    """"Aux Function"""
    info = copy.deepcopy(obj.info)
    if layout is None and ch_type is not 'eeg':
        from ..layouts.layout import find_layout
        layout = find_layout(info)
    elif layout == 'auto':
        layout = None

    info['ch_names'] = _clean_names(info['ch_names'])
    for ii, this_ch in enumerate(info['chs']):
        this_ch['ch_name'] = info['ch_names'][ii]

    # special case for merging grad channels
    if (ch_type == 'grad' and FIFF.FIFFV_COIL_VV_PLANAR_T1 in
            np.unique([ch['coil_type'] for ch in info['chs']])):
        from ..layouts.layout import _pair_grad_sensors
        picks, pos = _pair_grad_sensors(info, layout)
        merge_grads = True
    else:
        merge_grads = False
        if ch_type == 'eeg':
            picks = pick_types(info, meg=False, eeg=True, ref_meg=False,
                               exclude='bads')
        else:
            picks = pick_types(info, meg=ch_type, ref_meg=False,
                               exclude='bads')

        if len(picks) == 0:
            raise ValueError("No channels of type %r" % ch_type)

        if layout is None:
            chs = [info['chs'][i] for i in picks]
            from ..layouts.layout import _find_topomap_coords
            pos = _find_topomap_coords(chs, layout)
        else:
            names = [n.upper() for n in layout.names]
            pos = [layout.pos[names.index(info['ch_names'][k].upper())]
                   for k in picks]

    return picks, pos, merge_grads, info['ch_names']


def _plot_update_evoked_topomap(params, bools):
    """ Helper to update topomaps """
    projs = [proj for ii, proj in enumerate(params['projs'])
             if ii in np.where(bools)[0]]

    params['proj_bools'] = bools
    new_evoked = params['evoked'].copy()
    new_evoked.info['projs'] = []
    new_evoked.add_proj(projs)
    new_evoked.apply_proj()

    data = new_evoked.data[np.ix_(params['picks'],
                                  params['time_idx'])] * params['scale']
    if params['merge_grads']:
        from ..layouts.layout import _merge_grad_data
        data = _merge_grad_data(data)
    image_mask = params['image_mask']

    pos_x, pos_y = np.asarray(params['pos'])[:, :2].T

    xi = np.linspace(pos_x.min(), pos_x.max(), params['res'])
    yi = np.linspace(pos_y.min(), pos_y.max(), params['res'])
    Xi, Yi = np.meshgrid(xi, yi)
    for ii, im in enumerate(params['images']):
        Zi = _griddata(pos_x, pos_y, data[:, ii], Xi, Yi)
        Zi[~image_mask] = np.nan
        im.set_data(Zi)
    for cont in params['contours']:
        cont.set_array(np.c_[Xi, Yi, Zi])

    params['fig'].canvas.draw()


def plot_projs_topomap(projs, layout=None, cmap='RdBu_r', sensors='k,',
                       colorbar=False, res=64, size=1, show=True,
                       outlines='head', contours=6, image_interp='bilinear'):
    """Plot topographic maps of SSP projections

    Parameters
    ----------
    projs : list of Projection
        The projections
    layout : None | Layout | list of Layout
        Layout instance specifying sensor positions (does not need to be
        specified for Neuromag data). Or a list of Layout if projections
        are from different sensor types.
    cmap : matplotlib colormap
        Colormap.
    sensors : bool | str
        Add markers for sensor locations to the plot. Accepts matplotlib plot
        format string (e.g., 'r+' for red plusses).
    colorbar : bool
        Plot a colorbar.
    res : int
        The resolution of the topomap image (n pixels along each side).
    size : scalar
        Side length of the topomaps in inches (only applies when plotting
        multiple topomaps at a time).
    show : bool
        Show figures if True
    outlines : 'head' | dict | None
        The outlines to be drawn. If 'head', a head scheme will be drawn. If
        dict, each key refers to a tuple of x and y positions. The values in
        'mask_pos' will serve as image mask. If None, nothing will be drawn.
        Defaults to 'head'.
    contours : int | False | None
        The number of contour lines to draw. If 0, no contours will be drawn.
    image_interp : str
        The image interpolation to be used. All matplotlib options are
        accepted.

    Returns
    -------
    fig : instance of matplotlib figure
        Figure distributing one image per channel across sensor topography.
    """
    import matplotlib.pyplot as plt

    if layout is None:
        from ..layouts import read_layout
        layout = read_layout('Vectorview-all')

    if not isinstance(layout, list):
        layout = [layout]

    n_projs = len(projs)
    nrows = math.floor(math.sqrt(n_projs))
    ncols = math.ceil(n_projs / nrows)

    fig = plt.gcf()
    fig.clear()
    for k, proj in enumerate(projs):

        ch_names = _clean_names(proj['data']['col_names'])
        data = proj['data']['data'].ravel()

        idx = []
        for l in layout:
            is_vv = l.kind.startswith('Vectorview')
            if is_vv:
                from ..layouts.layout import _pair_grad_sensors_from_ch_names
                grad_pairs = _pair_grad_sensors_from_ch_names(ch_names)
                if grad_pairs:
                    ch_names = [ch_names[i] for i in grad_pairs]

            idx = [l.names.index(c) for c in ch_names if c in l.names]
            if len(idx) == 0:
                continue

            pos = l.pos[idx]
            if is_vv and grad_pairs:
                from ..layouts.layout import _merge_grad_data
                shape = (len(idx) / 2, 2, -1)
                pos = pos.reshape(shape).mean(axis=1)
                data = _merge_grad_data(data[grad_pairs]).ravel()

            break

        ax = plt.subplot(nrows, ncols, k + 1)
        ax.set_title(proj['desc'][:10] + '...')
        if len(idx):
            plot_topomap(data, pos, vmax=None, cmap=cmap,
                         sensors=sensors, res=res, outlines=outlines,
                         contours=contours, image_interp=image_interp)
            if colorbar:
                plt.colorbar()
        else:
            raise RuntimeError('Cannot find a proper layout for projection %s'
                               % proj['desc'])
    fig = ax.get_figure()
    if show and plt.get_backend() != 'agg':
        fig.show()
    tight_layout(fig=fig)

    return fig


def _check_outlines(pos, outlines, head_scale=0.85):
    """Check or create outlines for topoplot
    """
    pos = np.asarray(pos)
    if outlines in ('head', None):
        radius = 0.5
        step = 2 * np.pi / 101
        l = np.arange(0, 2 * np.pi + step, step)
        head_x = np.cos(l) * radius
        head_y = np.sin(l) * radius
        nose_x = np.array([0.18, 0, -0.18]) * radius
        nose_y = np.array([radius - .004, radius * 1.15, radius - .004])
        ear_x = np.array([.497, .510, .518, .5299, .5419, .54, .547,
                         .532, .510, .489])
        ear_y = np.array([.0555, .0775, .0783, .0746, .0555, -.0055, -.0932,
                          -.1313, -.1384, -.1199])
        x, y = pos[:, :2].T
        x_range = np.abs(x.max() - x.min())
        y_range = np.abs(y.max() - y.min())

        # shift and scale the electrode positions
        pos[:, 0] = head_scale * ((pos[:, 0] - x.min()) / x_range - 0.5)
        pos[:, 1] = head_scale * ((pos[:, 1] - y.min()) / y_range - 0.5)

        # Define the outline of the head, ears and nose
        if outlines is not None:
            outlines = dict(head=(head_x, head_y), nose=(nose_x, nose_y),
                            ear_left=(ear_x,  ear_y),
                            ear_right=(-ear_x,  ear_y))
        else:
            outlines = dict()

        outlines['mask_pos'] = head_x, head_y
    elif isinstance(outlines, dict):
        if 'mask_pos' not in outlines:
            raise ValueError('You must specify the coordinates of the image'
                             'mask')
    else:
        raise ValueError('Invalid value for `outlines')

    return pos, outlines


def _inside_contour(pos, contour):
    """Aux function"""
    npos, ncnt = len(pos), len(contour)
    x, y = pos[:, :2].T

    check_mask = np.ones((npos), dtype=bool)
    check_mask[((x < np.min(x)) | (y < np.min(y)) |
                (x > np.max(x)) | (y > np.max(y)))] = False

    critval = 0.1
    sel = np.where(check_mask)[0]
    for this_sel in sel:
        contourx = contour[:, 0] - pos[this_sel, 0]
        contoury = contour[:, 1] - pos[this_sel, 1]
        angle = np.arctan2(contoury, contourx)
        angle = np.unwrap(angle)
        total = np.sum(np.diff(angle))
        check_mask[this_sel] = np.abs(total) > critval

    return check_mask


def _griddata(x, y, v, xi, yi):
    """Aux function"""
    xy = x.ravel() + y.ravel() * -1j
    d = xy[None, :] * np.ones((len(xy), 1))
    d = np.abs(d - d.T)
    n = d.shape[0]
    d.flat[::n + 1] = 1.

    g = (d * d) * (np.log(d) - 1.)
    g.flat[::n + 1] = 0.
    weights = linalg.solve(g, v.ravel())

    m, n = xi.shape
    zi = np.zeros_like(xi)
    xy = xy.T

    g = np.empty(xy.shape)
    for i in range(m):
        for j in range(n):
            d = np.abs(xi[i, j] + -1j * yi[i, j] - xy)
            mask = np.where(d == 0)[0]
            if len(mask):
                d[mask] = 1.
            np.log(d, out=g)
            g -= 1.
            g *= d * d
            if len(mask):
                g[mask] = 0.
            zi[i, j] = g.dot(weights)
    return zi


def plot_topomap(data, pos, vmax=None, vmin=None, cmap='RdBu_r', sensors='k,',
                 res=64, axis=None, names=None, show_names=False, mask=None,
                 mask_params=None, outlines='head', image_mask=None,
                 contours=6, image_interp='bilinear'):
    """Plot a topographic map as image

    Parameters
    ----------
    data : array, length = n_points
        The data values to plot.
    pos : array, shape = (n_points, 2)
        For each data point, the x and y coordinates.
    vmin : float | callable
        The value specfying the lower bound of the color range.
        If None, and vmax is None, -vmax is used. Else np.min(data).
        If callable, the output equals vmin(data).
    vmax : float | callable
        The value specfying the upper bound of the color range.
        If None, the maximum absolute value is used. If vmin is None,
        but vmax is not, defaults to np.min(data).
        If callable, the output equals vmax(data).
    cmap : matplotlib colormap
        Colormap.
    sensors : bool | str
        Add markers for sensor locations to the plot. Accepts matplotlib plot
        format string (e.g., 'r+' for red plusses).
    res : int
        The resolution of the topomap image (n pixels along each side).
    axis : instance of Axis | None
        The axis to plot to. If None, the current axis will be used.
    names : list | None
        List of channel names. If None, channel names are not plotted.
    show_names : bool | callable
        If True, show channel names on top of the map. If a callable is
        passed, channel names will be formatted using the callable; e.g., to
        delete the prefix 'MEG ' from all channel names, pass the function
        lambda x: x.replace('MEG ', ''). If `mask` is not None, only
        significant sensors will be shown.
    mask : ndarray of bool, shape (n_channels, n_times) | None
        The channels to be marked as significant at a given time point.
        Indices set to `True` will be considered. Defaults to None.
    mask_params : dict | None
        Additional plotting parameters for plotting significant sensors.
        Default (None) equals:
        dict(marker='o', markerfacecolor='w', markeredgecolor='k', linewidth=0,
             markersize=4)
    outlines : 'head' | dict | None
        The outlines to be drawn. If 'head', a head scheme will be drawn. If
        dict, each key refers to a tuple of x and y positions. The values in
        'mask_pos' will serve as image mask. If None, nothing will be drawn.
        Defaults to 'head'.
    image_mask : ndarray of bool, shape (res, res) | None
        The image mask to cover the interpolated surface. If None, it will be
        computed from the outline.
    contour : int | False | None
        The number of contour lines to draw. If 0, no contours will be drawn.
    image_interp : str
        The image interpolation to be used. All matplotlib options are
        accepted.

    Returns
    -------
    im : matplotlib.image.AxesImage
        The interpolated data.
    cn : matplotlib.contour.ContourSet
        The fieldlines.
    """
    import matplotlib.pyplot as plt

    data = np.asarray(data)
    if data.ndim > 1:
        err = ("Data needs to be array of shape (n_sensors,); got shape "
               "%s." % str(data.shape))
        raise ValueError(err)
    elif len(data) != len(pos):
        err = ("Data and pos need to be of same length. Got data of shape %s, "
               "pos of shape %s." % (str(), str()))

    axes = plt.gca()
    axes.set_frame_on(False)

    vmin, vmax = _setup_vmin_vmax(data, vmin, vmax)

    plt.xticks(())
    plt.yticks(())
    pos, outlines = _check_outlines(pos, outlines)
    pos_x = pos[:, 0]
    pos_y = pos[:, 1]

    ax = axis if axis else plt.gca()
    if any([not pos_y.any(), not pos_x.any()]):
        raise RuntimeError('No position information found, cannot compute '
                           'geometries for topomap.')
    if outlines is None:
        xmin, xmax = pos_x.min(), pos_x.max()
        ymin, ymax = pos_y.min(), pos_y.max()
    else:
        xlim = np.inf, -np.inf,
        ylim = np.inf, -np.inf,
        mask_ = np.c_[outlines['mask_pos']]
        xmin, xmax = (np.min(np.r_[xlim[0], mask_[:, 0] * 1.01]),
                      np.max(np.r_[xlim[1], mask_[:, 0] * 1.01]))
        ymin, ymax = (np.min(np.r_[ylim[0], mask_[:, 1] * 1.01]),
                      np.max(np.r_[ylim[1], mask_[:, 1] * 1.01]))

    # interpolate data
    xi = np.linspace(xmin, xmax, res)
    yi = np.linspace(ymin, ymax, res)
    Xi, Yi = np.meshgrid(xi, yi)
    Zi = _griddata(pos_x, pos_y, data, Xi, Yi)

    if outlines is None:
        _is_default_outlines = False
    elif isinstance(outlines, dict):
        _is_default_outlines = any([k.startswith('head') for k in outlines])

    if _is_default_outlines and image_mask is None:
        # prepare masking
        image_mask, pos = _make_image_mask(outlines, pos, res)

    if image_mask is not None and not _is_default_outlines:
        Zi[~image_mask] = np.nan

    if mask_params is None:
        mask_params = DEFAULTS['mask_params'].copy()
    elif isinstance(mask_params, dict):
        params = dict((k, v) for k, v in DEFAULTS['mask_params'].items()
                      if k not in mask_params)
        mask_params.update(params)
    else:
        raise ValueError('`mask_params` must be of dict-type '
                         'or None')

    # plot map and countour
    im = ax.imshow(Zi, cmap=cmap, vmin=vmin, vmax=vmax, origin='lower',
                   aspect='equal', extent=(xmin, xmax, ymin, ymax),
                   interpolation=image_interp)
    # plot outline
    linewidth = mask_params['markeredgewidth']
    if isinstance(outlines, dict):
        for k, (x, y) in outlines.items():
            if 'mask' in k:
                continue
            ax.plot(x, y, color='k', linewidth=linewidth)

    # This tackles an incomprehensible matplotlib bug if no contours are
    # drawn. To avoid rescalings, we will always draw contours.
    # But if no contours are desired we only draw one and make it invisible .
    no_contours = False
    if contours in (False, None):
        contours, no_contours = 1, True
    cont = ax.contour(Xi, Yi, Zi, contours, colors='k',
                      linewidths=linewidth)
    if no_contours is True:
        for col in cont.collections:
            col.set_visible(False)

    if _is_default_outlines:
        from matplotlib import patches
        # remove nose offset and tweak
        patch = patches.Circle((0.5, 0.4687), radius=.46,
                               clip_on=True,
                               transform=ax.transAxes)
        im.set_clip_path(patch)
        ax.set_clip_path(patch)
        if cont is not None:
            for col in cont.collections:
                col.set_clip_path(patch)

    if sensors is True:
        sensors = 'k,'
    if sensors and mask is None:
        ax.plot(pos_x, pos_y, sensors)
    elif sensors and mask is not None:
        idx = np.where(mask)[0]
        ax.plot(pos_x[idx], pos_y[idx], **mask_params)
        idx = np.where(~mask)[0]
        ax.plot(pos_x[idx], pos_y[idx], sensors)

    if show_names:
        if show_names is True:
            show_names = lambda x: x
        show_idx = np.arange(len(names)) if mask is None else np.where(mask)[0]
        for ii, (p, ch_id) in enumerate(zip(pos, names)):
            if ii not in show_idx:
                continue
            ch_id = show_names(ch_id)
            ax.text(p[0], p[1], ch_id, horizontalalignment='center',
                    verticalalignment='center', size='x-small')

    plt.subplots_adjust(top=.95)

    return im, cont


def _make_image_mask(outlines, pos, res):
    """Aux function
    """

    mask_ = np.c_[outlines['mask_pos']]
    xmin, xmax = (np.min(np.r_[np.inf, mask_[:, 0]]),
                  np.max(np.r_[-np.inf, mask_[:, 0]]))
    ymin, ymax = (np.min(np.r_[np.inf, mask_[:, 1]]),
                  np.max(np.r_[-np.inf, mask_[:, 1]]))

    inside = _inside_contour(pos, mask_)
    outside = np.invert(inside)
    outlier_points = pos[outside]
    while np.any(outlier_points):  # auto shrink
        pos *= 0.99
        inside = _inside_contour(pos, mask_)
        outside = np.invert(inside)
        outlier_points = pos[outside]
    image_mask = np.zeros((res, res), dtype=bool)
    xi_mask = np.linspace(xmin, xmax, res)
    yi_mask = np.linspace(ymin, ymax, res)
    Xi_mask, Yi_mask = np.meshgrid(xi_mask, yi_mask)

    pos_ = np.c_[Xi_mask.flatten(), Yi_mask.flatten()]
    inds = _inside_contour(pos_, mask_)
    image_mask[inds.reshape(image_mask.shape)] = True

    return image_mask, pos


@deprecated('`plot_ica_topomap` is deprecated and will be removed in '
            'MNE 1.0. Use `plot_ica_components` instead')
def plot_ica_topomap(ica, source_idx, ch_type='mag', res=64, layout=None,
                     vmax=None, cmap='RdBu_r', sensors='k,', colorbar=True,
                     show=True):
    """This functoin is deprecated

    See ``plot_ica_components``.
    """
    return plot_ica_components(ica, source_idx, ch_type, res, layout,
                               vmax, cmap, sensors, colorbar)


def plot_ica_components(ica, picks=None, ch_type='mag', res=64,
                        layout=None, vmin=None, vmax=None, cmap='RdBu_r',
                        sensors='k,', colorbar=False, title=None,
                        show=True, outlines='head', contours=6,
                        image_interp='bilinear'):
    """Project unmixing matrix on interpolated sensor topogrpahy.

    Parameters
    ----------
    ica : instance of mne.preprocessing.ICA
        The ICA solution.
    picks : int | array-like | None
        The indices of the sources to be plotted.
        If None all are plotted in batches of 20.
    ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg'
        The channel type to plot. For 'grad', the gradiometers are
        collected in pairs and the RMS for each pair is plotted.
    layout : None | Layout
        Layout instance specifying sensor positions (does not need to
        be specified for Neuromag data). If possible, the correct layout is
        inferred from the data.
    vmin : float | callable
        The value specfying the lower bound of the color range.
        If None, and vmax is None, -vmax is used. Else np.min(data).
        If callable, the output equals vmin(data).
    vmax : float | callable
        The value specfying the upper bound of the color range.
        If None, the maximum absolute value is used. If vmin is None,
        but vmax is not, defaults to np.min(data).
        If callable, the output equals vmax(data).
    cmap : matplotlib colormap
        Colormap.
    sensors : bool | str
        Add markers for sensor locations to the plot. Accepts matplotlib
        plot format string (e.g., 'r+' for red plusses).
    colorbar : bool
        Plot a colorbar.
    res : int
        The resolution of the topomap image (n pixels along each side).
    show : bool
        Call pyplot.show() at the end.
    outlines : 'head' | dict | None
            The outlines to be drawn. If 'head', a head scheme will be drawn.
            If dict, each key refers to a tuple of x and y positions. The
            values in 'mask_pos' will serve as image mask. If None,
            nothing will be drawn. defaults to 'head'.
    contours : int | False | None
        The number of contour lines to draw. If 0, no contours will be drawn.
    image_interp : str
        The image interpolation to be used. All matplotlib options are
        accepted.

    Returns
    -------
    fig : instance of matplotlib.pyplot.Figure or list
        The figure object(s).
    """
    import matplotlib.pyplot as plt
    from mpl_toolkits.axes_grid import make_axes_locatable

    if picks is None:  # plot components by sets of 20
        n_components = ica.mixing_matrix_.shape[1]
        p = 20
        figs = []
        for k in range(0, n_components, p):
            picks = range(k, min(k + p, n_components))
            fig = plot_ica_components(ica, picks=picks,
                                      ch_type=ch_type, res=res, layout=layout,
                                      vmax=vmax, cmap=cmap, sensors=sensors,
                                      colorbar=colorbar, title=title,
                                      show=show, outlines=outlines,
                                      contours=contours,
                                      image_interp=image_interp)
            figs.append(fig)
        return figs
    elif np.isscalar(picks):
        picks = [picks]

    data = np.dot(ica.mixing_matrix_[:, picks].T,
                  ica.pca_components_[:ica.n_components_])

    if ica.info is None:
        raise RuntimeError('The ICA\'s measurement info is missing. Please '
                           'fit the ICA or add the corresponding info object.')

    data_picks, pos, merge_grads, names = _prepare_topo_plot(ica, ch_type,
                                                             layout)
    pos, outlines = _check_outlines(pos, outlines)
    if outlines not in (None, 'head'):
        image_mask, pos = _make_image_mask(outlines, pos, res)
    else:
        image_mask = None

    data = np.atleast_2d(data)
    data = data[:, data_picks]

    # prepare data for iteration
    fig, axes = _prepare_trellis(len(data), max_col=5)
    if title is None:
        title = 'ICA components'
    fig.suptitle(title)

    if merge_grads:
        from ..layouts.layout import _merge_grad_data
    for ii, data_, ax in zip(picks, data, axes):
        ax.set_title('IC #%03d' % ii, fontsize=12)
        data_ = _merge_grad_data(data_) if merge_grads else data_
        vmin_, vmax_ = _setup_vmin_vmax(data_, vmin, vmax)
        im = plot_topomap(data_.flatten(), pos, vmin=vmin_, vmax=vmax_,
                          res=res, axis=ax, cmap=cmap, outlines=outlines,
                          image_mask=image_mask, contours=contours,
                          image_interp=image_interp)[0]
        if colorbar:
            divider = make_axes_locatable(ax)
            cax = divider.append_axes("right", size="5%", pad=0.05)
            cbar = plt.colorbar(im, cax=cax, format='%3.2f', cmap=cmap)
            cbar.ax.tick_params(labelsize=12)
            cbar.set_ticks((vmin_, vmax_))
            cbar.ax.set_title('AU', fontsize=10)
        ax.set_yticks([])
        ax.set_xticks([])
        ax.set_frame_on(False)
    tight_layout(fig=fig)
    fig.subplots_adjust(top=0.95)
    fig.canvas.draw()

    if show is True:
        plt.show()
    return fig


def plot_tfr_topomap(tfr, tmin=None, tmax=None, fmin=None, fmax=None,
                     ch_type='mag', baseline=None, mode='mean', layout=None,
                     vmax=None, vmin=None, cmap='RdBu_r', sensors='k,',
                     colorbar=True, unit=None, res=64, size=2, format='%1.1e',
                     show_names=False, title=None, axes=None, show=True):
    """Plot topographic maps of specific time-frequency intervals of TFR data

    Parameters
    ----------
    tfr : AvereageTFR
        The AvereageTFR object.
    tmin : None | float
        The first time instant to display. If None the first time point
        available is used.
    tmax : None | float
        The last time instant to display. If None the last time point
        available is used.
    fmin : None | float
        The first frequency to display. If None the first frequency
        available is used.
    fmax : None | float
        The last frequency to display. If None the last frequency
        available is used.
    ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg'
        The channel type to plot. For 'grad', the gradiometers are
        collected in pairs and the RMS for each pair is plotted.
    baseline : tuple or list of length 2
        The time interval to apply rescaling / baseline correction.
        If None do not apply it. If baseline is (a, b)
        the interval is between "a (s)" and "b (s)".
        If a is None the beginning of the data is used
        and if b is None then b is set to the end of the interval.
        If baseline is equal to (None, None) all the time
        interval is used.
    mode : 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent'
        Do baseline correction with ratio (power is divided by mean
        power during baseline) or z-score (power is divided by standard
        deviation of power during baseline after subtracting the mean,
        power = [power - mean(power_baseline)] / std(power_baseline))
        If None, baseline no correction will be performed.
    layout : None | Layout
        Layout instance specifying sensor positions (does not need to
        be specified for Neuromag data). If possible, the correct layout
        file is inferred from the data; if no appropriate layout file
        was found, the layout is automatically generated from the sensor
        locations.
    vmin : float | callable
        The value specfying the lower bound of the color range.
        If None, and vmax is None, -vmax is used. Else np.min(data).
        If callable, the output equals vmin(data).
    vmax : float | callable
        The value specfying the upper bound of the color range.
        If None, the maximum absolute value is used. If vmin is None,
        but vmax is not, defaults to np.min(data).
        If callable, the output equals vmax(data).
    cmap : matplotlib colormap
        Colormap. For magnetometers and eeg defaults to 'RdBu_r', else
        'Reds'.
    sensors : bool | str
        Add markers for sensor locations to the plot. Accepts matplotlib
        plot format string (e.g., 'r+' for red plusses).
    colorbar : bool
        Plot a colorbar.
    unit : str | None
        The unit of the channel type used for colorbar labels.
    res : int
        The resolution of the topomap image (n pixels along each side).
    size : float
        Side length per topomap in inches.
    format : str
        String format for colorbar values.
    show_names : bool | callable
        If True, show channel names on top of the map. If a callable is
        passed, channel names will be formatted using the callable; e.g., to
        delete the prefix 'MEG ' from all channel names, pass the function
        lambda x: x.replace('MEG ', ''). If `mask` is not None, only
        significant sensors will be shown.
    title : str | None
        Title. If None (default), no title is displayed.
    axes : instance of Axis | None
        The axes to plot to. If None the axes is defined automatically.
    show : bool
        Call pyplot.show() at the end.

    Returns
    -------
    fig : matplotlib.figure.Figure
        The figure containing the topography.
    """
    import matplotlib.pyplot as plt
    from mpl_toolkits.axes_grid1 import make_axes_locatable

    picks, pos, merge_grads, names = _prepare_topo_plot(tfr, ch_type,
                                                        layout)
    if not show_names:
        names = None

    data = tfr.data

    if mode is not None and baseline is not None:
        data = rescale(data, tfr.times, baseline, mode, copy=True)

    # crop time
    itmin, itmax = None, None
    if tmin is not None:
        itmin = np.where(tfr.times >= tmin)[0][0]
    if tmax is not None:
        itmax = np.where(tfr.times <= tmax)[0][-1]

    # crop freqs
    ifmin, ifmax = None, None
    if fmin is not None:
        ifmin = np.where(tfr.freqs >= fmin)[0][0]
    if fmax is not None:
        ifmax = np.where(tfr.freqs <= fmax)[0][-1]

    data = data[picks, ifmin:ifmax, itmin:itmax]
    data = np.mean(np.mean(data, axis=2), axis=1)[:, np.newaxis]

    if merge_grads:
        from ..layouts.layout import _merge_grad_data
        data = _merge_grad_data(data)

    vmin, vmax = _setup_vmin_vmax(data, vmin, vmax)

    if axes is None:
        fig = plt.figure()
        ax = fig.gca()
    else:
        fig = axes.figure
        ax = axes

    ax.set_yticks([])
    ax.set_xticks([])
    ax.set_frame_on(False)

    if title is not None:
        ax.set_title(title)

    im, _ = plot_topomap(data[:, 0], pos, vmin=vmin, vmax=vmax,
                         axis=ax, cmap=cmap, image_interp='bilinear',
                         contours=False, names=names)

    if colorbar:
        divider = make_axes_locatable(ax)
        cax = divider.append_axes("right", size="5%", pad=0.05)
        cbar = plt.colorbar(im, cax=cax, format='%3.2f', cmap=cmap)
        cbar.set_ticks((vmin, vmax))
        cbar.ax.tick_params(labelsize=12)
        cbar.ax.set_title('AU')

    if show:
        plt.show()

    return fig


def plot_evoked_topomap(evoked, times=None, ch_type='mag', layout=None,
                        vmax=None, vmin=None, cmap='RdBu_r', sensors='k,',
                        colorbar=True, scale=None, scale_time=1e3, unit=None,
                        res=64, size=1, format='%3.1f',
                        time_format='%01d ms', proj=False, show=True,
                        show_names=False, title=None, mask=None,
                        mask_params=None, outlines='head', contours=6,
                        image_interp='bilinear'):
    """Plot topographic maps of specific time points of evoked data

    Parameters
    ----------
    evoked : Evoked
        The Evoked object.
    times : float | array of floats | None.
        The time point(s) to plot. If None, 10 topographies will be shown
        will a regular time spacing between the first and last time instant.
    ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg'
        The channel type to plot. For 'grad', the gradiometers are collected in
        pairs and the RMS for each pair is plotted.
    layout : None | Layout
        Layout instance specifying sensor positions (does not need to
        be specified for Neuromag data). If possible, the correct layout file
        is inferred from the data; if no appropriate layout file was found, the
        layout is automatically generated from the sensor locations.
    vmin : float | callable
        The value specfying the lower bound of the color range.
        If None, and vmax is None, -vmax is used. Else np.min(data).
        If callable, the output equals vmin(data).
    vmax : float | callable
        The value specfying the upper bound of the color range.
        If None, the maximum absolute value is used. If vmin is None,
        but vmax is not, defaults to np.min(data).
        If callable, the output equals vmax(data).
    cmap : matplotlib colormap
        Colormap. For magnetometers and eeg defaults to 'RdBu_r', else
        'Reds'.
    sensors : bool | str
        Add markers for sensor locations to the plot. Accepts matplotlib plot
        format string (e.g., 'r+' for red plusses).
    colorbar : bool
        Plot a colorbar.
    scale : float | None
        Scale the data for plotting. If None, defaults to 1e6 for eeg, 1e13
        for grad and 1e15 for mag.
    scale_time : float | None
        Scale the time labels. Defaults to 1e3 (ms).
    unit : str | None
        The unit of the channel type used for colorbar label. If
        scale is None the unit is automatically determined.
    res : int
        The resolution of the topomap image (n pixels along each side).
    size : float
        Side length per topomap in inches.
    format : str
        String format for colorbar values.
    time_format : str
        String format for topomap values. Defaults to "%01d ms"
    proj : bool | 'interactive'
        If true SSP projections are applied before display. If 'interactive',
        a check box for reversible selection of SSP projection vectors will
        be show.
    show : bool
        Call pyplot.show() at the end.
    show_names : bool | callable
        If True, show channel names on top of the map. If a callable is
        passed, channel names will be formatted using the callable; e.g., to
        delete the prefix 'MEG ' from all channel names, pass the function
        lambda x: x.replace('MEG ', ''). If `mask` is not None, only
        significant sensors will be shown.
    title : str | None
        Title. If None (default), no title is displayed.
    mask : ndarray of bool, shape (n_channels, n_times) | None
        The channels to be marked as significant at a given time point.
        Indicies set to `True` will be considered. Defaults to None.
    mask_params : dict | None
        Additional plotting parameters for plotting significant sensors.
        Default (None) equals:
        dict(marker='o', markerfacecolor='w', markeredgecolor='k', linewidth=0,
             markersize=4)
    outlines : 'head' | dict | None
        The outlines to be drawn. If 'head', a head scheme will be drawn. If
        dict, each key refers to a tuple of x and y positions. The values in
        'mask_pos' will serve as image mask. If None, nothing will be drawn.
        Defaults to 'head'.
    contours : int | False | None
        The number of contour lines to draw. If 0, no contours will be drawn.
    image_interp : str
        The image interpolation to be used. All matplotlib options are
        accepted.
    """
    import matplotlib.pyplot as plt

    if ch_type.startswith('planar'):
        key = 'grad'
    else:
        key = ch_type

    if scale is None:
        scale = DEFAULTS['scalings'][key]
        unit = DEFAULTS['units'][key]

    if mask_params is None:
        mask_params = DEFAULTS['mask_params'].copy()
        mask_params['markersize'] *= size / 2.
        mask_params['markeredgewidth'] *= size / 2.

    if times is None:
        times = np.linspace(evoked.times[0], evoked.times[-1], 10)
    elif np.isscalar(times):
        times = [times]
    if len(times) > 20:
        raise RuntimeError('Too many plots requested. Please pass fewer '
                           'than 20 time instants.')
    tmin, tmax = evoked.times[[0, -1]]
    for t in times:
        if not tmin <= t <= tmax:
            raise ValueError('Times should be between %0.3f and %0.3f. (Got '
                             '%0.3f).' % (tmin, tmax, t))

    picks, pos, merge_grads, names = _prepare_topo_plot(evoked, ch_type,
                                                        layout)
    if not show_names:
        names = None

    n = len(times)
    nax = n + bool(colorbar)
    width = size * nax
    height = size * 1. + max(0, 0.1 * (4 - size))
    fig = plt.figure(figsize=(width, height))
    w_frame = plt.rcParams['figure.subplot.wspace'] / (2 * nax)
    top_frame = max((0.05 if title is None else 0.15), .2 / size)
    fig.subplots_adjust(left=w_frame, right=1 - w_frame, bottom=0,
                        top=1 - top_frame)
    time_idx = [np.where(evoked.times >= t)[0][0] for t in times]

    if proj is True and evoked.proj is not True:
        data = evoked.copy().apply_proj().data
    else:
        data = evoked.data

    data = data[np.ix_(picks, time_idx)] * scale
    if merge_grads:
        from ..layouts.layout import _merge_grad_data
        data = _merge_grad_data(data)

    vmin, vmax = _setup_vmin_vmax(data, vmin, vmax)

    images, contours_ = [], []

    if mask is not None:
        _picks = picks[::2 if ch_type not in ['mag', 'eeg'] else 1]
        mask_ = mask[np.ix_(_picks, time_idx)]

    pos, outlines = _check_outlines(pos, outlines)
    if outlines is not None:
        image_mask, pos = _make_image_mask(outlines, pos, res)
    else:
        image_mask = None

    for i, t in enumerate(times):
        ax = plt.subplot(1, nax, i + 1)
        tp, cn = plot_topomap(data[:, i], pos, vmin=vmin, vmax=vmax,
                              sensors=sensors, res=res, names=names,
                              show_names=show_names, cmap=cmap,
                              mask=mask_[:, i] if mask is not None else None,
                              mask_params=mask_params, axis=ax,
                              outlines=outlines, image_mask=image_mask,
                              contours=contours, image_interp=image_interp)
        images.append(tp)
        if cn is not None:
            contours_.append(cn)
        if time_format is not None:
            plt.title(time_format % (t * scale_time))

    if colorbar:
        cax = plt.subplot(1, n + 1, n + 1)
        plt.colorbar(images[-1], ax=cax, cax=cax, ticks=[vmin, 0, vmax],
                     format=format)
        # resize the colorbar (by default the color fills the whole axes)
        cpos = cax.get_position()
        if size <= 1:
            cpos.x0 = 1 - (.7 + .1 / size) / nax
        cpos.x1 = cpos.x0 + .1 / nax
        cpos.y0 = .1
        cpos.y1 = .7
        cax.set_position(cpos)
        if unit is not None:
            cax.set_title(unit)

    if proj == 'interactive':
        _check_delayed_ssp(evoked)
        params = dict(evoked=evoked, fig=fig, projs=evoked.info['projs'],
                      picks=picks, images=images, contours=contours_,
                      time_idx=time_idx, scale=scale, merge_grads=merge_grads,
                      res=res, pos=pos, image_mask=image_mask,
                      plot_update_proj_callback=_plot_update_evoked_topomap)
        _draw_proj_checkbox(None, params)

    if title is not None:
        plt.suptitle(title, verticalalignment='top', size='x-large')
        tight_layout(pad=2 * size / 2.0, fig=fig)
    if show:
        plt.show()

    return fig