1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
:orphan:
Bad channel repair via interpolation
====================================
Spherical spline interpolation (EEG)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. NOTE: part of this file is included in doc/overview/implementation.rst.
Changes here are reflected there. If you want to link to this content, link
to :ref:`channel-interpolation` to link to that section of the
implementation.rst page. The next line is a target for :start-after: so we
can omit the title from the include:
channel-interpolation-begin-content
In short, data repair using spherical spline interpolation :footcite:`PerrinEtAl1989` consists of the following steps:
* Project the good and bad electrodes onto a unit sphere
* Compute a mapping matrix that maps :math:`N` good channels to :math:`M` bad channels
* Use this mapping matrix to compute interpolated data in the bad channels
Spherical splines assume that the potential :math:`V(\boldsymbol{r_i})` at any point :math:`\boldsymbol{r_i}` on the surface of the sphere can be represented by:
.. math:: V(\boldsymbol{r_i}) = c_0 + \sum_{j=1}^{N}c_{i}g_{m}(cos(\boldsymbol{r_i}, \boldsymbol{r_{j}}))
:label: model
where the :math:`C = (c_{1}, ..., c_{N})^{T}` are constants which must be estimated. The function :math:`g_{m}(\cdot)` of order :math:`m` is given by:
.. math:: g_{m}(x) = \frac{1}{4 \pi}\sum_{n=1}^{\infty} \frac{2n + 1}{(n(n + 1))^m}P_{n}(x)
:label: legendre
where :math:`P_{n}(x)` are `Legendre polynomials`_ of order :math:`n`.
.. _Legendre polynomials: https://en.wikipedia.org/wiki/Legendre_polynomials
To estimate the constants :math:`C`, we must solve the following two equations simultaneously:
.. math:: G_{ss}C + T_{s}c_0 = X
:label: matrix_form
.. math:: {T_s}^{T}C = 0
:label: constraint
where :math:`G_{ss} \in R^{N \times N}` is a matrix whose entries are :math:`G_{ss}[i, j] = g_{m}(cos(\boldsymbol{r_i}, \boldsymbol{r_j}))` and :math:`X \in R^{N \times 1}` are the potentials :math:`V(\boldsymbol{r_i})` measured at the good channels. :math:`T_{s} = (1, 1, ..., 1)^\top` is a column vector of dimension :math:`N`. Equation :eq:`matrix_form` is the matrix formulation of Equation :eq:`model` and equation :eq:`constraint` is like applying an average reference to the data. From equation :eq:`matrix_form` and :eq:`constraint`, we get:
.. math:: \begin{bmatrix} c_0 \\ C \end{bmatrix} = {\begin{bmatrix} {T_s}^{T} && 0 \\ T_s && G_{ss} \end{bmatrix}}^{-1} \begin{bmatrix} 0 \\ X \end{bmatrix} = C_{i}X
:label: estimate_constant
:math:`C_{i}` is the same as matrix :math:`{\begin{bmatrix} {T_s}^{T} && 0 \\ T_s && G_{ss} \end{bmatrix}}^{-1}` but with its first column deleted, therefore giving a matrix of dimension :math:`(N + 1) \times N`.
Now, to estimate the potentials :math:`\hat{X} \in R^{M \times 1}` at the bad channels, we have to do:
.. math:: \hat{X} = G_{ds}C + T_{d}c_0
:label: estimate_data
where :math:`G_{ds} \in R^{M \times N}` computes :math:`g_{m}(\boldsymbol{r_i}, \boldsymbol{r_j})` between the bad and good channels. :math:`T_{d} = (1, 1, ..., 1)^\top` is a column vector of dimension :math:`M`. Plugging in equation :eq:`estimate_constant` in :eq:`estimate_data`, we get
.. math:: \hat{X} = \begin{bmatrix} T_d && G_{ds} \end{bmatrix} \begin{bmatrix} c_0 \\ C \end{bmatrix} = \underbrace{\begin{bmatrix} T_d && G_{ds} \end{bmatrix} C_{i}}_\text{mapping matrix}X
To interpolate bad channels, one can simply do:
>>> evoked.interpolate_bads(reset_bads=False) # doctest: +SKIP
and the bad channel will be fixed.
.. target for :end-before: channel-interpolation-end-content
.. topic:: Examples:
* :ref:`ex-interpolate-bad-channels`
|