1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
|
# -*- coding: utf-8 -*-
"""
.. _example-sLORETA:
=============================================
Compute sLORETA inverse solution on raw data
=============================================
Compute sLORETA inverse solution on raw dataset restricted
to a brain label and stores the solution in stc files for
visualisation.
"""
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD-3-Clause
# %%
import matplotlib.pyplot as plt
import mne
from mne.datasets import sample
from mne.minimum_norm import apply_inverse_raw, read_inverse_operator
print(__doc__)
data_path = sample.data_path()
fname_inv = (
data_path / 'MEG' / 'sample' / 'sample_audvis-meg-oct-6-meg-inv.fif')
fname_raw = data_path / 'MEG' / 'sample' / 'sample_audvis_raw.fif'
label_name = 'Aud-lh'
fname_label = data_path / 'MEG' / 'sample' / 'labels' / f'{label_name}.label'
snr = 1.0 # use smaller SNR for raw data
lambda2 = 1.0 / snr ** 2
method = "sLORETA" # use sLORETA method (could also be MNE or dSPM)
# Load data
raw = mne.io.read_raw_fif(fname_raw)
inverse_operator = read_inverse_operator(fname_inv)
label = mne.read_label(fname_label)
raw.set_eeg_reference('average', projection=True) # set average reference.
start, stop = raw.time_as_index([0, 15]) # read the first 15s of data
# Compute inverse solution
stc = apply_inverse_raw(raw, inverse_operator, lambda2, method, label,
start, stop, pick_ori=None)
# Save result in stc files
stc.save('mne_%s_raw_inverse_%s' % (method, label_name), overwrite=True)
# %%
# View activation time-series
plt.plot(1e3 * stc.times, stc.data[::100, :].T)
plt.xlabel('time (ms)')
plt.ylabel('%s value' % method)
plt.show()
|