1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
# -*- coding: utf-8 -*-
"""
.. _ex-eeg-csd:
=====================================================
Transform EEG data using current source density (CSD)
=====================================================
This script shows an example of how to use CSD
:footcite:`PerrinEtAl1987,PerrinEtAl1989,Cohen2014,KayserTenke2015`.
CSD takes the spatial Laplacian of the sensor signal (derivative in both
x and y). It does what a planar gradiometer does in MEG. Computing these
spatial derivatives reduces point spread. CSD transformed data have a sharper
or more distinct topography, reducing the negative impact of volume conduction.
"""
# Authors: Alex Rockhill <aprockhill@mailbox.org>
#
# License: BSD-3-Clause
# %%
# sphinx_gallery_thumbnail_number = 6
import numpy as np
import matplotlib.pyplot as plt
import mne
from mne.datasets import sample
print(__doc__)
data_path = sample.data_path()
# %%
# Load sample subject data
meg_path = data_path / 'MEG' / 'sample'
raw = mne.io.read_raw_fif(meg_path / 'sample_audvis_raw.fif')
raw = raw.pick_types(meg=False, eeg=True, eog=True, ecg=True, stim=True,
exclude=raw.info['bads']).load_data()
events = mne.find_events(raw)
raw.set_eeg_reference(projection=True).apply_proj()
# %%
# Plot the raw data and CSD-transformed raw data:
raw_csd = mne.preprocessing.compute_current_source_density(raw)
raw.plot()
raw_csd.plot()
# %%
# Also look at the power spectral densities:
raw.plot_psd()
raw_csd.plot_psd()
# %%
# CSD can also be computed on Evoked (averaged) data.
# Here we epoch and average the data so we can demonstrate that.
event_id = {'auditory/left': 1, 'auditory/right': 2, 'visual/left': 3,
'visual/right': 4, 'smiley': 5, 'button': 32}
epochs = mne.Epochs(raw, events, event_id=event_id, tmin=-0.2, tmax=.5,
preload=True)
evoked = epochs['auditory'].average()
# %%
# First let's look at how CSD affects scalp topography:
times = np.array([-0.1, 0., 0.05, 0.1, 0.15])
evoked_csd = mne.preprocessing.compute_current_source_density(evoked)
evoked.plot_joint(title='Average Reference', show=False)
evoked_csd.plot_joint(title='Current Source Density')
# %%
# CSD has parameters ``stiffness`` and ``lambda2`` affecting smoothing and
# spline flexibility, respectively. Let's see how they affect the solution:
fig, ax = plt.subplots(4, 4)
fig.subplots_adjust(hspace=0.5)
fig.set_size_inches(10, 10)
for i, lambda2 in enumerate([0, 1e-7, 1e-5, 1e-3]):
for j, m in enumerate([5, 4, 3, 2]):
this_evoked_csd = mne.preprocessing.compute_current_source_density(
evoked, stiffness=m, lambda2=lambda2)
this_evoked_csd.plot_topomap(
0.1, axes=ax[i, j], contours=4, time_unit='s',
colorbar=False, show=False)
ax[i, j].set_title('stiffness=%i\nλ²=%s' % (m, lambda2))
# %%
# References
# ----------
# .. footbibliography::
|