1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
|
# -*- coding: utf-8 -*-
"""
.. _ex-read-neo:
===============================================
How to use data in neural ensemble (NEO) format
===============================================
This example shows how to create an MNE-Python `~mne.io.Raw` object from data
in the `neural ensemble <https://neo.readthedocs.io>`__ format. For general
information on creating MNE-Python's data objects from NumPy arrays, see
:ref:`tut-creating-data-structures`.
"""
# %%
import neo
import mne
# %%
# This example uses NEO's ``ExampleIO`` object for creating fake data. The data
# will be all zeros, so the plot won't be very interesting, but it should
# demonstrate the steps to using NEO data. For actual data and different file
# formats, consult the NEO documentation.
reader = neo.io.ExampleIO('fakedata.nof')
block = reader.read(lazy=False)[0] # get the first block
segment = block.segments[0] # get data from first (and only) segment
signals = segment.analogsignals[0] # get first (multichannel) signal
data = signals.rescale('V').magnitude.T
sfreq = signals.sampling_rate.magnitude
ch_names = [f'Neo {(idx + 1):02}' for idx in range(signals.shape[1])]
ch_types = ['eeg'] * len(ch_names) # if not specified, type 'misc' is assumed
info = mne.create_info(ch_names=ch_names, ch_types=ch_types, sfreq=sfreq)
raw = mne.io.RawArray(data, info)
raw.plot(show_scrollbars=False)
|