File: mixed_source_space_inverse.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (180 lines) | stat: -rw-r--r-- 5,854 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# -*- coding: utf-8 -*-
"""
.. _ex-mixed-source-space-inverse:

=====================================================================
Compute MNE inverse solution on evoked data with a mixed source space
=====================================================================

Create a mixed source space and compute an MNE inverse solution on an
evoked dataset.
"""
# Author: Annalisa Pascarella <a.pascarella@iac.cnr.it>
#
# License: BSD-3-Clause

# %%

import matplotlib.pyplot as plt

from nilearn import plotting

import mne
from mne.minimum_norm import make_inverse_operator, apply_inverse

# Set dir
data_path = mne.datasets.sample.data_path()
subject = 'sample'
data_dir = data_path / 'MEG' / subject
subjects_dir = data_path / 'subjects'
bem_dir = subjects_dir / subject / 'bem'

# Set file names
fname_mixed_src = bem_dir / f'{subject}-oct-6-mixed-src.fif'
fname_aseg = subjects_dir / subject / 'mri' / 'aseg.mgz'

fname_model = bem_dir / f'{subject}-5120-bem.fif'
fname_bem = bem_dir / f'{subject}-5120-bem-sol.fif'

fname_evoked = data_dir / f'{subject}_audvis-ave.fif'
fname_trans = data_dir / f'{subject}_audvis_raw-trans.fif'
fname_fwd = data_dir / f'{subject}_audvis-meg-oct-6-mixed-fwd.fif'
fname_cov = data_dir / f'{subject}_audvis-shrunk-cov.fif'

# %%
# Set up our source space
# -----------------------
# List substructures we are interested in. We select only the
# sub structures we want to include in the source space:

labels_vol = ['Left-Amygdala',
              'Left-Thalamus-Proper',
              'Left-Cerebellum-Cortex',
              'Brain-Stem',
              'Right-Amygdala',
              'Right-Thalamus-Proper',
              'Right-Cerebellum-Cortex']

# %%
# Get a surface-based source space, here with few source points for speed
# in this demonstration, in general you should use oct6 spacing!
src = mne.setup_source_space(subject, spacing='oct5',
                             add_dist=False, subjects_dir=subjects_dir)

# %%
# Now we create a mixed src space by adding the volume regions specified in the
# list labels_vol. First, read the aseg file and the source space bounds
# using the inner skull surface (here using 10mm spacing to save time,
# we recommend something smaller like 5.0 in actual analyses):

vol_src = mne.setup_volume_source_space(
    subject, mri=fname_aseg, pos=10.0, bem=fname_model,
    volume_label=labels_vol, subjects_dir=subjects_dir,
    add_interpolator=False,  # just for speed, usually this should be True
    verbose=True)

# Generate the mixed source space
src += vol_src
print(f"The source space contains {len(src)} spaces and "
      f"{sum(s['nuse'] for s in src)} vertices")

# %%
# View the source space
# ---------------------

src.plot(subjects_dir=subjects_dir)

# %%
# We could write the mixed source space with::
#
#    >>> write_source_spaces(fname_mixed_src, src, overwrite=True)
#
# We can also export source positions to NIfTI file and visualize it again:

nii_fname = bem_dir / f'{subject}-mixed-src.nii'
src.export_volume(nii_fname, mri_resolution=True, overwrite=True)
plotting.plot_img(str(nii_fname), cmap='nipy_spectral')

# %%
# Compute the fwd matrix
# ----------------------
fwd = mne.make_forward_solution(
    fname_evoked, fname_trans, src, fname_bem,
    mindist=5.0,  # ignore sources<=5mm from innerskull
    meg=True, eeg=False, n_jobs=None)
del src  # save memory

leadfield = fwd['sol']['data']
print("Leadfield size : %d sensors x %d dipoles" % leadfield.shape)
print(f"The fwd source space contains {len(fwd['src'])} spaces and "
      f"{sum(s['nuse'] for s in fwd['src'])} vertices")

# Load data
condition = 'Left Auditory'
evoked = mne.read_evokeds(fname_evoked, condition=condition,
                          baseline=(None, 0))
noise_cov = mne.read_cov(fname_cov)

# %%
# Compute inverse solution
# ------------------------
snr = 3.0            # use smaller SNR for raw data
inv_method = 'dSPM'  # sLORETA, MNE, dSPM
parc = 'aparc'       # the parcellation to use, e.g., 'aparc' 'aparc.a2009s'
loose = dict(surface=0.2, volume=1.)

lambda2 = 1.0 / snr ** 2

inverse_operator = make_inverse_operator(
    evoked.info, fwd, noise_cov, depth=None, loose=loose, verbose=True)
del fwd

stc = apply_inverse(evoked, inverse_operator, lambda2, inv_method,
                    pick_ori=None)
src = inverse_operator['src']

# %%
# Plot the mixed source estimate
# ------------------------------

# sphinx_gallery_thumbnail_number = 3
initial_time = 0.1
stc_vec = apply_inverse(evoked, inverse_operator, lambda2, inv_method,
                        pick_ori='vector')
brain = stc_vec.plot(
    hemi='both', src=inverse_operator['src'], views='coronal',
    initial_time=initial_time, subjects_dir=subjects_dir,
    brain_kwargs=dict(silhouette=True), smoothing_steps=7)

# %%
# Plot the surface
# ----------------
brain = stc.surface().plot(initial_time=initial_time,
                           subjects_dir=subjects_dir, smoothing_steps=7)
# %%
# Plot the volume
# ---------------

fig = stc.volume().plot(initial_time=initial_time, src=src,
                        subjects_dir=subjects_dir)

# %%
# Process labels
# --------------
# Average the source estimates within each label of the cortical parcellation
# and each sub structure contained in the src space

# Get labels for FreeSurfer 'aparc' cortical parcellation with 34 labels/hemi
labels_parc = mne.read_labels_from_annot(
    subject, parc=parc, subjects_dir=subjects_dir)

label_ts = mne.extract_label_time_course(
    [stc], labels_parc, src, mode='mean', allow_empty=True)

# plot the times series of 2 labels
fig, axes = plt.subplots(1)
axes.plot(1e3 * stc.times, label_ts[0][0, :], 'k', label='bankssts-lh')
axes.plot(1e3 * stc.times, label_ts[0][-1, :].T, 'r', label='Brain-stem')
axes.set(xlabel='Time (ms)', ylabel='MNE current (nAm)')
axes.legend()
mne.viz.tight_layout()