1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
# -*- coding: utf-8 -*-
"""
.. _ex-ssd-spatial-filters:
===========================================================
Compute Spectro-Spatial Decomposition (SSD) spatial filters
===========================================================
In this example, we will compute spatial filters for retaining
oscillatory brain activity and down-weighting 1/f background signals
as proposed by :footcite:`NikulinEtAl2011`.
The idea is to learn spatial filters that separate oscillatory dynamics
from surrounding non-oscillatory noise based on the covariance in the
frequency band of interest and the noise covariance based on surrounding
frequencies.
"""
# Author: Denis A. Engemann <denis.engemann@gmail.com>
# Victoria Peterson <victoriapeterson09@gmail.com>
# License: BSD-3-Clause
# %%
import matplotlib.pyplot as plt
import mne
from mne import Epochs
from mne.datasets.fieldtrip_cmc import data_path
from mne.decoding import SSD
# %%
# Define parameters
fname = data_path() / 'SubjectCMC.ds'
# Prepare data
raw = mne.io.read_raw_ctf(fname)
raw.crop(50., 110.).load_data() # crop for memory purposes
raw.resample(sfreq=250)
raw.pick_types(meg=True, eeg=False, ref_meg=False)
freqs_sig = 9, 12
freqs_noise = 8, 13
ssd = SSD(info=raw.info,
reg='oas',
sort_by_spectral_ratio=False, # False for purpose of example.
filt_params_signal=dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
l_trans_bandwidth=1, h_trans_bandwidth=1),
filt_params_noise=dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
l_trans_bandwidth=1, h_trans_bandwidth=1))
ssd.fit(X=raw.get_data())
# %%
# Let's investigate spatial filter with max power ratio.
# We will first inspect the topographies.
# According to Nikulin et al. 2011 this is done by either inverting the filters
# (W^{-1}) or by multiplying the noise cov with the filters Eq. (22) (C_n W)^t.
# We rely on the inversion approach here.
pattern = mne.EvokedArray(data=ssd.patterns_[:4].T,
info=ssd.info)
pattern.plot_topomap(units=dict(mag='A.U.'), time_format='')
# The topographies suggest that we picked up a parietal alpha generator.
# Transform
ssd_sources = ssd.transform(X=raw.get_data())
# Get psd of SSD-filtered signals.
psd, freqs = mne.time_frequency.psd_array_welch(
ssd_sources, sfreq=raw.info['sfreq'], n_fft=4096)
# Get spec_ratio information (already sorted).
# Note that this is not necessary if sort_by_spectral_ratio=True (default).
spec_ratio, sorter = ssd.get_spectral_ratio(ssd_sources)
# Plot spectral ratio (see Eq. 24 in Nikulin 2011).
fig, ax = plt.subplots(1)
ax.plot(spec_ratio, color='black')
ax.plot(spec_ratio[sorter], color='orange', label='sorted eigenvalues')
ax.set_xlabel("Eigenvalue Index")
ax.set_ylabel(r"Spectral Ratio $\frac{P_f}{P_{sf}}$")
ax.legend()
ax.axhline(1, linestyle='--')
# We can see that the initial sorting based on the eigenvalues
# was already quite good. However, when using few components only
# the sorting might make a difference.
# %%
# Let's also look at the power spectrum of that source and compare it to
# to the power spectrum of the source with lowest SNR.
below50 = freqs < 50
# for highlighting the freq. band of interest
bandfilt = (freqs_sig[0] <= freqs) & (freqs <= freqs_sig[1])
fig, ax = plt.subplots(1)
ax.loglog(freqs[below50], psd[0, below50], label='max SNR')
ax.loglog(freqs[below50], psd[-1, below50], label='min SNR')
ax.loglog(freqs[below50], psd[:, below50].mean(axis=0), label='mean')
ax.fill_between(freqs[bandfilt], 0, 10000, color='green', alpha=0.15)
ax.set_xlabel('log(frequency)')
ax.set_ylabel('log(power)')
ax.legend()
# We can clearly see that the selected component enjoys an SNR that is
# way above the average power spectrum.
# %%
# Epoched data
# ------------
# Although we suggest to use this method before epoching, there might be some
# situations in which data can only be treated by chunks.
# Build epochs as sliding windows over the continuous raw file.
events = mne.make_fixed_length_events(raw, id=1, duration=5.0, overlap=0.0)
# Epoch length is 5 seconds.
epochs = Epochs(raw, events, tmin=0., tmax=5,
baseline=None, preload=True)
ssd_epochs = SSD(info=epochs.info,
reg='oas',
filt_params_signal=dict(l_freq=freqs_sig[0],
h_freq=freqs_sig[1],
l_trans_bandwidth=1,
h_trans_bandwidth=1),
filt_params_noise=dict(l_freq=freqs_noise[0],
h_freq=freqs_noise[1],
l_trans_bandwidth=1,
h_trans_bandwidth=1))
ssd_epochs.fit(X=epochs.get_data())
# Plot topographies.
pattern_epochs = mne.EvokedArray(data=ssd_epochs.patterns_[:4].T,
info=ssd_epochs.info)
pattern_epochs.plot_topomap(units=dict(mag='A.U.'), time_format='')
# %%
# References
# ----------
#
# .. footbibliography::
|