File: snr_estimate.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (32 lines) | stat: -rw-r--r-- 804 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# -*- coding: utf-8 -*-
"""
.. _ex-snr-estimate:

==================================
Estimate data SNR using an inverse
==================================

This estimates the SNR as a function of time for a set of data
using a minimum-norm inverse operator.
"""
# Author: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD-3-Clause

# %%

from mne.datasets.sample import data_path
from mne.minimum_norm import read_inverse_operator
from mne import read_evokeds
from mne.viz import plot_snr_estimate

print(__doc__)

data_dir = data_path() / 'MEG' / 'sample'
fname_inv = data_dir / 'sample_audvis-meg-oct-6-meg-inv.fif'
fname_evoked = data_dir / 'sample_audvis-ave.fif'

inv = read_inverse_operator(fname_inv)
evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0]

plot_snr_estimate(evoked, inv)