1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
#! /usr/bin/env python
#
# Copyright (C) 2011-2014 Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
import os
from os import path as op
import setuptools # noqa; analysis:ignore; we are using a setuptools namespace
from numpy.distutils.core import setup
# get the version (don't import mne here, so dependencies are not needed)
version = None
with open(os.path.join('mne', '__init__.py'), 'r') as fid:
for line in (line.strip() for line in fid):
if line.startswith('__version__'):
version = line.split('=')[1].strip().strip('\'')
break
if version is None:
raise RuntimeError('Could not determine version')
descr = """MNE python project for MEG and EEG data analysis."""
DISTNAME = 'mne'
DESCRIPTION = descr
MAINTAINER = 'Alexandre Gramfort'
MAINTAINER_EMAIL = 'alexandre.gramfort@telecom-paristech.fr'
URL = 'http://martinos.org/mne'
LICENSE = 'BSD (3-clause)'
DOWNLOAD_URL = 'http://github.com/mne-tools/mne-python'
VERSION = version
if __name__ == "__main__":
if os.path.exists('MANIFEST'):
os.remove('MANIFEST')
setup(name=DISTNAME,
maintainer=MAINTAINER,
include_package_data=True,
maintainer_email=MAINTAINER_EMAIL,
description=DESCRIPTION,
license=LICENSE,
url=URL,
version=VERSION,
download_url=DOWNLOAD_URL,
long_description=open('README.rst').read(),
zip_safe=False, # the package can run out of an .egg file
classifiers=['Intended Audience :: Science/Research',
'Intended Audience :: Developers',
'License :: OSI Approved',
'Programming Language :: Python',
'Topic :: Software Development',
'Topic :: Scientific/Engineering',
'Operating System :: Microsoft :: Windows',
'Operating System :: POSIX',
'Operating System :: Unix',
'Operating System :: MacOS'],
platforms='any',
packages=['mne', 'mne.tests',
'mne.beamformer', 'mne.beamformer.tests',
'mne.connectivity', 'mne.connectivity.tests',
'mne.data',
'mne.datasets',
'mne.datasets.sample',
'mne.datasets.megsim',
'mne.datasets.spm_face',
'mne.datasets.eegbci',
'mne.datasets.somato',
'mne.externals',
'mne.fiff',
'mne.io', 'mne.io.tests',
'mne.io.array', 'mne.io.array.tests',
'mne.io.brainvision', 'mne.io.brainvision.tests',
'mne.io.bti', 'mne.io.bti.tests',
'mne.io.edf', 'mne.io.edf.tests',
'mne.io.egi', 'mne.io.egi.tests',
'mne.io.fiff', 'mne.io.fiff.tests',
'mne.io.kit', 'mne.io.kit.tests',
'mne.forward', 'mne.forward.tests',
'mne.viz', 'mne.viz.tests',
'mne.gui', 'mne.gui.tests',
'mne.layouts', 'mne.layouts.tests',
'mne.minimum_norm', 'mne.minimum_norm.tests',
'mne.mixed_norm',
'mne.inverse_sparse', 'mne.inverse_sparse.tests',
'mne.preprocessing', 'mne.preprocessing.tests',
'mne.simulation', 'mne.simulation.tests',
'mne.tests',
'mne.stats', 'mne.stats.tests',
'mne.time_frequency', 'mne.time_frequency.tests',
'mne.realtime', 'mne.realtime.tests',
'mne.decoding', 'mne.decoding.tests',
'mne.commands', 'mne.externals',
'mne.externals.tempita'],
package_data={'mne': [op.join('data', '*.sel'),
op.join('data', 'icos.fif.gz'),
op.join('data', 'coil_def.dat'),
op.join('data', 'helmets', '*.fif.gz'),
op.join('layouts', '*.lout'),
op.join('layouts', '*.lay'),
op.join('html', '*.js'),
op.join('html', '*.css')]},
scripts=['bin/mne'])
|